Skip to main content

A Memory Module Assembly System Using Parallel Robots

  • Conference paper
  • First Online:
  • 2920 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Abstract

In this paper, a memory module assembly system is designed, and the mechanical composition and control method of the system are introduced in detail. In order to achieve accurate motion control and force control, the assembly system uses a combination of a 6PUS 6-DOF parallel robot and a 2PP 2-DOF parallel robot. The kinematics models of two kinds of parallel robots are analyzed afterwards. In addition, a 6 dimensions (6D) force sensor, which can measure the force and torque of the gripper in all directions, is attached to the end effector. In this paper, the requirements of the assembly system for position control and force control under different contact states between memory module and memory slot during the assembly process is analyzed, and a series of control strategies and a complete set of control processes based on these requirements is designed. Using the parallel robots and control method designed in this paper, experiments are carried out, and the assembly of memory module is finally realized successfully. The experimental results are analyzed at the end of this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Du, J.: Research on the development trend of computer science and technology in the “Internet+” Era. J. Phys.: Conf. Ser. 1682, 012070 (2020)

    Google Scholar 

  2. Share of households with a computer at home worldwide from 2005 to 2019. https://www.statista.com/statistics/748551/worldwide-households-with-computer. Accessed box and the motherboard 09 2020

  3. Total unit shipments of personal computers (PCs) worldwide from 2006 to 2020. https://www.statista.com/statistics/273495/global-shipments-of-personal-computers-since-2006. Accessed 01 2021

  4. Di Pasquale, V., Miranda, S., Neumann, W.P., et al: Human reliability in manual assembly systems: a systematic literature review. IFAC-PapersOnLine 51(11), 675–680 (2018)

    Google Scholar 

  5. Pandilov, Z., Dukovski, V.: Comparison of the characteristics between serial and parallel robots. Acta Technica Corviniensis-Bull. Eng. 7(1), 143–160 (2014)

    Google Scholar 

  6. Cao, R., Gao, F., Zhang, Y., et al: A new parameter design method of a 6-DOF parallel motion simulator for a given workspace. Mech. Based Des. Struct. Mach. 43(1), 1–18 (2015)

    Google Scholar 

  7. Hou, F., Luo, M., Zhang, Z.: An inverse kinematic analysis modeling on a 6-PSS compliant parallel platform for optoelectronic packaging. CES Trans. Electr. Mach. Syst. 3(1), 81–87 (2019)

    Google Scholar 

  8. Cao, X., Zhao, W., Zhao, H., et al.: 6-PSS Precision Positioning Stewart platform for the space telescope adjustment mechanism. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 487–492 (2018)

    Google Scholar 

  9. Li, Y., Xu, Q.: Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans. Robot. 25(3) 645–657 (2009)

    Google Scholar 

  10. Zhou, S.L., Sun, J., Gao, F.: Influence of flexible spherical joints parameters on accuracy of the six-axis force/torque sensor with three-three orthogonal parallel mechanism. Mech. Mach. Theory 145, 103697 (2020)

    Google Scholar 

  11. Huang, Z., Zhao, Y.S., Zhao, T.S.: Advanced Spatial Mechanism, 2nd edn. Higher Education Press, Beijing (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, F., Gao, F., Zeng, Q., Zheng, H. (2021). A Memory Module Assembly System Using Parallel Robots. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics