Skip to main content

Research on Adaptive Control in Complex Terrain for Quadruped Robot

  • Conference paper
  • First Online:
  • 2994 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Abstract

In order to improve the locomotion ability of quadruped robot under the uneven terrain, an adaptive control method of quadruped robot is proposed in this paper. Firstly, by introducing into the threshold of terrain elevation and calculating irregularity information to detect whether the foothold area is safe. Secondly, according to the key points and size information of the virtual obstacle, re-plan the swing trajectory and foothold of the swing leg online. Thirdly, the body balance control strategy is used to achieve obstacle crossing by integrating the ground plane estimation and force allocation optimization. Finally, this proposed method is tested in Vortex simulation environment, and the experiment verifies the effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Raibert, M., Blankespoor, K., Nelson, G., et al.: Bigdog, the rough-terrain quadruped robot. In: Proceedings of the 17th World Congress, pp. 10822–10825 (2008)

    Google Scholar 

  2. Boston Dynamics. LS3 – Legged Squad Support Systems (2013). http://www.bostondynamics.com

  3. Boston Dynamics. SpotMini–Good Things Come in Small Packages (2017). http://www.bostondynamics.com

  4. Boston Dynamics. Atlas–The World’s Most Dynamic Humanoid (2018). http://www.bostondynamics.com

  5. Seok, S., Wang, A., Chuah, M.Y.M., et al.: Design principles for energy-efficient legged locomotion and implementation on the MIT Cheetah robot. IEEE/ASME Trans. Mechatron. 20(3), 117–1129 (2015)

    Article  Google Scholar 

  6. Hyun, D.J., Seok, S., Lee, J., et al.: High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah. Int. J. Robot. Res. 33(11), 1417–1445 (2014)

    Article  Google Scholar 

  7. Sprowitz, A., Tuleu, A., Vespignani, M., et al.: Towards dynamic trot gait locomotion: design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32, 932–950 (2013)

    Article  Google Scholar 

  8. Park, H.W., Wensing, P.M., Kim, S.: High-speed bounding with the MIT Cheetah 2: control design and experiments. Int. J. Robot. Res. 36(2), 167–192 (2017)

    Article  Google Scholar 

  9. Gehring, C., Coros, S., Hutter, M., et al.: Control of dynamic gaits for a quadrupedal robot. In: International Conference on Robotics and Automation, pp. 3287–3292 (2013)

    Google Scholar 

  10. Hutter, M., Gehring, C., Jud, D., et al.: Anymal-a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 38–44 (2016)

    Google Scholar 

  11. Hwangbo, J., Lee, J., Dosovitskiy, A., et al.: Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4(26) (2019)

    Google Scholar 

  12. Lee, J., Hwangbo, J., Hutter, M.: Robust recovery controller for a quadrupedal robot using deep reinforcement learning. ArXiv preprint arXiv (2019)

    Google Scholar 

  13. Semini, C., Tsagarakis, N.G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D.G.: Design of HyQ – a hydraulically and electrically actuated quadruped robot. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 225(6), 831–849 (2011)

    Google Scholar 

  14. Semini, C., et al.: Towards versatile legged robots through active impedance control. Int. J. Robot. Res. 34(7), 1003–1020 (2015)

    Article  Google Scholar 

  15. Ugurlu, B., Havoutis, I., Semini, C., et al.: Dynamic trot-walking with the hydraulic quadruped robot—HyQ: analytical trajectory generation and active compliance control. In: Intelligent Robots and Systems, pp. 6044–6051 (2013)

    Google Scholar 

  16. Li, Y., Li, B., Rong, X., et al.: Mechanical design and gait planning of a hydraulically actuated quadruped bionic robot. J. Shandong Univ. (Eng. Sci.) 41(05), 32–45 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant No. 91748211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, P. et al. (2021). Research on Adaptive Control in Complex Terrain for Quadruped Robot. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics