Skip to main content

EnGraf-Net: Multiple Granularity Branch Network with Fine-Coarse Graft Grained for Classification Task

  • Conference paper
  • First Online:
  • 743 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13052))

Abstract

Fine-Grained classification models can expressly focus on the relevant details useful to distinguish highly similar classes typically when the intra-class variance is high and the inter-class variance is low given a dataset. Most of these models use part annotations as bounding box, location part, text attributes to enhance the performance of classification and other models use sophisticated techniques to extract an attention map automatically. We assume that part-based approaches as the automatic cropping method suffers from a missing representation of local features, which are fundamental to distinguish similar objects. While Fine-Grained classification endeavours to recognize the leaf of a graph, humans recognize an object trying also to make a semantic association. In this paper, we use the semantic association structured as a hierarchy (taxonomy) as supervised signals and used them in an end-to-end deep neural network model termed as EnGraf-Net. Extensive experiments on three well-known datasets: Cifar-100, CUB-200-2011 and FGVC-Aircraft prove the superiority of EnGraf-Net over many Fine-Grained models and it is competitive with the most recent best models without using any cropping technique or manual annotations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Branson, S., et al.: Bird species categorization using pose normalized deep convolutional nets (2014)

    Google Scholar 

  2. Cai, S., et al.: Higher-order integration of hierarchical convolutional activations for fine-grained visual categorization. In: ICCV (2017)

    Google Scholar 

  3. Chang, D., et al.: The devil is in the channels: mutual-channel loss for fine-grained image classification. IEEE Trans. Image Process. 29, 4683–4695 (2020)

    Article  Google Scholar 

  4. Chang, D., et al.: Your “labrador” is my “dog”: fine-grained, or not. arXiv preprint arXiv:2011.09040 (2020)

  5. Chen, T., et al.: Fine-grained representation learning and recognition by exploiting hierarchical semantic embedding. In: ACM-MM (2018)

    Google Scholar 

  6. Chen, T., et al.: Knowledge-embedded representation learning for fine-grained image recognition. In: IJCAI (2018)

    Google Scholar 

  7. Deshmukh, S.S., Knierim, J.J.: Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front. Behav. Neurosci. 5, 69 (2011)

    Article  Google Scholar 

  8. Ding, Y., et al.: Selective sparse sampling for fine-grained image recognition. In: ICCV (2019)

    Google Scholar 

  9. Ding, Y., et al.: AP-CNN: weakly supervised attention pyramid convolutional neural network for fine-grained visual classification. IEEE Trans. Image Process. 30, 2826–2836 (2021)

    Article  Google Scholar 

  10. Dubey, A., et al.: Maximum-entropy fine grained classification. In: NIPS (2018)

    Google Scholar 

  11. Fu, J., et al.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: CVPR (2017)

    Google Scholar 

  12. Ghiasi, G., et al.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR (2019)

    Google Scholar 

  13. Hanselmann, H., et al.: ELoPE: fine-grained visual classification with efficient localization, pooling and embedding. In: WACV (2020)

    Google Scholar 

  14. Hanselmann, H., et al.: Fine-grained visual classification with efficient end-to-end localization. arXiv (2020)

    Google Scholar 

  15. Jaderberg, M., et al.: Spatial transformer networks. arXiv preprint arXiv:1506.02025 (2015)

  16. La Grassa, R., Gallo, I., Landro, N.: EnGraf-Net: multiple granularity branch network with fine-coarse graft grained for classification task. https://gitlab.com/artelabsuper/engraf-net

  17. La Grassa, R., Gallo, I., Landro, N.: Learn class hierarchy using convolutional neural networks. Appl. Intell. 51, 6622–6632 (2021). https://doi.org/10.1007/s10489-020-02103-6

    Article  Google Scholar 

  18. Li, P., et al.: Towards faster training of global covariance pooling networks by iterative matrix square root normalization. In: CVPR (2018)

    Google Scholar 

  19. Li, Z., et al.: Dynamic computational time for visual attention. In: ICCV (2017)

    Google Scholar 

  20. Lin, T.Y., et al.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  21. Liu, S., et al.: Path aggregation network for instance segmentation. In: CVPR (2018)

    Google Scholar 

  22. Luo, W., et al.: Cross-x learning for fine-grained visual categorization. In: ICCV (2019)

    Google Scholar 

  23. Luo, W., et al.: Learning semantically enhanced feature for fine-grained image classification. IEEE Signal Process. Lett. 27, 1545–1549 (2020)

    Article  Google Scholar 

  24. MacArthur, R.H.: Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599–619 (1958)

    Article  Google Scholar 

  25. Madar, A.D., et al.: Pattern separation of spiketrains in hippocampal neurons. Sci. Rep. 9, 1–20 (2019)

    Article  Google Scholar 

  26. Maji, S., et al.: Fine-grained visual classification of aircraft. Tech. rep. (2013)

    Google Scholar 

  27. Neunuebel, J.P., et al.: Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. Neuroscience 33, 9246–9258 (2013)

    Article  Google Scholar 

  28. Neunuebel, J.P., et al.: Ca3 retrieves coherent representations from degraded input: direct evidence for ca3 pattern completion and dentate gyrus pattern separation. Neuron 81, 416–427 (2014)

    Article  Google Scholar 

  29. Newman, E.L., et al.: Ca3 sees the big picture while dentate gyrus splits hairs. Neuron 81, 226–228 (2014)

    Article  Google Scholar 

  30. Selvaraju, R.R., et al.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  31. Tan, M., et al.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML (2019)

    Google Scholar 

  32. Wah, C., et al.: The Caltech-UCSD Birds-200-2011 Dataset (2011)

    Google Scholar 

  33. Wang, D., et al.: Multiple granularity descriptors for fine-grained categorization. In: ICCV (2015)

    Google Scholar 

  34. Wang, H., et al.: Score-cam: score-weighted visual explanations for convolutional neural networks. In: CVPR (2020)

    Google Scholar 

  35. Wang, Y., et al.: Learning a discriminative filter bank within a CNN for fine-grained recognition. In: CVPR (2018)

    Google Scholar 

  36. Wang, Z., et al.: Weakly supervised fine-grained image classification via correlation-guided discriminative learning. In: ACM-MM (2019)

    Google Scholar 

  37. Xie, L., et al.: Hierarchical part matching for fine-grained visual categorization. In: ICCV (2013)

    Google Scholar 

  38. Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for fine-grained classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 438–454. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_26

    Chapter  Google Scholar 

  39. Zheng, H., et al.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: ICCV (2017)

    Google Scholar 

  40. Zheng, H., et al.: Learning deep bilinear transformation for fine-grained image representation. In: NIPS (2019)

    Google Scholar 

  41. Zheng, H., et al.: Learning rich part hierarchies with progressive attention networks for fine-grained image recognition. IEEE Trans. Image Process. 29, 476–488 (2019)

    Article  MathSciNet  Google Scholar 

  42. Zheng, H., et al.: Looking for the devil in the details: learning trilinear attention sampling network for fine-grained image recognition. In: CVPR (2019)

    Google Scholar 

  43. Zhuang, P., et al.: Learning attentive pairwise interaction for fine-grained classification. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo La Grassa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

La Grassa, R., Gallo, I., Landro, N. (2021). EnGraf-Net: Multiple Granularity Branch Network with Fine-Coarse Graft Grained for Classification Task. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13052. Springer, Cham. https://doi.org/10.1007/978-3-030-89128-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89128-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89127-5

  • Online ISBN: 978-3-030-89128-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics