Skip to main content

A Self-evolution Hybrid Robot for Dental Implant Surgery

  • Conference paper
  • First Online:
Book cover Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13015))

Included in the following conference series:

  • 2980 Accesses

Abstract

Dental implant surgery is an effective method for remediating the loss of teeth. A novel custom-built hybrid robot, combining the advantages of serial manipulator and parallel manipulator, was proposed for assisting the dental implant surgery. The hybrid robot is comprised of 3 DOF translation joints, 2 DOF revolute joints and a Stewart manipulator. The translation joints are used for initial position adjustment, making the Stewart manipulator near the target position. The revolute joints are used for assisting the Stewart manipulator in initial orientation adjustment. The procedure of robot-assisted dental implant surgery is designed and described. Considering the limited workspace of Stewart manipulator, we set minimizing the joint displacement of the Stewart manipulator as the optimization objective to find an optimal joint configuration during initial orientation adjustment. In order to find the optimal joint configuration quickly, neural network is used to map the relationship between the target orientation and the optimal joint configuration. In addition, a self-evolution strategy is proposed for optimizing the learning model continuously. And the effectiveness of the strategy is validated in the phantom experiment.

This work was supported by grants from National Key R & D Program of China (2017YFB1302901).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, X., Yoon, Y., Li, J., McKenzie, F.D.: Automated image-guided surgery for common and complex dental implants. J. Med. Eng. Technol. 38(5), 251–259 (2014)

    Article  Google Scholar 

  2. Wu, Y., Wang, F., Fan, S., Chow, K.F.: Robotics in dental implantology. Oral Maxillofacial Surg. Clin. North America 31(3), 513–518 (2019)

    Article  Google Scholar 

  3. Sun, X., Mckenzie, F.D., Bawab, S., Li, J., Yoon, Y., Huang, J.K.: Automated dental implantation using image-guided robotics: registration results. Int. J. Comput. Assist. Radiol. Surg. 6(5), 627–634 (2011). https://doi.org/10.1007/s11548-010-0543-3

    Article  Google Scholar 

  4. Cao, Z., et al.: Pilot study of a surgical robot system for zygomatic implant placement. Med. Eng. Phys. 75, 72–78 (2020)

    Article  Google Scholar 

  5. Li, J., et al.: A compact dental robotic system using soft bracing technique. IEEE Robot. Autom. Lett. 4(2), 1271–1278 (2019)

    Article  Google Scholar 

  6. Bolding, S.L., Reebye, U.N.: Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches. J. Prosthet. Dent. (2021)

    Google Scholar 

  7. Köker, R., Öz, C., Çakar, T., Ekiz, H.: A study of neural network based inverse kinematics solution for a three-joint robot. Robot. Auton. Syst. 49(3), 227–234 (2004). Patterns and Autonomous Control

    Article  Google Scholar 

  8. Leiva-Aravena, E., Leiva, E., Zamorano, V., Rojas, C., Regan, J.M.: Neural architecture search with reinforcement learning. Science of the Total Environment (2019)

    Google Scholar 

  9. Jin, H., Song, Q., Hu, X.: Auto-Keras: an efficient neural architecture search system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1946–1956 (2019)

    Google Scholar 

  10. Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C.B., Farivar, R.: Towards automated machine learning: Evaluation and comparison of AutoML approaches and tools. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1471–1479 (2019)

    Google Scholar 

  11. Chen, X., Ye, M., Lin, Y., Wu, Y., Wang, C.: Image guided oral implantology and its application in the placement of zygoma implants. Comput. Methods Programs Biomed. 93(2), 162–173 (2009)

    Article  Google Scholar 

  12. Limtrakul, S., Arnonkijpanich, B.: Supervised learning based on the self-organizing maps for forward kinematic modeling of Stewart platform. Neural Comput. Appl. 31(2), 619–635 (2019). https://doi.org/10.1007/s00521-017-3095-4

    Article  Google Scholar 

  13. Gao, R.: Inverse kinematics solution of robotics based on neural network algorithms. J. Ambient. Intell. Humaniz. Comput. 11(12), 6199–6209 (2020). https://doi.org/10.1007/s12652-020-01815-4

    Article  Google Scholar 

  14. Jiménez-López, E., de la Mora-Pulido, D.S., Reyes-Ávila, L.A., de la Mora-Pulido, R.S., Melendez-Campos, J., López-Martínez, A.A.: Modeling of inverse kinematic of 3-DOF robot, using unit quaternions and artificial neural network. Robotica 39, 1230–1250 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingHua Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, Y. et al. (2021). A Self-evolution Hybrid Robot for Dental Implant Surgery. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13015. Springer, Cham. https://doi.org/10.1007/978-3-030-89134-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89134-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89133-6

  • Online ISBN: 978-3-030-89134-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics