Skip to main content

Kinematic Modeling and Analysis of Support Mechanism for Folding Rib Deployable Antenna

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Abstract

To meet the requirement of large aperture development trend of space deployable antenna, a space deployable antenna with high folding ratio and light weight is researched. A folding rib deployable antenna mechanism configuration is proposed and the structure analysis of deployable antenna mechanism is carried out based on modular design idea. Based on the basic theory of robotics, the forward kinematics model of the mechanism is established, and the inverse kinematics analysis is carried out from two aspects: identification of deployment state and research on driving law. The mechanism principle, forward kinematics model and inverse kinematics analysis are verified by numerical simulation software. The numerical simulation results show that the folded rib deployable antenna mechanism can realize the movement change from fully stowed to fully deployed without singularity. The movement law of key points at the end of mechanism is closely related to the development law of each corner in mechanism. The configuration scheme of folding rib deployable antenna mechanism proposed in this paper is reasonable and feasible. The established forward/reverse kinematic model can provide reference and help for kinematic characteristics analysis of mechanism and driving law research of mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, R.Q., Shi, C., Guo, H.W., et al.: Review of space deployable antenna mechanisms. J. Mech. Eng. 56(5), 1–12 (2020). (in Chinese)

    Article  Google Scholar 

  2. Liu, R.W., Guo, H.W., Liu, R.Q., et al.: Structural design and optimization of large cable-rib tension deployable antenna structure with dynamic constraint. Acta Astronaut. 151, 160–172 (2018)

    Article  Google Scholar 

  3. Qi, X. Z., Huang, H. L., Miao, Z. H., et al.: Design and mobility analysis of large deployable mechanisms based on plane-symmetric bricard linkage. ASME J. Mech. Des. 139(2), 022302 (2017)

    Google Scholar 

  4. Thomson, M.: AstroMesh deployable reflectors for Ku and Ka band commercial satellites. In: 20th AIAA International Communication Satellite Systems Conference and Exhibit, 12–15 May 2002, Montreal, Quebec, Canada (2002)

    Google Scholar 

  5. Shi, C., Guo, H.W., Zheng, Z., et al.: Conceptual configuration synthesis and topology structure analysis of double-layer hoop deployable antenna unit. Mech. Mach. Theory 129, 232–260 (2018)

    Article  Google Scholar 

  6. Meguro, A., Shintate, K., Usui, M., et al.: In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Testing Satellite VIII. Acta Astronaut. 65(9), 1306–1316 (2009)

    Article  Google Scholar 

  7. Mitsugi, J., Ando, K., Senbokuya, Y., et al.: Deployment analysis of large space antenna using flexible multibody dynamics simulation. Acta Astronaut. 47(1), 19–26 (2000)

    Article  Google Scholar 

  8. Tian, D. K., Liu, R. Q., Jin, L., et al.: Experimental research on dynamic characteristics of truss structure for modular space deployable truss antenna. In: 12th International Conference Intelligent Robotics and Applications, Shenyang, China, pp. 273–282 (2019)

    Google Scholar 

  9. Tian, D.K., Liu, R.Q., Yang, X.L., et al.: Deployment accuracy measurement and analysis of truss structure for modular space deployable truss antenna. J. Mech. Eng. 56(5), 63–71 (2020). (in Chinese)

    Article  Google Scholar 

  10. Liu, R.W., Guo, H.W., Liu, R.Q., et al.: Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables. Acta Astronaut. 140, 66–77 (2017)

    Article  Google Scholar 

  11. Chen, G., Hua, Y., Wang, B., et al.: Design and verification for umbrella-type deployable antenna of Chang’e-4 lunar relay satellite. J. Deep Space Explor. 5(6), 524–530 (2018). (in Chinese)

    Google Scholar 

  12. Tian, D.K., Fan, X.D., Zheng, X.J., et al.: Research status and prospect of micro-gravity environment simulation for space deployable antenna. J. Mech. Eng. 57(3), 11–25 (2021). (in Chinese)

    Article  Google Scholar 

Download references

Acknowledgment

This project is supported by Key Program of National Natural Science Foundation of China (No. 51835002), China Postdoctoral Science Foundation (No. 2019M661126), the program for “Xing liao talent” of Liaoning province, China (No. XLYC1807188), and Natural Foundation Guidance Program of Liaoning Province (No. 2019-ZD-0655, No. 2019-ZD-0678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, D., Fan, X., Jin, L., Liu, R., Guo, H. (2021). Kinematic Modeling and Analysis of Support Mechanism for Folding Rib Deployable Antenna. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics