Skip to main content

Single View Facial Age Estimation Using Deep Learning with Cascaded Random Forests

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13053))

Abstract

The task of estimating a person’s real age using unconstrained facial images has been actively studied in biometrics research. We developed several deep learning architectures and supervision methods for facial age estimation and evaluate the impact of different pre-processing and face alignment (or normalization) methods on the feature embedding subspace. The proposed novel two-stage supervised learning model utilizes ResNeXt as a backbone combined with a two-layer random forest (TLRF) to estimate age. Our deep architectures are trained using a custom loss function to handle variations in gender, pose, illumination, ethnicity, expression and context, on the VGG-Face2 MIVIA Age Dataset with over 575K images, as part of the Guess the Age (GTA) contest. Surprisingly, face alignment using FANet during training did not improve accuracy. We were able to achieve an Age Accuracy and Regularity score \(AAR\,=\,7.02\) with a variance \(\sigma \,=\,1.16\) using only ResNeXt. The proposed ResNeXt+TLRF model improved age-class generalizability with a smaller variance of \(\sigma =0.98\) and a second best \(AAR\,=\,6.97\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carletti, V., Greco, A., Percannella, G., Vento, M.: Age from faces in the deep learning revolution. IEEE Trans. Pattern Anal. Mach. Intell. 42(9), 2113–2132 (2020)

    Article  Google Scholar 

  2. Greco, A.A., Vento, S.M., Vigilante, V.: Effective training of convolutional neural networks for age estimation based on knowledge distillation. Neural Comput. Appl. 1–16 (2021)

    Google Scholar 

  3. Abdolrashidi, A., Minaei, M., Azimi, E., Minaee, S.: Age and gender prediction from face images using attentional convolutional network. arXiv preprint arXiv:2010.03791 (2020)

  4. Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 947–954 (2010)

    Article  Google Scholar 

  5. Angulu, R., Tapamo, J.R., Adewumi, A.O.: Age estimation via face images: a survey. EURASIP J. Image Video Process. 2018(1), 1–35 (2018)

    Article  Google Scholar 

  6. Ranjan, R., et al.: Unconstrained age estimation with deep convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 109–117 (2015)

    Google Scholar 

  7. Han, H., Otto, C., Liu, X., Jain, A.K.: Demographic estimation from face images: Human vs. machine performance. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1148–1161 (2015)

    Article  Google Scholar 

  8. Ahadi, S., et al.: Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 26(1), 83–90 (2020)

    Article  Google Scholar 

  9. Greco, A., Saggese, A., Vento, M., Vigilante, V.: A convolutional neural network for gender recognition optimizing the accuracy/speed tradeoff. IEEE Access 8, 130771–130781 (2020)

    Article  Google Scholar 

  10. Yolcu, G., Oztel, I., Kazan, S., Oz, C., Palaniappan, K., Lever, T.E., Bunyak, F.: Facial expression recognition for monitoring neurological disorders based on convolutional neural network. Multimed. Tools Appl. 78(22), 31581–31603 (2019)

    Article  Google Scholar 

  11. Wang, M., Deng, W.: Deep face recognition: a survey. Neurocomputing 429, 215–244 (2021)

    Article  Google Scholar 

  12. Lewis, J.K., et al.: Deepfake video detection based on spatial, spectral, and temporal inconsistencies using multimodal deep learning. In: IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–9 (2020)

    Google Scholar 

  13. Escalera, S., et al.: ChaLearn looking at people and faces of the world: face analysis workshop and challenge 2016. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2016)

    Google Scholar 

  14. Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 126(2), 144–157 (2018)

    Article  MathSciNet  Google Scholar 

  15. Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: European Conference on Computer Vision, pp. 768–783 (2014)

    Google Scholar 

  16. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: IEEE Conference on Computer Vision and Pattern Recognition pp. 5810–5818 (2017)

    Google Scholar 

  17. Lanitis, A., Taylor, C.J., Cootes, T.F.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal Mach. Intell. 24(4), 442–455 (2002)

    Article  Google Scholar 

  18. Rawls, A.W., Ricanek, K.: MORPH: Development and optimization of a longitudinal age progression database. In: European Workshop on Biometrics and Identity Management, pp. 17–24 (2009)

    Google Scholar 

  19. Guess The Age Contest 2021. https://gta2021.unisa.it/. Accessed 16 July 2021

  20. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: IEEE International Conference on Automatic Face & Gesture Recognition, pp. 67–74 (2018)

    Google Scholar 

  21. Gao, B.-B., Zhou, H.-Y., Wu, J., Geng, X.: Age estimation using expectation of label distribution learning. In: IJCAI, pp. 712–718 (2018)

    Google Scholar 

  22. Ponce-López, V., et al.: ChaLearn LAP 2016: first round challenge on first impressions - dataset and results. In: European Conference on Computer Vision Workshops, pp. 400–418 (2016)

    Google Scholar 

  23. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  24. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  27. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  29. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Neural networks: Tricks of the Trade, pp. 437–478 (2012)

    Google Scholar 

  30. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  31. Xu, Z., Dai, A.M., Kemp, J., Metz, L.: Learning an adaptive learning rate schedule. arXiv preprint arXiv:1909.09712 (2019)

  32. Schaul, T., Zhang, S., LeCun, Y.: No more pesky learning rates. In: International Conference on Machine Learning, pp. 343–351 (2013)

    Google Scholar 

  33. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  34. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  35. Philipp, G., Song, D., Carbonell, J.G.: The exploding gradient problem demystified-definition, prevalence, impact, origin, tradeoffs, and solutions. arXiv preprint arXiv:1712.05577 (2017)

  36. Yang, Y., Zha, K., Chen, Y.-C., Wang, H., Katabi, D.: Delving into deep imbalanced regression. arXiv preprint arXiv:2102.09554 (2021)

  37. Duong, C.N., et al.: Automatic face aging in videos via deep reinforcement learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10013–10022 (2019)

    Google Scholar 

  38. Morris, J., Newman, S., Palaniappan, K., Fan, J., Lin, D.: Do you know you are tracked by photos that you didn’t take: Location-aware multi-party image privacy protection. arXiv preprint arXiv:2103.10851 (2021)

Download references

Acknowledgments

Research partially supported by U.S. National Science Foundation award 2114141, Army Research Laboratory cooperative agreement W911NF1820285 and Army Research Office DURIP W911NF-1910181. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the U.S. Government or agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Eddine Toubal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toubal, I.E., Lyu, L., Lin, D., Palaniappan, K. (2021). Single View Facial Age Estimation Using Deep Learning with Cascaded Random Forests. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds) Computer Analysis of Images and Patterns. CAIP 2021. Lecture Notes in Computer Science(), vol 13053. Springer, Cham. https://doi.org/10.1007/978-3-030-89131-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89131-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89130-5

  • Online ISBN: 978-3-030-89131-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics