
Stochastic Simulation Techniques for Inference
and Sensitivity Analysis of Bayesian Attack

Graphs

Isaac Matthews1,2, Sadegh Soudjani1, and Aad van Moorsel1

1 School of Computing, Newcastle University, United Kingdom
2 I.J.Matthews2@newcastle.ac.uk

Abstract. A vulnerability scan combined with information about a
computer network can be used to create an attack graph, a model of
how the elements of a network could be used in an attack to reach spe-
cific states or goals in the network. These graphs can be understood
probabilistically by turning them into Bayesian attack graphs, making it
possible to quantitatively analyse the security of large networks. In the
event of an attack, probabilities on the graph change depending on the
evidence discovered (e.g., by an intrusion detection system or knowledge
of a host’s activity). Since such scenarios are difficult to solve through
direct computation, we discuss and compare three stochastic simulation
techniques for updating the probabilities dynamically based on the evi-
dence and compare their speed and accuracy. From our experiments we
conclude that likelihood weighting is most efficient for most uses. We
also consider sensitivity analysis of BAGs, to identify the most critical
nodes for protection of the network and solve the uncertainty problem
in the assignment of priors to nodes. Since sensitivity analysis can easily
become computationally expensive, we present and demonstrate an effi-
cient sensitivity analysis approach that exploits a quantitative relation
with stochastic inference.

Keywords: Bayesian attack graph · Vulnerability scan · Stochastic sim-
ulation · Evidence of attack · Intrusion detection · Network security ·
Probabilistic model.

1 Introduction

Attack graphs are models of how vulnerabilities can be exploited to attack a
network. They are directed graphs that demonstrate how multiple vulnerabili-
ties and system configurations can be leveraged during a single attack in order
to reach states in the network that were previously inaccessible to the attacker.
An example of such a state would be root privilege on a database that contains
sensitive information. Attack graphs can be generated by performing a vulnera-
bility scan of a network using a tool like OpenVAS [9] or Nessus [27], and then
processing the results with an attack graph generator. There are many genera-
tors available (NetSPA [12], TVA [13], MulVAL [21]) but for this paper we use

ar
X

iv
:2

10
3.

10
21

2v
1

 [
cs

.C
R

]
 1

8
M

ar
 2

02
1

2 I. Matthews et al.

MulVAL as it is open source and is used by the majority of the literature on
attack graphs.

Attack graphs can be combined with Bayesian networks to allow for a prob-
abilistic analysis of the security of a network [1,11,17,24,25,4,5,10]. This combi-
nation is known as a Bayesian Attack Graph (BAG). These BAGs are generated
by incorporating likelihood information for vulnerabilities into the original at-
tack graph. One method of constructing BAGs is to acquire information on each
vulnerability that is present in the graph from a vulnerability repository like
the National Vulnerability Database. The Common Vulnerability Scoring Sys-
tem (CVSS) [6] vector that is in the database contains information, e.g., on the
attack complexity for exploiting a vulnerability and the availability of an ex-
ploit [6], which can be used in various ways to estimate the likelihood that the
vulnerability will be exploited [7,3,14].

BAGs are particularly promising as a dynamic risk assessment tool where
an administrator models new security controls and their effects on a network. A
network’s most likely attack paths and most vulnerable hosts can be dynamically
analysed, and this can be updated dependent on information from an intrusion
detection system [23].

Well-defined (that is, acyclic) BAGs can be solved using computational tech-
niques that are well-known from the theory of Bayesian Networks [18]. In recent
work systematic approaches have also been proposed for BAGs that have loops
and cycles, e.g., [15]. However, direct computational approaches become pro-
hibitively slow if the number of nodes in the BAG is large, and can have large
space requirements due to an increase in the size of the cliques in the graphs and
their probability tables. Therefore, it becomes important to consider stochastic
simulation (Monte-Carlo) techniques.

In this paper we focus on performing inference and sensitivity analysis on
BAGs using stochastic simulation. We do this for dynamic scenarios that do not
lend themselves for exact computation, namely scenarios that include observed
evidence in the BAGs. We discuss how any evidence or alterations to the network
can be included in the BAG analysis. That is, we create a dynamic model of the
security of the network that can be used to deduce an attacker’s most likely next
move and their route thus far, as well as quantitatively evaluate and compare
the effectiveness of different security controls and changes to the network.

While inference for BAGs using stochastic simulation has been performed by
others to investigate potential uses [19,2], there has to date not been a compari-
son of different techniques’ performances on BAGs. In this paper we employ three
stochastic simulations techniques, probabilistic logic sampling (PLS), likelihood
weighting (LW), and backward simulation (BS). We evaluate the performance of
these techniques in their speed and accuracy as well as how they perform with
different quantities of evidence to be included in the graph and different sizes of
graph.

The primary outcome of our work is a recommendation of the most efficient
simulation technique to use for inference in attack graphs. The recommendation
is to use likelihood weighting, which performs well for both low and high evi-

Stochastic Simulation for Bayesian Attack Graphs 3

dence scenarios. Moreover, we establish a quantitative relation between stochas-
tic inference and sensitivity analysis of BAGs. We discuss how the methods for
including evidence in the graphs can also be used to measure the graphs sen-
sitivity to each vulnerability in the network, and develop a fast approach to
calculate these sensitivities without requiring many simulations or any analysis
of distributions.

The rest of this paper is organised as follows. Section 2 describes the for-
malism for BAGs that is used throughout the paper and introduces the running
example along with the motivation for the work. Section 3 introduces and dis-
cusses the three sampling techniques that are implemented and their accuracy.
Section 4 then evaluates the performances of these techniques with regard to ac-
curacy, amount of evidence and size of graph. Section 5 introduces our measure
of sensitivity and its importance. Finally Section 6 compares this work with the
current literature available and Section 7 presents our conclusions.

2 Bayesian Attack Graphs

We consider a small enterprise network as a standard example used in the lit-
erature [22,10,15] to motivate the use of Bayesian attack graphs (BAGs) and
demonstrate the sampling techniques discussed in this paper.

2.1 Motivating Example

Fig. 1: Example small enterprise network architecture.

The architecture of the small enterprise network can be seen in Figure 1. In
this scenario, the network administrator wants to protect the database server

4 I. Matthews et al.

on the internal network from being accessed and the data being exfiltrated. The
internal network with the database server can be accessed via the internal firewall
one of two ways, either from the web server or from one of the workstations
(grouped together and treated as one host for simplicity). Both of these routes
require access to the demilitarized zone subnet (DMZ), which can be accessed
by the internet through the external firewall.

We can run a vulnerability scan on this network using tools like OpenVAS [9]
or Nessus [27] to create an attack graph. In this scenario, we assume that the
scan discovers a vulnerability on each of the hosts. On the database server there
is a MySQL vulnerability, the web server has a vulnerability in Apache, and
the workstations have an Internet Explorer vulnerability. A full description of
the vulnerabilities and the resulting attack graph can be found in Appendix A.
With this vulnerability scan, we can generate an attack graph, for instance using
the tools provided in MulVAL [21]. The attack graph represents how the vul-
nerabilities can be used in conjunction with one another to reach a high enough
privilege on the database server to access the data.

2.2 Bayesian Attack Graphs

0

15

22

12

3

4

6

21

7

8

9

11

23

12

14

5

10

13

16

1718

19

20

24

Fig. 2: The BAG of the small enterprise network presented in Figure 1.

Figure 2 shows the resulting BAG from running a scan on the network pre-
sented in Figure 1. For clarity, the nodes have been coloured to show which of the
hosts in the architecture they correspond to. Nodes that have multiple colours
are related to a transition between two hosts (from the colour on the left to the
colour on the right). Node 0 in white colour is not related to any host on the
network but represents an attack from the internet. Node 1 is deemed the goal
node as it represents the primary state that the attacker must not reach, or else
the data in the database becomes accessible to them. In general the goal node
or nodes is the collection of nodes that allow the attacker to achieve something
that the network administrator is trying to prevent. For a full description of this
graph, along with all node labels, see Appendix A.

We provide the formal definition of BAGs next.

Definition 1. A Bayesian attack graph is defined as a directed graph G = (V, E),
where V is the set of nodes and E ⊂ V × V is the set of edges. Nodes in V are

Stochastic Simulation for Bayesian Attack Graphs 5

connected by edges from E. We denote the edge connecting vi, vj ∈ V by eij =
(vi, vj). The set of nodes is comprised of three types of nodes, V = Vl ∪ Va ∪ Vo,
representing LEAF, AND and OR nodes, as explained below.

For any v, v′ ∈ V and (v, v′) ∈ E , v is called the parent node of v′ and v′ is
called a child node of v. Similarly, we have the set of parent nodes pa(v′) :=
{v ∈ V | (v, v′) ∈ E}.

The three types of nodes are as follows, first introduced in informal terms,
then formally within the context of Bayesian attack graphs:

– Vl is the set of LEAF nodes in the graph, nodes that have no parent. They
represent network configurations, the existence of vulnerablities or running
services, and different conditions in the network, for example network con-
nection information in the form of HACLs (host access control lists).

– Va are the AND nodes, which have requisite conditions all of which must be
satisfied in order to be accessed (an AND nodes parents have a conjunctive
relationship). An example of an AND node would be the remote exploitation
of a vulnerability, given that the vulnerability exists and the attacker has
access to a host that is allowed access to the machine the vulnerability is
located on. An AND node could also represent a movement between hosts if
there are the fulfilled requirements of a configuration node for access between
the machines and the attacker has access to one of them already.

– Vo are the OR nodes, which have requisite conditions of which at least one
must be satisfied in order to be accessed (an OR node’s parents have a
disjunctive relationship). These nodes represent micro-states within the net-
work that encode information about an attacker’s location and privilege in
the system. For example, if a machine has several vulnerabilities that could
be exploited to achieve privilege escalation on that machine then exploiting
any of those vulnerabilities would grant the attacker access to the state of
higher privilege on the host. The overall macro-state of the attacker, being
their privilege on each host of the system and their access to and between
each of the hosts, would be an enumeration of all the OR nodes that had
been accessed.

As indicated in Figure 2, the LEAF nodes are drawn as rectangles on the
graph, the AND nodes are ellipses and the OR nodes are diamonds.

Suppose a local probability function p : V → [0, 1] is given. Any BAG G =
(V, E) as in Definition 1 with local probability function p : V → [0, 1] can be
translated into a Bayesian Network, which is denoted by the tuple B = (V, E , T).
Let us consider the set of nodes V = {1, 2, . . . , n} are associate a Boolean random
variable Xk to each node k ∈ V. The set T is a collection of probability tables
that are constructed as follows. For all k ∈ Vl,

Prob(Xk = 1) = p(k) and Prob(Xk = 0) = 1− p(k). (1)

6 I. Matthews et al.

For k ∈ Va, let pa(k) = 1 indicate that all the parent variables of the node k are
equal to one. Then,

Prob(Xk = 1|pa(k) = 1) = p(k),

Prob(Xk = 1|pa(k) 6= 1) = 0,

Prob(Xk = 0|pa(k) = 1) = 1− p(k),

Prob(Xk = 0|pa(k) 6= 1) = 1.

(2)

For k ∈ Vo, let pa(k) = 0 indicate that all the parent variables of the node k are
equal to zero. Then, {

Prob(Xk = 1|pa(k) = 0) = 0,

Prob(Xk = 1|pa(k) 6= 0) = p(k),
(3)

and Prob(Xk = 0|pa(k)) is the complement of above probabilities.

Remark 1. Note that here we use the AND/OR formalism for BAGs [20] having
three types of nodes, but another common formalism is the plain BAG [26]
that has only one type of nodes. We use AND/OR BAGs in order to move
probabilities to the edge of the graph to allow deterministic analysis for all other
nodes as described below. In our previous work [15], we have demonstrated the
relation between the two formalisms and explained how to transform one form
to the other and as such the current paper is relevant to both types of BAGs.

2.3 Problem Statement

Problem 1 (Access Probabilities). Consider an attack graph (V, E) with local
probability function p : V → [0, 1]. Compute Prob(Xk = 1) for any k ∈ V. This
quantity is called the access probability of the node k and is simply denoted
by P (Xk). It will give the likelihood that an attacker will reach node k in an
attack and will depend on the local probability function p and the structure of
the attack graph.

Problem 2 (Inference). Suppose some evidence of an attack is known in the form
of Z = z, where Z ⊂ V is the set of random variables associated to the nodes
for which we have the respective evidence values z. Compute the likelihood that
the attacker gain access to node k ∈ V given such an evidence: P (Xk|Z = z).

Problem 3 (Sensitivity Analysis). The local probability function p : V → [0, 1] is
often estimated based on prior knowledge or data on the network. Compute the
sensitivity of access probabilities P (Xk) and conditional probabilities P (Xk|Z =
z) to the values p(v) for any v ∈ V. If p(v) has a distribution, compute an interval
for these quantities with a confidence bound.

We provide stochastic simulation techniques to answer Problems 1 and 2 in
Section 3, and present a novel solution to Problem 3 in Section 5.

Stochastic Simulation for Bayesian Attack Graphs 7

3 Sampling Techniques

3.1 Graph Decomposition

In order to simplify the process of simulation for attack graphs, we can move
all stochastic behaviour to LEAF nodes and in doing so make the rest of the
graph purely deterministic. This can be achieved by enlarging the attack graph
and moving local probabilities of non-LEAF nodes onto a new LEAF node with
the same local probability. This process can be seen in Figures 3-4, where the
node C will have the same behaviour in both figures. This is only required when
non-LEAF nodes have local probabilities which is not the case for graphs we
create but is found in the literature. Full demonstration of the equivalence is in
our previous work [15].

A B

C

C
A B F T

F F 1 0
F T 1-p(v) p(v)
T F 1-p(v) p(v)
T T 1-p(v) p(v)

Fig. 3: A small attack graph, with local
probability in OR node C.

A B

C′ v′

C

v′

F T

1-p(v) p(v)
C′

A B F T

F F 1 0
F T 0 1
T F 0 1
T T 0 1

C
C′ v′ F T

F F 1 0
F T 1 0
T F 1 0
T T 0 1

Fig. 4: The equivalent graph of Figure 3
with probabilities only on leaves.

3.2 Generating Samples

Using this formalism of BAGs a single attack can be modelled as the array of
LEAF nodes being allocated values corresponding to ‘achieving’ something in
an attack such that if the node is given the value 1 then the exploit has worked
or a condition has been met, and if the value is 0 then an exploit or condition
has failed. With these values the reach of the attack can be calculated, as the
internal (non-LEAF nodes) in the graph are all deterministically dependent on
the LEAF nodes. In this way, with a specific distribution of LEAF nodes a state
on the graph is either accessible or inaccessible. With the example of Figure 2,

8 I. Matthews et al.

a single attack configuration would equate to all the rectangular LEAF nodes
being set as y or n, determining the states of the rest of the nodes in the graph.
The attackers ability to reach an important state, like the ability to execute code
on the database server at node 1, becomes either y or n.

We prepare the graph by assigning the LEAF nodes a series of prior distribu-
tions based upon factors like the ease of exploitation of a vulnerability. We then
sample from these to create a single attack simulation with the LEAF nodes
being 1 or 0 according to a random sample of their distribution, and all other
nodes being assigned values deterministically from their tables.

3.3 Probabilistic Logic Sampling

For our attack graphs, probabilistic logic sampling (PLS) is performed by first
sampling a configuration of LEAF nodes. A random number is generated between
0 and 1, if the number generated is less than the prior probability assigned to
the LEAF node then the node is assigned a 1 (or y), if it is greater then the node
is set at 0 (n). This is repeated for all LEAF nodes to create the configuration.
When the configuration has been generated it can be used to prescribe states
to the rest of the nodes in the graph. These states are then recorded as an
array of 1s and 0s. This process is then repeated until N configurations have
been generated and evaluated. The recorded arrays can be used to estimate

the probability distributions of the nodes in the graph, with N(X=1)
N being the

estimated probability that an attacker will gain access to a particular node:

P (X) ≈
(
N(X = 1)

N
,
N(X = 0)

N

)
(4)

The simplest way to include evidence with this technique is by discarding any
samples that do not conform to the evidence provided. As such one is left with
a subset of the original N simulations and can calculate the new probabilities in
a similar way to equation (4).

In order to estimate the probability distribution of the kth variable with
regard to the new evidence, P (Xk|Z = z), using N samples with PLS we use
algorithm 1 modified from [18]. Here Z is the variables or nodes that we have
evidence for and z is the evidence that has been provided for these nodes. This
would be in the form of a list of nodes that we know have been accessed created
by an intrusion detection system, or a list of nodes that we are modelling as not
accessed if we are comparing different security controls and their affect on the
network.

3.4 Likelihood Weighting

Likelihood weighting (LW) is a method to deal with the problems of PLS for
dealing with evidence, namely the inefficiency of generating samples that will
be discarded if they conflict with evidence. Instead, for LW, only non-evidence
variables are sampled from and as such no simulations are discarded. However

Stochastic Simulation for Bayesian Attack Graphs 9

Input: attack graph (V, E), local probability function p : V → [0, 1], number of
simulations N

Output: Conditional likelihood P (Xk|Z = z) given evidence Z = z
1. Let V = {1, 2, . . . , n} and (X1, ..., Xn) be the associated Boolean random
variables.

2. Initialise N(Xk = xk) = 0 for all xk ∈ {0, 1} and all k ∈ V.
3. for j = 1 to N :

a) for i = 1 to n :
Sample a state xi for Xi using P (Xi|pa(Xi) = π), where π is the
configuration sampled for pa(Xi)

b) If x = (x1, ..., xn) is consistent with z, then
N(Xk = xk) := N(Xk = xk) + 1, where xk is the sampled state for Xk

return Prob(Xk = xk|z) ≈ N(Xk = xk)

N(Xk = 0) +N(Xk = 1)

Algorithm 1: Performing PLS to approximate a distribution given some
evidence.

this approach causes sampled variables to ignore evidence that is not present in
their ancestors, and so an extra weighting has to be introduced. This weight-
ing is equivalent to the probability a certain state will arise given the evidence
provided.

Essentially we want to sample from the following distribution,

P (V, z) =
∏

X∈V \Z

P (X|pa(X)‘, pa(X)“ = z)

×
∏
X∈Z

P (X = e|pa(X)‘, pa(X)“ = z)
(5)

where pa(X)“ are parent nodes that have evidence, and pa(X)‘ do not. By fixing
the evidence variables then taking the sample we instead are using

Distribution =
∏

X∈V \Z

P (X|pa(X)‘, pa(X)“ = z) (6)

So to rectify this we weigh each sample taken using

w(x, z) =
∏
Z∈Z

P (Z = z|pa(X) = π) (7)

where π is the configuration of the parents specified by x and z. In order to
estimate P (Xk|Z = z) using N samples we use algorithm 2 as defined in [18].

This is an improvement on PLS as it removes the inefficiency of discarding
evidence, instead requiring the calculation of a weight for each simulation. A
large number of samples may still be required, however, if the evidence provided
is unlikely and therefore the difference between equations 5 and 6 is large. This
would mean the weighting would in general be very small and as such reaching
an amount of error that is not too large may take some time.

10 I. Matthews et al.

Input: P (Xk)
Output: P (Xk|Z = z)
1. Let (X1, ..., Xn) be all nodes present in the graph.
2. for j = 1 to N :

a) w := 1
b) for i = 1 to n :

- Let x‘ be the configuration of (X1, ..., Xi−1) specified by e and
previous samples

- if Xi 6∈ Z :
Sample a state xi for Xi using P (Xi|pa(Xi) = π), where
pa(Xi) = π is consistent with x‘

else:
w := w · P (Xi = zi|pa(Xi) = π), where pa(Xi) = π is consistent
with x‘

c) N(Xk = xk) := N(Xk = xk) + w, where xk is the sampled state for Xk

return P (Xk = xk|z) ≈ N(Xk=xk)∑
x∈sp(Xk) N(Xk=x)

Algorithm 2: Performing likelihood weighting to approximate a distri-
bution given some evidence

3.5 Backward Simulation

The final technique is based on the Backward Simulation (BS) method devised
by Fung and Del Favero [8]. The primary difference between this and other
techniques is that simulation runs originate at the known evidence and the sim-
ulation is run backwards. Once this process has terminated the remaining nodes
are forward sampled in the standard way. The reason for this is to rectify the
slow convergence caused by unlikely evidence.

The backward sampling procedure is performed by taking a sample from the
distribution

Ps(Pa(Xi)) =
P (Xi|pau(Xi)pa

∗(Xi))

Norm(i)
, i ∈ Nb (8)

where pau(Xi) are the uninstantiated parents of Xi and pa∗(Xi) are the instan-
tiated parents. The normalizing constant is calculated as

Norm(i) =
∑

y∈XP (pau(Xi)

P (Xi|y,Xpa∗(Xi)) (9)

. Once all backwards sampling nodes have been sampled the forwards sweep
samples all the remaining nodes as

Ps(Xi) = P (Xi|pa(Xi)), i ∈ Nf (10)

Once a sample has been taken for each node, the weight for the simulation can
be computed as the product of the normalisation constants used along with the
likelihood of nodes that were set by backwards sampling but were not sampled
from themselves

Z(x) =
∏

i∈N\NS

P (Xi|Pa(Xi))
∏
j∈Nb

Norm(j) (11)

Stochastic Simulation for Bayesian Attack Graphs 11

BS, as a form of likelihood weighting, is designed to cope better with very low-
likelihood evidence. A large part of the computational cost of the algorithm
comes from the calculation of the normalisation constants, which grows expo-
nentially with the number of predecessor nodes. We would expect this technique
to perform similarly to likelihood weighting for few evidence nodes but be an
improvement when there are many nodes, as is demonstrated in the paper pre-
senting the technique [8]. However the structure of the graph is of great impor-
tance and as such it is difficult to know beforehand which of the techniques will
perform better for the application of BAGs.

3.6 Confidence bounds

Since all these techniques are sampling from the same distribution once the
corrective factors are applied, the standard error can be calculated in a similar
way for each. As each trial is random and independent from the last, using the
central limit theorem it can be shown that

σp(x) =

√
P{x}(1− P{x})

N
(12)

Fig. 5: Time against average node error for all techniques for one and three
evidence nodes.

4 Comparison

For the comparison of these techniques, each is first run on a 200 node attack
graph from a small enterprise network with varying amounts of evidence. Figure

12 I. Matthews et al.

5 shows the increase in time (in wall clock seconds) required for improving the
accuracy of results for situations when one and three evidence nodes have been
included (the average time over thirty runs has been plotted; the error bars
are too small to be drawn for this graph). As can be seen even with just one
piece of evidence PLS performed poorly compared to the other methods, with
three evidence nodes taking considerable amounts of time and runs with more
than three evidence nodes timing out. The other two methods are run with five
and ten evidence nodes provided, and the results for this can be seen in Figure
6, again with the average result over thirty runs plotted. The minimum and
maximum values are shown by the transparent ribbon. While these results are
close, interestingly LW does outperform BS at higher quantities of evidence.

Fig. 6: Time against average node error for BS and LW for different numbers of
evidence nodes.

Figure 7 shows the convergence of each technique on a probability for one
of the goals in the network, with the ribbon showing the error of the estimate.
LW and BS converge equally quickly with three pieces of evidence but BS does
converge faster when only one evidence is used. The techniques are also run
across graph sizes of 100 nodes to 1500, again with 30 runs per graph size, with
1, 5 and 10 evidence nodes used. The results of these runs are shown in Figure
8 with the points showing the average run time and the ribbon showing the
maximum and minimum of the runs. PLS runs slightly worse than the other two
techniques for one evidence node but performs very poorly for the other evidence
levels so is omitted from the graphs for clarity. The stopping criteria for a run
is an error of ±0.02 per node.

Stochastic Simulation for Bayesian Attack Graphs 13

Fig. 7: Convergence of goal node probability for all three techniques with one
evidence node (left) and three evidence nodes (right)

BS performs best with one evidence node, and gives similar results for both
5 and 10 pieces of evidence. LW performs about as well at all evidence levels for
graphs below 1000 nodes, but performs best with 10 evidence nodes for graphs
larger than 1000.

Fig. 8: Time required for increasing graph sizes for LW and BS for different
amounts of evidence.

Next the stopping criteria is relaxed to an error of ±0.04 per node and the
runs are repeated in a similar manner to Figure 8 but up to graphs of 5000 nodes
to investigate the scalability of the techniques. These runs are plotted in Figure
9 where it can be seen that LW out performs BS for all evidence levels at the
larger graph sizes.

Given these results, likelihood weighting is the best technique for belief up-
dating in Bayesian attack graphs as it not only performs slightly better overall

14 I. Matthews et al.

Fig. 9: Time required for larger graph sizes for LW and BS for different amounts
of evidence.

across different evidence levels and graph sizes but also is easier to implement
than backward simulation. Probabilistic logic sampling should only be used if
no evidence is expected most of the time.

5 Sensitivity Analysis

The prior probabilities for the vulnerabilities on the LEAF nodes can be gen-
erated via different methods of varying complexity. For example Doynikova and
Kotenko [5] use various parts of the CVSS vector and Cheng et al. [3] model the
relationships of parts of the metrics to give them different weights and improve
the accuracy of the probabilities. All these techniques however draw from the
data available for a vulnerability which is often incomplete and quickly becomes
outdated. Sensitivity analysis is important for the overall analysis of BAGs as it
considers the impact of the original assignment of the probability.

To evaluate the sensitivity of the graph to the LEAF nodes, each node can be
assigned a uniform probability distribution in turn rather than a single probabil-
ity. A distribution can be generated for one or several goal nodes in the network
with respect to each LEAF node; this is done by sampling from the LEAF nodes’
uniform distribution, then generating a sample of the entire network as before.
The change in the probability density of the access probability of the goal node
in the network from Figure 2 is shown in Figure 10. The wider the distribution
the more sensitive the goal node is to the probability applied at the LEAF node,
if the LEAF node probability does not affect the goal node at all the probabil-
ity density would be entirely concentrated at the goal probability value that is
calculated when there are only single values for all LEAF nodes.

Stochastic Simulation for Bayesian Attack Graphs 15

Fig. 10: Probability density of goal node when a uniform distribution is used for
various leaf nodes, demonstrating their sensitivity.

As such, the network is more sensitive to changes at node 17 or 16, whereas
nodes 5 and 10 do not have much of an effect on the goal probability as shown
by their narrow probability densities. This type of sensitivity analysis has been
performed by others, as discussed in Section 6, however, in what follows we
propose an alternative technique that requires much less computation and gives
more usable results.

Theorem 1. Using the stochastic techniques for incorporating evidence in the
graph, one can also discover the sensitivities of LEAF nodes on the graph with
much less computational effort than the method of applying a uniform distribu-
tion at the LEAF nodes. Instead of generating simulations for a distribution of
probabilities, a sensitivity value can be calculated by performing simulations when
a LEAF node is given evidence as ’y’ and as ’n’. As such only two simulations
need to be generated.

Proof. The probability of the goal node, P (A), can be calculated with respect
to a LEAF node B

P (A) = P (A|B = 0)P (B = 0) + P (A|B = 1)P (B = 1) (13)

which is equivalent to

P (A) = P (A|B = 0)(1− P (B = 1)) + P (A|B = 1)P (B = 1). (14)

16 I. Matthews et al.

We then calculate sensitivity as

Sensitivity = P (A|B = 1)− P (A|B = 0) (15)

The sensitivities calculated in this manner are shown in Table 1, and using
this sensitivity value allows quick evaluation of the importance of each node
without the extensive computation or the required analysis of the probability
distribution that is necessary to generate and interpret Figure 10. The informa-
tion remains the same, however, with node 17 being the most important followed
by 16 then 24, while nodes 5 and 10 have very little impact on the goal node
probability.

Table 1: Sensitivities calculated using ’on/off’ evidence.

Leaf Node Sensitivity

17 0.7780

16 0.4388

24 0.3526

5 0.0225

10 0.0081

6 Related Work

One example of stochastic simulation techniques for attack graphs is by Noel
and Jajodia [19]. They use PLS to compare different security fixes for a network.
However this is performed by hand and as such it cannot be generally applied.
Their use case compares several security controls that could be added to the
network. This is achieved by examining the resulting distributions estimated
when the changes are applied to the graph, in a manner similar to that shown in
Figure 10 as a sensitivity analysis. As discussed in Section 5, this requires more
computation and also requires analysis of the resulting distributions. Baiardi
and Sgandurra use Monte Carlo simulations in their Haruspex tool [2]. This tool
is a fully featured program that uses attack graphs and threat agents to model
security. It is an application for this type of graph, incorporating many different
elements, but does not analyse different methods for simulation.

Muñoz-González et al. present an exact method for inference in BAGs using
the junction tree algorithm [16]. This method is attractive due to its exact nature,
but unfortunately is very limited in its application due to how it scales. This is
caused by the requirement for tables to be generated based on the cliques created
to start the calculations, and for large graphs these tables can become extremely
large. It is better to have a trade-off in the accuracy of the method to reduce

Stochastic Simulation for Bayesian Attack Graphs 17

the space required, to allow scalability for the large graphs that are expected
from enterprise networks. They go on to present an approximate technique in
[17] using loopy belief propagation. The results of this scale well, linearly with
respect to the number of nodes, while achieving a reasonable level of accuracy.
The drawback to using this method, unlike stochastic simulation, is that there
is no guarantee of convergence to the correct value.

7 Conclusion

In this paper we have presented and compared three techniques that can be
generally applied to inference of any Bayesian attack graph. We make the rec-
ommendation that for most purposes the likelihood weighting process is a good
choice to analyse an attack graph when any amount of evidence is presented, in
a timely fashion. We also demonstrate a test of sensitivity for the graph that
can be very quickly calculated and does not require any complex analysis of
distributions or prior sampling of node distributions. This can be used both as
remediation for the high uncertainty in LEAF node prior probabilities, as well
as an easy prioritisation of vulnerabilities in light of their importance to a series
of goal nodes.

References

1. Aguessy, F., Bettan, O., Blanc, G., Conan, V., Debar, H.: Bayesian attack model
for dynamic risk assessment. CoRR abs/1606.09042 (2016)

2. Baiardi, F., Sgandurra, D.: Assessing ICT risk through a Monte Carlo method.
Environment Systems and Decisions 33(4), 486–499 (2013)

3. Cheng, P., Wang, L., Jajodia, S., Singhal, A.: Refining CVSS-Based Network Se-
curity Metrics by Examining the Base Scores, pp. 25–52. Springer International
Publishing (2017)

4. Dantu, R., Loper, K., Kolan, P.: Risk management using behavior based attack
graphs. In: International Conference on Information Technology: Coding and Com-
puting. vol. 1, pp. 445–449 (April 2004)

5. Doynikova, E., Kotenko, I.: Enhancement of probabilistic attack graphs for ac-
curate cyber security monitoring. In: IEEE SmartWorld, Ubiquitous Intelligence
Computing, Advanced Trusted Computed, Scalable Computing Communications,
Cloud Big Data Computing, Internet of People and Smart City Innovation. pp. 1–6
(Aug 2017)

6. FIRST: Common vulnerability scoring system v3.1: Specification document (2019),
https://www.first.org/cvss/v3.1/specification-document

7. Frigault, M., Wang, L., Jajodia, S., Singhal, A.: Measuring the Overall Network
Security by Combining CVSS Scores Based on Attack Graphs and Bayesian Net-
works, pp. 1–23. Springer International Publishing, Cham (2017)

8. Fung, R., Del Favero, B.: Backward simulation in Bayesian networks. In: Uncer-
tainty Proceedings 1994, pp. 227–234. Elsevier (1994)

9. Greenbone: Open vulnerability assesment scanner (2006), https://www.https:

//www.openvas.org/

https://www.first.org/cvss/v3.1/specification-document
https://www.https://www.openvas.org/
https://www.https://www.openvas.org/

18 I. Matthews et al.

10. Homer, J., Zhang, S., Ou, X., Schmidt, D., Du, Y., Rajagopalan, S.R., Singhal,
A.: Aggregating vulnerability metrics in enterprise networks using attack graphs.
Journal of Computer Security 21(4), 561–597 (2013)

11. Huangfu, Y., Zhou, L., Yang, C.: Routing the cyber-attack path with the Bayesian
network deducing approach. In: 2017 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC). pp. 5–10 (Oct 2017)

12. Ingols, K., Chu, M., Lippmann, R., Webster, S., Boyer, S.: Modeling modern net-
work attacks and countermeasures using attack graphs. In: Annual Computer Se-
curity Applications Conference. pp. 117–126 (Dec 2009)

13. Jajodia, S., Noel, S.: Topological vulnerability analysis: A powerful new approach
for network attack prevention, detection, and response. In: Algorithms, architec-
tures and information systems security, pp. 285–305. World Scientific (2009)

14. Keramati, M., Keramati, M.: Novel security metrics for ranking vulnerabilities
in computer networks. In: 7th International Symposium on Telecommunications
(IST). pp. 883–888 (Sept 2014)

15. Matthews, I., Mace, J., Soudjani, S., van Moorsel, A.: Cyclic Bayesian attack
graphs: A systematic computational approach (2020)

16. Muñoz-González, L., Sgandurra, D., Barrere, M., Lupu, E.: Exact inference tech-
niques for the analysis of Bayesian attack graphs. IEEE Transactions on Depend-
able and Secure Computing (2016)

17. Muñoz-González, L., Sgandurra, D., Paudice, A., Lupu, E.C.: Efficient attack graph
analysis through approximate inference. CoRR abs/1606.07025 (2017)

18. Nielsen, T.D., Jensen, F.V.: Bayesian networks and decision graphs. Springer Sci-
ence & Business Media (2009)

19. Noel, S., Jajodia, S., Wang, L., Singhal, A.: Measuring security risk of networks
using attack graphs. International Journal of Next-Generation Computing 1(1),
135–147 (2010)

20. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security. pp. 336–345. CCS ’06, ACM, New York, NY, USA (2006)

21. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: A logic-based network security
analyzer. In: Proceedings of the 14th Conference on USENIX Security Symposium.
SSYM’05, vol. 14, pp. 8–8. USENIX Association, Berkeley, CA, USA (2005)

22. Ou, X., Singhal, A.: Attack Graph Techniques, pp. 5–8. Springer New York, New
York, NY (2011)

23. Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using
Bayesian attack graphs. IEEE Transactions on Dependable and Secure Computing
9(1), 61–74 (Jan 2012)

24. Ramaki, A.A., Khosravi-Farmad, M., Bafghi, A.G.: Real time alert correlation
and prediction using Bayesian networks. In: 12th International Iranian Society
of Cryptology Conference on Information Security and Cryptology (ISCISC). pp.
98–103 (Sept 2015)

25. Sembiring, J., Ramadhan, M., Gondokaryono, Y.S., Arman, A.A.: Network secu-
rity risk analysis using improved MulVAL Bayesian attack graphs. International
Journal on Electrical Engineering and Informatics 7(4), 735 (2015)

26. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph gen-
eration tool. In: Proceedings DARPA Information Survivability Conference and
Exposition II. DISCEX’01. vol. 2, pp. 307–321 vol.2 (June 2001)

27. Tenable: Nessus vulnerability scanner (1998), https://www.tenable.com/

products/nessus/nessus-professional/

https://www.tenable.com/products/nessus/nessus-professional/
https://www.tenable.com/products/nessus/nessus-professional/

Stochastic Simulation for Bayesian Attack Graphs 19

A Full Example

0

15

22

12

3

45

6

21

78

910

11 23

1213

14

16

17

18

19

20

24

Fig. 11: The BAG of the running example including leaf nodes.

The complete attack graph for the running example scenario can be seen in
Figure 11, with the labels for the nodes shown in Listing 1.1. The vulnerabilities
in this scenario are described below

– CVE-2009-24463 is present on the Database Server. This is a MySQL vul-
nerability that allows an authenticated user to cause a denial of service as
well as execute arbitrary code

– CVE-2006-37474 is on the Webserver. This is a vulnerability in the Apache
web server that requires network access and is exploited using specially
crafted URLs that then allow the attacker to execute arbitrary code

– CVE-2009-19185 is a vulnerability on all the Workstations. It affects Internet
Explorer, and means that if the user visits a website with malformed ele-
ments, a memory corruption is triggered that an attacker can use to execute
code

Listing 1.1: MulVAL labels for Figure 11

0, "attackerLocated(internet)"

1, "execCode(dbServer,root)"

2, "RULE 2 (remote exploit of a server

program)"

3, "netAccess(dbServer,tcp,’3306’)"

4, "RULE 5 (multi-hop access)"

5, "hacl(webServer,dbServer,

tcp,’3306’)"

6, "execCode(webServer,apache)"

7, "RULE 2"

8, "netAccess(webServer,tcp,’80’)"

3 https://nvd.nist.gov/vuln/detail/CVE-2009-2446
4 https://nvd.nist.gov/vuln/detail/CVE-2006-3747
5 https://nvd.nist.gov/vuln/detail/CVE-2009-1918

20 I. Matthews et al.

9, "RULE 5"

10, "hacl(workStation,webServer,tcp,’80’"

11, "execCode(workStation,userAccount)"

12, "RULE 2"

13, "vulExists(workStation,’CVE-2009-1918’,

IE,remoteExploit,privEscalation)"

14, "accessMaliciousInput(workStation, user, IE)"

15, "malicious website"

16, "visit of malicious website"

17, "vulExists(dbServer,’CVE-2009-2446’,

mySQL,remoteExploit,privEscalation)"

18, "vulExists(webServer,’CVE-2006-3747’,

apache,remoteExploit,privEscalation)"

19, "visit of compromised website"

20, "hacl(internet, webServer, tcp, ’80’)"

21, "compromise of website"

22, "RULE 6 (direct network access)"

23, "RULE 5"

24, "hacl(workStation,dbServer,tcp,’3306’)

An hacl node is a ’host access control list’ node that defines which hosts can
connect to other hosts, as well as the protocol that is allowed to be used and the
port that it is performed through.

	Stochastic Simulation Techniques for Inference and Sensitivity Analysis of Bayesian Attack Graphs

