Skip to main content

Compliance Auxiliary Assembly of Large Aircraft Components Based on Variable Admittance Control

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Abstract

With the increasing demand for automation in aviation manufacturing, it is significant to realize intelligent manufacturing by using industrial robots for the compliant auxiliary assembly of large aircraft components. Based on the requirements of human-machine collaboration, the characteristics of variable admittance control are analyzed by taking the large aircraft components as the assembly object, and the specific implementation methods of variable admittance control based on operation intention recognition for different phases of the auxiliary assembly process are studied. Later, the force signal processing is simulated and an auxiliary assembly test prototype is built to verify the conclusion. The results show that using the proposed method can effectively improve the phenomenon of reverse acceleration mutation and contact bounce of robot, then the robot’s compliance and assembly efficiency in the process of auxiliary assembly are enhanced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wu, D., Zhao, A.A., Chen, K., et al.: A survey of collaborative robot for aircraft manufacturing application. Aeronaut. Manuf. Technol. 62(10), 24–34 (2019)

    Google Scholar 

  2. Li, T., Hu, X.X., Yao, W., et al.: Research on application of robot in space equipment automatic assembly. Aeron. Manuf. Technol. 0(21), 102–104+108 (2014)

    Google Scholar 

  3. Hu, R.Q., Zhang, L.J., Meng, S.H., et al.: Robotic assembly technology for heavy component of spacecraft based on compliance control. J. Mech. Eng. 54(11), 85–93 (2018)

    Article  Google Scholar 

  4. Feng, Z.M.: Digital assembly technology for aircraft. Aviation Industry Press, Beijing, China (2015)

    Google Scholar 

  5. Bley, H., Reinhart, G., Seliger, G., et al.: Appropriate human involvement in assembly and disassembly. CIRP Ann. Manuf. Technol. 53(2), 487–509 (2004)

    Article  Google Scholar 

  6. Sano, Y., Hori, R., Yabuta, T., et al.: Comparison between admittance and impedance control method of a finger-arm robot during grasping object with internal and external impedance control. Trans. Japan Soc. Mech. Engineers 79(807), 4330–4334 (2013)

    Article  Google Scholar 

  7. Hogan, N.: Impedance control-an approach to manipulation. I-theory. II-mplementation. III-applications. J. Dynamic Syst. Meas. Control, 107, 1–24 (1985)

    Google Scholar 

  8. Seraji, H.: Adaptive admittance control: an approach to explicit force control in compliant motion. In: IEEE International Conference on Robotics and Automation, pp. 2705–2712. IEEE, Washington, DC, USA (2002)

    Google Scholar 

  9. Gan, Y.H., Duan, J.J., Dai, X.Z.: Adaptive variable impedance control for robot force tracking in unstructured environment. Control Decis. 34(10), 2134–2142 (2019)

    Google Scholar 

  10. Akgun, G., Cetin, A.E., Kaplanoglu, E.: Exoskeleton design and adaptive compliance control for hand rehabilitation. Trans. Inst. Meas. Control. 42(3), 493–502 (2020)

    Article  Google Scholar 

  11. Tsumugiwa, T., Yokogawa, R., Hara, K.: Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. In: IEEE International Conference on Robotics and Automation, IEEE, Marina Bay Sands, Singapore (2017)

    Google Scholar 

  12. Lecours, A., Mayer-St-Onge, B., Gosselin, C.: Variable admittance control of a four-degree-of-freedom intelligent assist device. In: IEEE International Conference on Robotics & Automation, pp. 3903–3908. IEEE, Paul, Minnesota, USA (2012)

    Google Scholar 

  13. Kormushev, P., Calinon, S., Caldwell, D.G.: Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Adv. Robot. 25(5), 581–603 (2011)

    Article  Google Scholar 

  14. Rozo, L., Calinon, S., Caldwell, D.G., et al.: Learning physical collaborative robot behaviors from human demonstrations. IEEE Trans. Rob. 32(3), 513–527 (2016)

    Article  Google Scholar 

  15. Li, Y., Ge, S.S.: Force tracking control for motion synchronization in human-robot collaboration. Robotica 34(6), 1260–1281 (2016)

    Article  Google Scholar 

  16. Dong, J.W., Zhou, Q.Q., Xu, J.M.: Research on robot impedance control. In: 37th Chinese Control Conference, p. 7. Technical Committee on Control Theory, Chinese Association of Automation, Wuhan, Hubei, China (2018)

    Google Scholar 

  17. Ikeura, R., Inooka, H.: Variable impedance control of a robot for cooperation with a human. In: IEEE International Conference on Robotics and Automation, pp. 3097–3102. IEEE, Nagoya, Japan (1995)

    Google Scholar 

  18. Duchaine, V., Gosselin, C.M.: General model of human-robot cooperation using a novel velocity based variable impedance control. In: 2nd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 22–24. IEEE, Tsukuba, Japan (2007)

    Google Scholar 

  19. Li, G., Li, P.C., Wu, C., et al.: Research on optimization algorithm of robot load gravity compensation based on genetic algorithm. Aeronaut. Manuf. Technol. 64(5), 52–59 (2021)

    Google Scholar 

  20. BILI Homepage. https://www.bilibili.com/video/BV1Kf4y1p7LU. Accessed 21 Jun 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, C., Shen, Y., Li, G., Li, P., Tian, W. (2021). Compliance Auxiliary Assembly of Large Aircraft Components Based on Variable Admittance Control. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics