Skip to main content

Design of a De-Tumbling Robot for Space Noncooperative Targets

  • Conference paper
  • First Online:
  • 2928 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Abstract

The aerospace industry continues to progress and develop. The waste left in space by human beings in space activities has lost its attitude adjustment ability and been turned into space junk. This not only causes a waste of orbital resources, but also spacecraft collisions, which could cause the mission to fail. In this paper, the problem of detumbling in the process of capturing noncooperative targets is studied, a set of multi-wheel arm test platform is designed, and a model is built, aiming to complete detumbling for low-speed rotating targets to recycle. Finally, the experimental results show that the performance and function test of the platform have a good effect on the problem of detumbling. This multi-wheel arm test platform is an effective and feasible method for the detumbling of noncooperative targets.

This work was supported partially by the NSFC-Shenzhen Robotics Basic Research Center Program (No. U1713202) and partially by the Shenzhen Science and Technology Program (No. JSGG20191129114035610).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sgobba, T., Rongier, I.: Space Safety is No Accident. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-15982-9

    Book  Google Scholar 

  2. Lu, Y., Liu, X.G., Zhou, Y., et al.: Review of detumbling technologies for active removal of uncooperative targets. Acta Aeronautica et Astronautica Sinica 39(1), 21302–021302 (2018). (in Chinese)

    Google Scholar 

  3. Esmiller, B., Jacquelard, C., Eckel, H.-A., Wnuk, E., Gouy, Y.: Space debris removal by ground based laser main conclusions of the European project CLEANSPACE. In: Sgobba, T., Rongier, I. (eds.) Space Safety is No Accident, pp. 13–22. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15982-9_2

    Chapter  Google Scholar 

  4. Silha, J., Pittet, J.N., Hamara, M., et al.: Apparent rotation properties of space debris extracted from photometric measurements. Adv. Space Res. 61(3), 884–861 (2018)

    Article  Google Scholar 

  5. Cai, H.L., Gao, Y.M., et al.: The research status and key technology analysis of foreign non-cooperative target in space capture system. J. Acad. Equip. Command Technol. 21(6), 71–77 (2010)

    Google Scholar 

  6. Geng, Y.H., Lu, W., Chen, X.Q.: Attitude synchronization control of on-orbit servicing spacecraft with respect to out-of-control target. J. Harbin Inst. Technol. 44(1), 1–6 (2012). (in Chinese)

    MathSciNet  Google Scholar 

  7. Gomez, N.O., Walker, S.J.I.: Earth’s gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: envisat case study: a new validation approach. Adv. Space Res. 56(3), 494–508 (2015)

    Article  Google Scholar 

  8. Daneshjou, K., Alibakhshi, R.: Multibody dynamical modeling for spacecraft docking process with spring-damper buffering device: a new validation approach. Adv. Space Res. 61(1), 497–512 (2017)

    Article  Google Scholar 

  9. Nishida, S.I., Kawamoto, S.: Strategy for capturing of a tumbling space debris. Acta Astronaut. 68(1–2), 113–120 (2011)

    Article  Google Scholar 

  10. Huang, P., Wang, M., et al.: Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators. J. Franklin Inst. 353(9), 1985–2008 (2016)

    Article  MathSciNet  Google Scholar 

  11. Matunaga, S., Kanzawa, T., Ohkami, Y.: Rotational motion-damper for the capture of an uncontrolled floating satellite. Control. Eng. Pract. 9(2), 199–205 (2001)

    Article  Google Scholar 

  12. Nagamatsu H, Kubota T, Nakatani I.: Capture strategy for retrieval of a tumbling satellite by a space robotic manipulator. In: IEEE International Conference on Robotics & Automation, pp. 70–75. IEEE (1996)

    Google Scholar 

  13. Nakasuka S, Fujiwara T.: New method of capturing tumbling object in space and its control aspects. In: IEEE International Conference on Control Applications, pp. 973–978. IEEE (1999)

    Google Scholar 

  14. Flores-Abad, A., Crespo, L.G.: A robotic concept for the NASA asteroid-capture mission. In: AIAA Space Conference & Exposition (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjiang Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, X., Huang, Z., Yan, H., Chen, T., Lou, Y. (2021). Design of a De-Tumbling Robot for Space Noncooperative Targets. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics