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Abstract. A weakly supervised change detection method is proposed
for remotely sensed multi-temporal images, by utilizing a Siamese neural
network architecture. The architecture of the Siamese network is a combi-
nation of two multi-filter multi-scale deep convolutional neural networks
(MFMS DCNN). Initially, the Siamese network is trained by utilizing
the image-level semantic labels of the image pairs in the dataset. The
features of the image pairs are obtained using the trained network to
generate the difference image (DI). Then, a combination of the PCA
and the K-means algorithms has been used to produce the change map
for the pair of images. Experiments were carried out using two remotely
sensed image datasets. The weakly supervised method proposed in this
paper offers better results in comparison to both weakly supervised- and
unsupervised-based state-of-the-art models and techniques.

Keywords: Change detection · Weakly supervised · Siamese network ·
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1 Introduction

The massive volume increase of collected images from satellites and unmanned
aerial vehicles, together with the remarkable success of Deep Neural Network
(DNN) in computer vision applications, enabled the remote sensing commu-
nity to develop a plethora of interesting earth observation-related applications.
Aerial imagery contains spectral, spatial, and temporal information, which is
valuable for the monitoring of different ecosystems and for planning tasks like
crop surveillance, deforestation control, soil and water contamination monitor-
ing, biogeochemical cycle monitoring, global heat mapping [18] etc. Moreover,
landscape change detection (CD) is a critical task whose results are valuable
for many policy-making mechanisms. For example, the outcomes of CD can
be utilized to identify illegal changes, evaluate disasters [5] and set goals for
mitigating climate change [19]. Manual landscape CD monitoring is expensive,
time-consuming and infeasible to perform on a large scale, due to the massive
volume of data required and the large size of monitored areas.



2 I. Kalita et al.

2 Related work

CD approaches are categorized into two classes: ones that apply post-classification
comparison [22] and ones that apply post-comparison analysis [7, 17]. The former
class focuses on classifying temporal images of the same region, followed by pixel-
by-pixel comparison. The success of these methods depends on the classification
strategy. The latter class of methods focuses on estimating a difference-image
(DI) by considering multi-temporal images of the same area. The DI produced
is used to acquire a feature map to distinguish regions of change over regions
of no change. Thus, the quality of the DI is critical for achieving good perfor-
mance. The features of the DI can be extracted by techniques involving image
arithmetics [7] and transformations [17]. The acquired features can be evaluated
using strategies such as thresholding, clustering [7], and Markov random fields
[2].

DNNs extract robust features from complex input samples and thereby utilize
the rich information contained in images. This is especially helpful for large-scale
remotely sensed datasets [13]. Under this scenario, a DNN-based CD approach
provides better performance on remotely sensed high-resolution images [1, 16,
21]. DNN based CD methods can be categorized as unsupervised [16], fully su-
pervised [21] and weakly supervised approaches [1]. Liu et al. [16] developed
an unsupervised CD algorithm using the pre-trained U-net architecture. Simi-
larly, De et al. [12] also explored the U-net architecture under the unsupervised
scenario. Moreover, Cao et al. [6] proposed a deep belief network (DBN) tech-
nique for improving the quality of the DI using the SPOT5 multispectral images.
Due to the lack of labels, it is difficult to achieve a detailed CD map using the
unsupervised scheme. As a result, the fully supervised learning approaches em-
ploy labeled information (ground truth) for enhancing the CD performance [10,
21]. Under this scenario, Zhan et al. [21] propose a contrastive loss-based su-
pervised Siamese network to obtain the change and unchanged regions in an
aerial image using the SZTAKI dataset [2]. Ji et al. [10] explore the Mask R-
CNN and the U-net architecture for the identification of building changes using
very high-resolution datasets [11]. Still, identifying pixel-level change patterns
in the fully supervised system is tedious, inefficient, and expensive. This stresses
the importance of exploring CD methods that minimize labelling costs by in-
troducing image-level labels instead of pixel-level ones. Under this scenario, a
supervised CD model can be trained based on high-level annotations that indi-
cate whether two images depict land change or not. This is known as a weakly
supervised scheme [1, 14]. Andermatt et al. [1], proposed a weakly supervised
CD approach using a U-net based Siamese architecture. Similarly, Khan et al.
[14] have used a pre-trained DNN in conjunction with a directed acyclic graph
(DAG) to learn patterns of change from image-level labelled training data. The
majority of the weakly supervised schemes mentioned above focus on pre-trained
models. However, the datasets used to pre-train the models are very different
from the targeted CD datasets. Therefore, the performance of these models is
low. To address this issue, this work explores a weakly supervised CD method
learned from scratch under a post-comparison analysis framework.
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3 Methodology

The proposed CD approach is based on a multi-filter multi-scale (MFMS) [9]
DNN, used as the feature extractor of a Siamese model [21]. The co-registered
images are first preprocessed with histogram matching and then passed through
the Siamese model. The Siamese model has been trained from scratch using
the image-level labels only. After, the features of the two images (captured at
different times) obtained using the trained Siamese network are used to estimate
the DI. Finally, the PCA and the K-Means algorithms are applied to the DI,
to produce the CD maps. Features are extracted at different resolutions and
then processed to obtain the CD maps for the images captured at two different
timestamps. A final stage processes the CD maps and determines which pixels
in the images depict land change. Figure 1 illustrates the overall technique.

Fig. 1: The architecture of proposed change detection model. The Concat1,
Concat2, and Concat3 layers are displayed in Figure 2

3.1 Multi filter multi-scale deep convolutional neural network

The MFMS DNN combines the features learned at multiple levels of the archi-
tecture, motivated by [9]. The effectiveness of this strategy relies on the fact
that the model builds representations at different resolutions. The proposed ar-
chitecture applies convolution-batch normalization-activation (CBA) layers and
down-sampling (max-pooling) layers to create multi-scale feature maps (see Fig-
ure 2). We discriminate between intermediate max-pooling layers and the max-
pooling layers applied at the input by naming the latter down-sampling (DS)
layers. This distinction stresses the purpose of each unit since the intermediate
max-pooling layers aim at reducing the dimensionality of the feature maps while
the down-sampling layers aim at producing multi-scale feature maps. We use
three down-sampling units (DS1, DS2, DS3) as shown in Figure 2. The DS1
unit down-samples the input while the DS2 and DS3 units apply further di-
mensionality reduction and extend the models multi-scale processing. Similar
to [9], various kernel sizes are used for the convolution operations in the CBA
layers. The ReLU activation function is used to introduce non-linearities to the
model. The outputs of the DS units are also processed by CBA layers to create
multi-scale feature maps from various image resolutions. Concatenation oper-
ations (Concat1, Concat2, Concat3) fuse the distinct feature maps at different
levels of the architecture and the average pooling (AP) operation is applied after
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the last CBA unit (CBA9). Finally, the generated features are combined using a
dense layer. The proposed MFMS architecture constitutes the backbone of the
Siamese model described in Section 3.2.

Fig. 2: The architecture of the MFMS DCNN model used in the Siamese network

3.2 Siamese Neural network

Siamese networks are models that use instances of the same DNN and share the
same architecture and weights, as shown in Figure 1. The primary objective of
the network is to map the features of similar samples closer to each other and
the features corresponding to dissimilar samples far apart. Accordingly, a dataset
used for training a Siamese model is grouped into pairs of similar or dissimilar
samples: pairs of similar samples are labelled as one and the pairs of samples from
different classes are labelled as zero. During training, the Siamese model extracts
the features of each sample in an image pair and outputs two one-dimensional
vectors. Then, the difference between the two vectors is measured using some
distance metric and an optimizer minimizes this distance if the features belong
to images of the same class and maximize it if the features belong to images
of different classes. In the proposed approach, the datasets are prepared (i.e.
paired) according to the following two conditions:

1: The paired images share the same geographical region at two different times.
2: The paired images depicting land change are labelled as zero and paired

images not depicting land change are labelled as one.
This kind of labelling enables the model to operate in a weakly supervised mode,
identifying the exact pixels corresponding to land change without strong super-
vision, i.e., without explicitly providing a label for each pixel that identifies a
change or not. Instead, we just feed the model with weak supervisory informa-
tion regarding which image pairs depict land change. Concretely, the proposed
Siamese model tackles the CD task in a weakly supervised fashion mainly be-
cause:

1) It is trained using image-level labels instead of pixel-level labels.
2) It uses a multi-scale DNN architecture which is very efficient on the specific

task.
The features of each image are computed as a 512-D vector and the contrastive
loss function (Lcons) [8] is applied on the two extracted feature vectors (shown in
Equation 2). L represents the label of image pair i, Dw is the Euclidean distance
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between the features of the pair (defined in Equation 1) and m is the desirable
margin between image pairs that depict land change and thus have a zero label.

After training the Siamese network, the feature maps of the architecture
are used to calculate the differential feature map between the images in the
pair. The three concatenation layers (Concat1, Concat2, and Concat3 as shown
in Figure 2) are up-scaled to form a 256 × 256 feature map for every image.
Then, the Euclidean distance between the two feature maps is calculated. This
provides the differential feature map (i.e. DI), which is a 2D representation of
the difference between the two images in a pair. The DI holds the necessary
information to identify the regions of change in an image pair (see Section 3.3).

Dw = ‖f1
i − f2

i ‖ (1)

Lcons = (L)
1

2
(Dw)2 + (1− L)

1

2
{max(0,m−Dw)}2 (2)

3.3 Generation of change detection maps

To obtain the CD maps from a DI, we use a technique inspired by Celik et
al. [7], based on the PCA and the K-means algorithms. Initially, the PCA is
applied to every non-overlapping patch of the DI to obtain its eigenvector space.
Then, the eigenvector space is projected on the overlapping patches to produce
the feature vector space, which is then divided into two clusters via the K-
means algorithm. The cluster with the least number of indexes (data points)
is considered as the change class because the number of changed pixels in a
pair of images is generally much smaller compared to the number of unchanged
pixels. In contrast to Celik et al., we use Euclidean distance to calculate the DI
between the image representations obtained by the Siamese model, instead of
the absolute difference between the two images.

4 Experimental setup

4.1 Datasets’ description

The effectiveness of the proposed methodology was tested on two very high
resolution (VHR) remotely sensed image datasets.

SZATAKI AirChange Benchmark Dataset : A CD dataset consisting of
three parts: SZADA, TISZADOB, and ARCHIVE [2]. SZADA is used to evaluate
the performance of the model, comparing with related work. We use the 43 multi-
temporal images between the years 2000 and 2005. The sizes of the training
images are 952× 640 (30 images) and 640× 952 pixels (12 images). An image of
size 784×448 is used to test the model. According to the datasets description, the
changed pixels annotation of the images has been provided by an expert. During
training, the 42 images are divided into patches of size 256 × 256 × 3, and the
change/no change-depicting image pairs are identified based on the annotations
of the images. An image pair gets a label one if its images depict no land change
and zero if the images depict land change. A total of 253 image patches are
collected for training. Sample images are shown in Figure 3.
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Aerial image change detection (AICD) dataset : AICD is a synthetic
change detection dataset [3], used to compare the performance of the proposed
model with other state-of-the-art approaches trained with weak supervision. The
dataset contains 1000 images (500 image pairs) and each image is 600 × 800 ×
3 pixels. Each image contains only one change object (one structure). During
training, images are divided into patches of size 256×256×3 and the change/no
change-depicting image pairs are identified based on the ground truth label of
the corresponding images. In total, 630 image pairs depict changed structures
and 2370 depict no land change.

Fig. 3: Sample images from the SZADA dataset. (a,b) Training image pair, (c)
corresponding ground truth information.

4.2 Model adaptation and parameter setting

The proposed MFMS CNN comprises 9 CBA layers, 8 max-pooling layers (in-
cluding DS1, DS2, and DS3), 1 average pooling layer, and 1 dense layer. The
number of filters in the CBA layers is 64, whereas the size and stride of each
filter are 3×3 and 1 respectively. The window size and stride of the max-pooling
layers are 3 × 3 and 2 respectively. For average pooling, the window and stride
are 2× 2 and 2 respectively. Both the CBA and the dense layers use the ReLU
activation function. The initial images of size 256 × 256 × 3 are down-sampled
to 128 × 128 × 3, 64 × 64 × 3 and 32 × 32 × 3 by the DS1, DS2 and DS3 units
respectively. The Concat1 layer merges the feature maps generated by CBA2
and CBA3. Here, the size of each feature map for both cases is 126× 126× 64.
Similarly, the Concat2 and Concat3 layers combine the feature maps of size
63×63×64, 63×63×64 computed by CBA4 and CBA5, as well as 32×32×64,
32× 32× 64 computed by CBA6 and CBA7 respectively. The dense layer com-
putes an output of size 512 based on a flattened input of size 8 × 8 × 64. The
MFMS CNN extracts a 512-D feature vector (f j

i ) for each image at the input,
where i is the index of the image and j ∈ 1, 2 is the reference time of image
acquisition reflecting images T1 and T2. This means that for each image pair i
(consisting of images x1

i , x
2
i ), the model calculates two feature vectors (f1

i ,f2
i ),

each having a size of 512. Moreover, the margin m of the contrastive loss is set
to 6 (set empirically). Finally, the Adam [15] optimizer with a learning rate of
0.001 is used. The model was trained for 120 iterations with a batch size of 256.

5 Results

Evaluation measures : The precision (p), recall (r), and F-measure (f) (har-
monic mean of p and r corresponding to the changed class) have been used to
compare the result of the proposed method with state-of-the-art unsupervised
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approaches. Accuracy and mean intersection over union (mIOU) have been con-
sidered to compare with weakly supervised approaches. These measures are con-
sidered as the standard ones in literature [1, 14]. We acknowledge the unfairness
of comparing our weakly supervised method with state-of-the-art unsupervised
methods. However, we believe there is some value in this comparison because of
the significantly less effort required to produce the weak labels compared to the
effort required to produce the pixel-level change maps. We do not claim that our
approach is superior to unsupervised methods nor do we suggest that we adapt
the comparison as a head-to-head apposition of methods operating under the
same regime. However, we note that significant performance improvement on
the CD task can be achieved with minimal effort, by incorporating image-level
labels.

Table 1 Comparison of the two unsupervised methods (U-A [16], U-B [4]) with
the proposed scheme (WS-C). Results are in percentages.

Model Precision Recall F-Measure

U-A 27.2 56.1 36.6

U-B 19.2 48.7 27.5

WS-C 43.2 66.9 52.5

Fig. 4: Comparisons on the SZADA dataset. (a,b) Test image pair, (c) ground
truth maps, (d) results obtained using U-A [16], (e) results of U-B [4], and (f)
results obtained using the proposed method (WS-C).

Analysis of results using the SZADA dataset : The values for p, r, and
f for the proposed approach and other state-of-the-art approaches are listed in
Table 1. Here, the performance of the proposed methodology is compared with
two unsupervised state-of-the-art schemes: Liu et al. [16] (U-A in Table 1) and
S3VM [4] (U-B in Table 1). The results indicate that the performance of the
proposed model (WS-C in Table 1) is significantly better than the two unsuper-
vised schemes (U-A and U-B). In this regard, the proposed method outperforms
the scheme U-A by a margin of ≈ 16%, ≈ 10%, and ≈ 15% in terms of p, r, and
f , respectively. Similarly, the proposed approach surpasses the scheme U-B by a
margin of ≈ 24%, ≈ 18%, and ≈ 25% in terms of p, r, and f respectively. Figure 4
shows example visual outputs of different methods on the SZADA dataset.
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Table 2 Comparison of the two weakly supervised methods (WS-A [14], WS-B
[1]) with the proposed scheme (WS-C). Results are in percentage.

Model Accuracy mIOU

WS-A 99.1 71

WS-B 99.2 70.3

WS-C 99.5 74.3

Analysis of results using the AICD dataset : The results obtained using
the proposed model are compared with those obtained using two other weakly
supervised state-of-the-art CD techniques [1, 14]. Here, the results obtained us-
ing the proposed approaches (WS-C in Table 2) and the two state-of-the-art
approaches (Khan et al. [14] and Andermatt et al. [1]) are represented as WS-A,
and WS-B, respectively in Table 2. It is observed that the proposed approach
outperforms WS-A by a margin of 0.4% and 3.3% in terms of accuracy and
mIOU respectively. Similarly, the proposed approach achieves a higher perfor-
mance of 0.3% and 4% in terms of accuracy and mIOU respectively compared
to WS-B. Figure 5 shows some example generated results obtained with the
proposed method on the AICD dataset.

Table 3 Comparison of the two base methods (Base-1 [7], Base-2) with the
proposed scheme (WS-C). Results are in percentages.

Model Precision Recall F-Measure

Base-1 46.5 41.9 44.2

Base-2 39.6 65.3 49.3

WS-C 43.2 66.9 52.5

5.1 Ablation analysis of the proposed model

In this experiment, the proposed model is decomposed to its distinct components
(Siamese network and PCA + K-means), performing the CD task separately on
each component. In this way, we can assess the contribution of each component.
The plain Siamese network is tested by replacing the PCA + K-means process-
ing stage with a threshold on the computed DI. Specifically, we use the OTSU
threshold [20] and report the performance by performing CD on the test set.
We call this approach as Base-2 in Table 3. Accordingly, we use the PCA +
K-means on the DI computed directly from the images as suggested by [7] and
not on the DI computed by the Siamese model. We call this method Base-1 in
Table 3. The experiments are carried out using the SZADA datasets. The results
shown in Table 3 suggest that the proposed approach (WS-C in Table 3) out-
performs the two schemes (Base-1 and Base-2) in terms of recall and F-measure
scores. However, in terms of precision, the Base-1 strategy surpasses the pro-
posed scheme. Thus, the proposed (complete) model incorporates the PCA +
K-means technique on the DI and significantly improves the recall score of the
results at the cost of a small decrease in the precision score.
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Fig. 5: Sample images of AICD dataset and their ground truth as well as the
generated change map. (a,b) Test image pair, (c) corresponding ground truth
information, (d) results obtained using proposed method (WS-C).

6 Conclusions
In this work, a weakly supervised change detection model is proposed for analyz-
ing remotely sensed multi-temporal images. An MFMS CNN Siamese network
is trained using the image-level labels of image pairs and not the pixel-level
labels adding flexibility and removing complexity from tackling the task. The
proposed model achieves huge improvements as compared to the unsupervised
approaches by incorporating simple image-level labels. Moreover, it enhances the
state-of-the-art weakly-supervised performance on the AICD dataset.
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