
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Future of Programming and Modelling: A Vision

Citation for published version:
Stevens, P 2021, The Future of Programming and Modelling: A Vision. in Leveraging Applications of Formal
Methods, Verification and Validation. Lecture Notes in Computer Science, vol. 13036, Springer, pp. 357-
377, 9th International Symposium On Leveraging Applications of Formal Methods, Verification and
Validation, Rhodes, Greece, 17/10/21. https://doi.org/10.1007/978-3-030-89159-6_23

Digital Object Identifier (DOI):
10.1007/978-3-030-89159-6_23

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Leveraging Applications of Formal Methods, Verification and Validation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1007/978-3-030-89159-6_23
https://doi.org/10.1007/978-3-030-89159-6_23
https://www.research.ed.ac.uk/en/publications/7415a84d-cbc7-4fb9-a5ba-e229b0ca1d4a


The Future of Programming and Modelling:
a Vision

Perdita Stevens1[0000−0002−3975−7612]

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh, UK
Perdita.Stevens@ed.ac.uk

http://homepages.inf.ed.ac.uk/perdita

Abstract. What is the future of programming, and what does it have
to do with modelling? In this paper we will first argue that, despite im-
pressive achievements, software development now suffers from a capacity
crisis which cannot be alleviated by programming as currently conceived.
Rather, it is necessary to democratise the development of software: stake-
holders who are not software specialists must, somehow, be empowered
to take more of the decisions about how the software they use shall be-
have. We will suggest that a potential way to achieve this is that software
should be delivered in the form of a collection of models, each expressed
in a (domain-specific) language appropriate to its intended users, and all
connected by bidirectional transformations. We emphasise the pragmatic
need to accommodate a heterogeneous collection of formalisms so that
solutions can incorporate pre-existing transformations, with automatic
“fixing up” of their results as necessary. We discuss the advances that are
needed to make this a reality, and some early progress in this direction.

Keywords: programming · modelling · bidirectional transformation ·
consistency maintenance

1 The software capacity crisis

In the early days of the telephone, subscribers called one another, not by enter-
ing a number into their handset, but by lifting their receiver and talking to a
telephone operator, who plugged the caller’s wire into the callee’s socket. Soon,
it became clear that the number of telephone operators could not scale to match
the growth in subscriber numbers. People began to point out, rhetorically, that
in the not-too-distant future everyone in the demographic from which telephone
operators were drawn would have to be employed in that way. For example,
around 1886 the Chief Engineer of the British Post Office estimated that by
the year 2000 every woman in Britain would have to be a telephone operator
(reported in [48], p52). Fortunately for the author, such dreadful predictions
did not come to pass. Instead, the automated telephone exchange was invented,
enabling subscribers to control their own connections. In a certain sense, every



2 Perdita Stevens

one of us is now a telephone operator: but we do not find the occupation too
irksome.

Software development today is in a state analogous to that of telephony at
the end of the 19th century. We struggle to find enough people – there are al-
ready hundreds of thousands of unfilled ICT positions in the European Union
[11]. Looking further ahead, we expect the demand for software to continue to
increase; one estimate [12] is that 1.6 million ICT professional jobs will need to
be filled in the European Union between 2018 and 2030. Big data and the rise
of AI make new frontiers of potential software visible, while they also intensify
concern about the properties of the software, including correctness and privacy.
Businesses desire to update their software ever faster. Despite their resulting pop-
ularity, agile and DevOps techniques such as continuous integration/continuous
delivery (CI/CD) are far from a panacaea [31]. For example, even in a survey
of businesses using agile development [47], just 4% of respondents – 71% of
which were planning DevOps adoption within the next year – agreed that agile
practices were enabling greater adaptability to market conditions! Capacity and
hiring regularly appear at the top of lists of software companies’ concerns (e.g.
[46]).

What makes the software situation even worse than the telephony one is the
sheer difficulty of modern software development. It pushes the limits of
human cognition: in order to make productive use of the technology we have to-
day, people typically have to devote their full-time efforts to learning, retaining,
practising and updating their software-related skills. Universities are asked to
turn out increasing numbers of students with an extraordinarily wide and fast-
changing skill-set; the difficulty of doing so underlies apparent paradoxes such
as that, in the UK, despite the unfilled positions, the unemployment rate for
computer science graduates is above that of other STEM subjects [39]. While
the fundamentals of our discipline do not change, the devil is in the detail –
and there is a lot of detail, as anyone can attest who has had to develop (say) a
web application with mainstream tools, after a few years of not doing so. Con-
sequently not every person is able to succeed in modern software development,
so even if, as a society, we were willing to devote the efforts of even more of us
to software development, this would not solve the problem.

Impressive advances in software development have, however, been made since
the “thirty year crisis” [40] of approximately 1960–1990. We now have better lan-
guages, tools, and frameworks; we have consensus on the importance of testing
being integrated into development; we are beginning to understand how to com-
bine the safety of a high-ceremony process with the responsiveness to change
that agile methods can bring.

Each of these advances can be seen as (partially successful) attempts to
employ separation of concerns in Dijkstra’s terminology [8] to help manage
information overload, which is the main root cause of the difficulty of software
development, because the amount of information in even a medium-sized soft-
ware project vastly exceeds what humans can easily hold in mind. For example,
high level programming languages allow the programmer to remove focus from



The Future of Programming and Modelling: a Vision 3

low level implementation details; the practice of unit testing enables someone
investigating a bug to ignore certain parts of the code base with confidence; in a
sprint, the developer focuses attention on a subset of the requirements and how
to realise them.

Ideally decisions taken for the sake of one concern have no effect on any
other; then different people may work with different concerns, independently.
But usually this is not so (as indeed Dijkstra explained). Separating concerns is
worthwhile because of the way it helps focus, but dependencies between them
still have to be managed, usually manually and informally, relying on developers’
knowledge. Unfortunately, we have (so far) not made advances, in this task of
reintegrating concerns, that are comparable to those that we have made in
managing each individual concern. Thus it turns out that the improvements in
software engineering to date do not actually make it easier to develop software:
they just enable the same software developers – tight-knit teams of people with
a rare blend of up-to-the-minute technical, interpersonal and business skills – to
achieve more, faster, than used to be possible.

In summary, the practice of software development has advanced enormously
since the earliest days, so that we are now able to build large, complex software
systems reliably. We have banished the original software crisis. However, cur-
rent approaches to software development push the limits of human cognition.
Acquiring and retaining the skills necessary to be effective in modern software
development takes so much time and effort, even from the most talented people,
that it is not possible to find enough skilled people to build all the software we
would like built, given the way that software development is currently organised.
Hence we have a software capacity crisis.

2 Modelling and its limitations

As we have seen, from the invention of the subroutine on, encapsulation, and,
more generally, separation of concerns [8], have been understood to be important
for managing the information overload that is characteristic of software devel-
opment. This idea, together with the idea that, in particular, the concerns of
different stakeholders should be separated, drove the rise of object orientation
and the development of modelling.

In the 1990s many different modelling languages flourished, each typically
promoted by a single guru and supported by a single tool. Eliding some polit-
ical history: the Unified Modeling Language, UML [17], was developed in the
late 1990s, with the aim of solving this Babel and permitting networking effects
that would energise the tools market, permit easier transfer of people between
projects, and generally increase the efficiency of software development by en-
abling decisions to be taken and recorded at higher levels of abstraction. The
Object Management Group (OMG), many of whose members are tool develop-
ment companies, standardised UML. (I wrote the first student textbook on it
[49].) UML garnered a remarkable degree of buy-in and effectively wiped out
most of the earlier modelling languages. It has since suffered a backlash, because



4 Perdita Stevens

1. the need to get buy-in from all the key influencers (and to standardise using
OMG’s consensus-based process, which is itself designed to maximise buy-in)
led to UML being huge and imprecise;

2. diagrams are slow to develop compared to code. It took the community a
remarkably long time to appreciate the sense in which concrete syntax is
superficial. We can have several concrete syntaxes for ‘the same’ language,
e.g. graphical and textual presentations of the same information. For ex-
ample, the metamodelling language Ecore has a textual syntax, Emfatic, in
addition to the original diagrammatic syntax [14]. 1

Unsurprisingly, we have seen a succession of papers about how little UML is
used (e.g. [35]), although in fact, developers’ use of diagrams to help focus their
design thinking is ubiquitous [26].

One way to analyse the problem is to say that UML has a cost-benefit ratio
problem: point 1 above causes the benefit to be too low, and point 2 means that
the cost is too high.

2.1 Increasing the benefit that derives from modelling

Attempts to increase the benefit that is derived from the effort of developing
models have led to model-driven development (MDD) and the related con-
cepts of language engineering [23] and low-code platforms (estimated mar-
ket size 27.23 billion US dollars by 2022 [29]). These can be seen as reactions to
the backlash against UML: they make more use of tools, and hence, perforce, of
languages as formal artefacts, in an attempt to increase the benefit derived from
models and hence improve the cost-benefit ratio. A progenitor of this family of
approaches was OMG’s model-driven architecture [16]. This emphasised for-
ward generation of platform-specific models from platform-independent models,
and of code from platform-specific models: its underlying assumption was that
important decisions about functionality could all be made at a high level of ab-
straction, so that human involvement in modifying code – programming – would
be all but abolished. Modern, more flexible, successors of this approach include
XMDD based on the “One Thing Approach” [27, 28]. With an insistence on re-
placing, rather than integrating, the old-fashioned approach of humans editing
code, they provide an conceptually efficient methodology for greenfield develop-
ment, in which all modelling can take place under the same aegis and there can
be a single point of control for generating code once the models are ready. If test-
ing of the code reveals that early decisions, embodied in highly abstract models,
must be revised, then the necessary changes are recorded in the models and the
automatic process of synthesising code is re-run. When this is a practical way to
proceed, it is undoubtedly the right thing to do: it avoids repeating information
in more than one place, and recording it in inefficient ways, and uses automation
to best advantage. Successful examples include the development of single-page
web applications using DIME [4].

1 Indeed, this is why, in this paper, we do not make a hard distinction between “model”
(often assumed graphical) and “code” (always assumed textual).



The Future of Programming and Modelling: a Vision 5

A key difference between OMG’s original MDA conception and these later
approaches – with wider implications which we shall shortly come to – is that
while MDA envisaged models would be expressed in general purpose languages
like UML, later approaches make use of multiple domain-specific (modelling)
languages (DS(M)Ls), each made just expressive enough for the concern it
targets and endowed with syntax suitable for its users. (Traditionally a program
in a DSL is expressed in text, while a model in a DSML is expressed diagrammat-
ically; but we have already observed that this distinction is superficial, and in the
context of DS(M)Ls the deliberately limited expressivity makes it easier, than
with general purpose languages, to provide both textual and graphical syntax
for the same language, and hence makes it even more difficult and unproduc-
tive to draw a distinction between program and model. We shall not do so, and
shall use the shorter term DSL from now on without intending to limit its scope
to textual languages.) DSLs can benefit their users by providing uncluttered,
straightforward means to access all and only the information required for a par-
ticular task; they can be provided with tooling which is efficiently usable; and
they are amenable to programmatic manipulation for synthesis, model-checking,
etc.

There is, of course, no such thing as a free lunch. The DSLs themselves and
their tooling have to be developed and maintained and, even with the best of
language engineering support, this carries a cost. The DSL’s users have to learn
them, and great care is needed to ensure that the initial effort of doing so really
is repaid by greater efficiency coming from the suitability of the language for the
task. Different users have different backgrounds and skills, hence they may need
widely different languages and tools. A poorly designed DSL can give the worst
of all worlds. Nevertheless, these problems and their solutions are becoming
well-studied and mainstream (see e.g. [15]).

Overall, DSLs are an important step forwards towards better separation of
concerns. However, concerns must still be related, so that eventually software
can be produced that is correctly modelled by all the models in the various
DSLs. In an ideal world, any decision is recorded in only one model, so that
all the human-modified models are orthogonal, with no dependencies between
them. Then models that combine information from several of them, including
ultimately the delivered software system itself, can be generated, unidirection-
ally, from them. Most DSL engineering still works on this premise, whether the
generation is done by transformations as usual in MDD, by global constraint
solving, or by another kind of search. From now on we focus on model transfor-
mations as the mechanism by which models are related. The term refers to any
program, however expressed, that has models among its inputs and/or outputs.

2.2 Bidirectionality

From the beginning, potential users of transformations recognised that the world
would not generally be ideal in the sense just referred to: the interesting Object
Management Group document [50], produced in the run-up to its call for pro-
posals for model transformation languages, records that the ability to resolve



6 Perdita Stevens

bidirectional dependencies between models was important to potential users of
such languages. Bidirectional dependencies, in which a change to either of two
models may necessitate a change in the other, arise because information cannot,
in fact, usually be partitioned between models. There is generally an overlap
between the information that must be included in one model, and that which
must be included in another, in order to allow the users of each to do their work.
Thus it is not generally enough to accept arbitrary current states of all the mod-
els expressed in their DSLs, and synthesise code from them. It can, and does,
happen that models get “out of sync”: they record inconsistent information, and
one or both must be modified before development can proceed. If only one of the
models is user-facing, the other being generated from it, then of course there is
no problem: we simply regenerate the generated model. However, if both models
are under the control of human developers then these modifications have to be
effected in a way which is acceptable to the humans. They may, for example, have
to sit down together, identify the root causes of the inconsistencies between their
models, and agree how to fix them. This can be an expensive, time-consuming
and error-prone process, because it inherently requires the humans to under-
stand information from outside their own model – precisely what DSL use was
intended to avoid.

We use the term bidirectional transformation (abbreviated bx) for an
automatic means of checking and restoring consistency2 between two (or more)
models, allowing for the possibility that a change in either might necessitate a
change in the other. In an earlier paper [43] I listed the following three criteria
as “the essence of bidirectionality”:

1. There is separation of concerns into explicit parts such that
2. more than one part is “live”, that is, liable to have decisions deliberately

encoded in it in the future; and
3. the parts are not orthogonal. That is, a change in one part may necessitate

a change in another.

Following the earlier observation about the superficiality of syntax, we call the
parts “models”, regardless of whether they are diagrams or text (including code),
or recorded otherwise. (“Everything’s a model”.) Where bidirectional situations
arise – and they do arise in any large cooperative software development – care
must be taken to manage the relationship between the models. They sometimes
need to be allowed to evolve separately – we say, to become “inconsistent” – for
a while, especially when the owner of one model is making changes that may
not prove to be durable [33]. At some points, though, it will be necessary to
bring the models into consistency with one another. This can be done entirely
manually, e.g. following discussion between the owners of the models. Restoring
consistency automatically is the job of a bidirectional transformation.

2 The now well-established use of the term “consistency” occasionally causes confusion.
Consistency can be any desired relation between the models: models are consistent if
the development they are part of is considered to be in a good state. The relationship
between this and logical consistency is discussed in [43].



The Future of Programming and Modelling: a Vision 7

It is important to understand that, even though there may be many ways
to restore consistency between two models, this does not imply that the bidi-
rectional transformation must be non-deterministic, or must involve user in-
teraction. It may do so, if desired: but the choice between different consistency
restorations can be programmed in the bidirectional transformation. Indeed, this
is the main job of the programmer of the transformation.

It has proved difficult to develop good languages and other technology to
support bidirectional transformations, partly because the requirements for such
a language cannot all be met simultaneously3. The various attempts have led
to a fragile tools problem, in which solution approaches, each balancing the
forces in different ways and making different compromises, are incompatible
with one another and have idiosyncratic (and often incompletely documented)
behaviour. Among other problems, we so far lack a principled way to allow
inter-operation of bidirectional transformations. That is, it is difficult or
impossible to manage a development that incorporates bidirectional transforma-
tions that have been developed in different ways at different times by different
people and expressed in different languages.

Thus these model-based approaches have not (yet) solved the capacity prob-
lem. Whilst powerful walled-garden tools such as JetBrains MPS4 can achieve
amazing results in skilled hands, this leads to lock-in at personal and organisa-
tional level; it prevents the combination of advantages from different approaches,
and makes network effects unavailable (although for commercial platform ven-
dors, such lock-in gives a short-term advantage). And, despite the bullish pro-
jection of its market size, low-code platforms are reasonably seen as a “fad”, the
latest in a long sequence of candidate silver bullets, because “anybody coding
really needs to understand what’s going on behind it all” [36]: that is, today, the
dependencies between concerns still have to be handled manually, which places
a heavy burden on the developer.

3 A vision for the future

In summary, in order to address the software capacity crisis we need principled
advances on several fronts.

1. Of course, we do need to continue to increase the productivity of today’s
best software specialists, that is, the speed at which teams of the most tal-
ented people – who can, for example, embrace techniques such as mechanised
proof and functional programming with sophisticated type systems – pro-
duce dependable software. This is the aim of the vast majority of software
engineering and programming language research today, but it is not the only
important avenue to pursue.

3 For example, it is extremely convenient if all one’s bx have the property known as
strong undoability, while not requiring auxiliary data beyond the models themselves,
but insisting on this limits expressiveness too much.

4 https://www.jetbrains.com/mps/



8 Perdita Stevens

2. We need to reorganise software development, so that the effort of the most
skilled software specialists can be applied where it is most needed (e.g. writ-
ing the bidirectional transformations that support the integration of con-
cerns) allowing technically easier tasks (e.g. updating a model of a single
concern) to be done by developers with less experience. Taking this to the
extreme:

3. We need to distribute more of the decision-making about software’s be-
haviour to people who are not software specialists, but are stakeholders in
the software, perhaps experts in some completely different domain.

Let us go into a little more detail about how such a reorganisation of software
development might look.

In future, rather than delivering a software system with fixed behaviour, and
standing ready to change it whenever the required behaviour changes, software
specialists should deliver something more like a cloud of potential software
systems:

– a collection of distinct model spaces, within which each stakeholder can
safely and easily change their decisions about how the software should be-
have, using whatever tooling they find appropriate;

– within each model space, a starting model, which incorporates the specialists’
current understanding of what the stakeholders want;

– a mechanism, involving a collection of bidirectional transformations, for
bringing together the separate collections of decisions made by different
stakeholders and melding them into well-behaving software that meets all
of its requirements.

Here is a very simple example. Suppose that a system involves: a form-based
user interface, controlled by a UI designer; a database, controlled by a database
designer; and a report production engine, the format of the report being con-
trolled by an accountant. Let us suppose that data that needs to appear in the
report must be collected from the users and stored in the database: that is, the
consistency condition between the three models, that must be maintained, in-
cludes this constraint. (It may, or may not, also say a lot more, such as that data
should not be collected from the user unless it is needed in the report.) If the
accountant modifies the report format to include some extra data, then the three
models will be considered inconsistent. It might be that the bx, delivered with
the model spaces, are capable of automatically restoring consistency, by adding
a field to the UI in a default, programmed way, and by adding another column
to the database schema (and creating any necessary migration scripts etc.). Of
course, not every change that a stakeholder wishes to make to their model will
break consistency with other stakeholders’ models. For example, following the
change just discussed, the UI designer might decide on a better way to collect
the new data than the default one chosen by the bx, but this would be entirely
within the UI designer’s concern and would not affect consistency with the other
models. We would still like to have a mechanism for checking that consistency
holds.



The Future of Programming and Modelling: a Vision 9

More generally, the vision is that whenever it turns out that – because their
requirements were misunderstood, or because they have changed – a stake-
holder’s needs are not served by the current software system, they can change
their own model within the provided model space. They can then use the bx to
update the whole software system accordingly, including automatically making
any necessary modifications to other stakeholders’ models. Only when something
is needed that is outwith the delivered cloud of software systems do software
specialists need to get involved again. Of course this will sometimes happen:
a stakeholder may need something that is not expressible within the provided
model space, or the provided bx may be unable to synthesise well-behaving soft-
ware from all the current needs of the stakeholders. The more expressive the
model spaces, and the more powerful the bx, the less often this will happen. As
usual we may expect to see a trade-off between effort invested up front and effort
likely to be required later; but we may hope there is potential to eliminate a lot
of routine maintenance work and a vast amount of stakeholder frustration, by
making easy changes easy. The reader who doubts whether this is possible
at all should observe that we already have a degenerate case of it: we expect
to have settings screens which enable us to modify the behaviour of software in
certain small ways which have no effect on other stakeholders. What is proposed
here is that we harness the power of bx to broaden the scope of changes that can
be automatically effected: an open question is to what extent this can be done.
Another, equally important, is “how do we get there from here?”.

Summarising the argument so far: we have understood the importance of
separation of concerns since Dijkstra gave us the phrase. We separate out a
concern by capturing all, and only, the information relevant to that concern in
one artefact – today we call this artefact a model. The language of this model
functions as a high-level, abstract language for expressing the part of the solution
relevant to the concern. This helps the developer by allowing them to focus
attention on the most relevant information, and by giving them the ability to
express their decisions concisely.

However, attempts to use such an approach to democratise the task of telling
a computer what to do have had very limited success, despite attempts going
back at least to the development of COBOL. Fundamentally this is because of
inadequate separation of concerns, which in turn results from a lack of support
for putting concerns back together again. It looked as though someone
could write a COBOL program without understanding full details of what the
computer would do as a result, but this was an illusion. If (as still generally
happens today) the developer is permitted to write only a comparatively small
model, but still has to understand how their model fits into the rest of the
development, what will be generated from it, etc., we may have saved them
typing, but we have not really relieved them of information overload; we have
simply handed them yet another power tool with which to manage it. To get
more benefit, it needs to be possible for a developer to understand in detail just
the model of this one concern. By taking that seriously as an aim, we can get:



10 Perdita Stevens

– benefits for software specialists, who are free to not spend brain space on
knowing a lot of detail about how their model fits with the rest of the system;
but even more

– the possibility of opening up the use of the model to people who are not
software specialists.

One might think that it is natural to concentrate on the first of these benefits,
taking software specialists as intended users, and only later expanding focus to
include non-software-specialists. However, aiming at the second possibility has a
crucial advantage for the technology developer. If the people using a model are
software specialists anyway, and especially if they already know a low-abstraction
way to solve the problem, then it may not be possible to overcome the startup
cost of learning to work with high-abstraction modelling languages and separate
bx. In the early stages at least, we are vulnerable to “I can code this directly,
faster”. Non-software-specialists are not vulnerable to this: they genuinely need
the abstractions, because the rest of their cognitive attention is on things other
than software. They therefore automatically get more benefit than software spe-
cialists do from using the new approach. This is the sense in which focusing on
the harder aim is sensible: it may actually make us more likely to succeed.

4 Bidirectional transformations

We have argued that it is desirable that different stakeholders should be able
to work on different models, with the relationships between them maintained
automatically, and we pointed out that this has long been recognised. However,
even something as generic as UML-Java round-tripping has not been taken up
as widely as one might expect, because in practice the accidental complexity [22]
imposed by today’s tools is too high; so maintaining consistency between models
and code is perceived as an important barrier to the use of modelling [35, 32, 20],
despite the long-standing availability of tools that target exactly this problem.
If, rather than using general purpose modelling and programming languages like
UML and Java, we want to use custom-designed DSLs, better adapted to the
people using them, then we must also custom-design the means of maintaining
the desired consistency relationships between the models. That is, we must have
good ways to develop dependable bx. In this section we briefly consider the state
of the art.

Consistency checking and restoration can be done by programs written in
conventional – unidirectional – languages, and in practice, today’s bidirectional
situations are often handled that way. In the simplest formulation, we can write
three distinct, but related, programs that each operate on two models m and n
whose consistency is supposed to be maintained: one consistency-checker, which
returns true iff m and n are consistent, and two consistency-restorers, one that
returns an m′ which is a version of m modified to be consistent with n, and dually
one that returns a version n′ of n, modified to be consistent with m. However,
since the functionality for the consistency checking, and for the restoration in



The Future of Programming and Modelling: a Vision 11

either direction, must then be written largely separately, it is tedious and error-
prone. For example, the structure of the models tends to get encoded in all
three programs, all of which must be updated if the structure changes. A bx
language is a language in which one artefact can represent all of these tasks.
A good example of what can be achieved today with bx languages is BiYacc
[51]: this domain-specific language allows a single bx program to represent both
a parser and a printer for the same grammar. Moreover, since BiYacc is based
on a body of bx theory, it offers “reflective” printing with guaranteed round-trip
properties, allowing it, for example, to avoid losing comments in program text
which is parsed, optimised, and printed again.

The design space of general purpose, unidirectional programming languages
has been extensively explored; although advances continue, much is understood
about the options for structuring, typing and supporting such languages. De-
spite important advances in recent years, bx languages are nothing like so well
understood. A handful of languages have been developed [37, 38, 3, 19, 7] and a
few have had some success in applications [18, 25]. However, they are very dif-
ferent from each other, difficult to learn and practically impossible to combine.
Classification has been attempted [9] but is not yet mature. The Object Manage-
ment Group developed a standard for a bidirectional language, QVT-R [34], but
the standard has so many problems [41, 42, 5], including not only “accidental”
problems but also “essential” problems with the structure of the language, that
with hindsight this standardisation effort was premature.

The active Bx community, especially through its annual workshop and its
collaborative events, brings together diverse constituencies – chiefly software en-
gineering, programming languages, databases and graph transformations – and
is making great progress in understanding the commonalities and differences be-
tween approaches to bx (e.g. [21]). It has also built up a useful catalogue of exam-
ples and benchmarks [6, 1]. Nevertheless, the area is still desperately immature
compared with that of unidirectional programming. We need experimentation
with different languages to continue, but even more, we need investigation into
the foundations of such languages, to improve our understanding of the design
space of bx languages.

One axis on which approaches differ is which bx task should be uppermost in
the bx programmer’s mind. Let us explain in the special case of an asymmetric
bx, where one of the models being reconciled is a view which is a strict abstrac-
tion of the other, its source. (The term lens is often used for such asymmetric
bx, following seminal early work [13].) A programmer following a bidirectional-
ization approach [30] thinks principally of the get direction, from source to view,
and in practice the same is true of the programmer in lens languages such as
Boomerang [3]. There is a field explicitly called put-back based programming
[19] in which the put direction, which takes an updated view and a source and
updates the source, is primary. (One advantage of this approach is that the get
function is then determined by the put behaviour, given mild well-behavedness
assumptions.) Relation-based languages such as QVT-R, like constraint-based
approaches [24], put the consistency relation itself first in the programmer’s



12 Perdita Stevens

mind. Because this approach does not privilege one restoration direction, it is
suitable for writing symmetric bx, where each model contains information that
is not present in the other. These are ubiquitous in MDD: for example, source
code typically omits the use-case information from a UML model, but includes
detailed code which the UML model does not. In MDD understanding what it
means for models to be consistent is both easier and more important than under-
standing how consistency can be restored after it has been lost. It is more likely
to be specified correctly, and less susceptible to being generated automatically.

In summary, there is currently, for good reasons, a wide and growing range of
bx languages and the field is still in its infancy. Unfortunately, it is not straight-
forward to compose transformations written in today’s bx languages and this
situation is not likely to improve any time soon. So, in order to “get there from
here”, we need to tackle this problem. As so often in software engineering, we
may proceed by adding an extra level of indirection5. But first let us consider
the broader implications of having more than two models in play.

5 Specifying networks of models: megamodelling

As we have seen, there is a bewildering variety of approaches to the problem
of maintaining consistency even between just two models. Until recently, most
work on bidirectional transformations was focused on this binary case. This
is unfortunate for our vision, since any non-trivial software system has more
than two concerns! Elsewhere in MDD, however, more complex configurations
of models were getting more attention. The term megamodel was coined by Jean
Bézivin [2] in recognition of the fact that the collection of models and their
relationships can itself be seen as a model (but that the term metamodel is
already in use for something quite different!)

Concretely, consider Figure 1 as a small but not trivial example of how mod-
els work together to separate concerns in software development. The diagram
represents: a model M (say, a diagram showing the structure of the software to
be built, together with a use-case diagram giving an overview of its require-
ments); a metamodel MM to which the model should conform; some Code; some
Tests; and a Safety model. The model M and the Code are supposed to be
related by a standard round-tripping relationship. For example, we might ex-
pect that the same classnames will appear in the structure diagram as in the
code, while the detailed code has no equivalent in the model, and the use-case
diagram has no equivalent in the code. There are several different possible rela-
tionships that might be desired between the Code and the Tests, for example a
coverage criterion might or might not be included; the diagram represents that
a Safety model, recording among other things whether the system is considered
safety-critical, may have an influence on what relationship is desired.

In principle, the requirements for a way of restoring consistency between sep-
arated concerns do not imply presenting the concerns in the form of a megamodel

5 See https://en.wikipedia.org/wiki/Fundamental theorem of software engineering.



The Future of Programming and Modelling: a Vision 13

MMM

Code Tests

Safety

m conforms to mm

roundtripconforms(m,code)

safeconforms(code,tests,safety)

Fig. 1. A small megamodel: models connected by desired relationships (from [45]).
Notation: lower-case model is instance of upper-case Model.

like this: we could in principle specify and restore a single, five-place consistency
relation expressing precisely which collections of models m ∈ M, code ∈ Code

etc. are to be considered consistent. This is impractical, however, for many rea-
sons. An important reason is that such a five-place consistency relation would
be entirely bespoke, and would be prohibitively costly to specify. Since it most
likely incorporates, conceptually, standard notions such as conformance between
a model and its metamodel, and roundtrip consistency between a model and
some source code, we would like to be able to reuse those bx, perhaps even buy-
ing them off the shelf. We expect, therefore, that some edges in a megamodel will
represent such off-the-shelf standard bx, while others may represent bx written
for a specific software system. Remember that, given the lack of a single best bx
technology, these bx may well be written in different languages and executed by
different bx engines. We should not assume any homogeneity or compatibility
between their formalisms.

Particularly when considering what future, better bx languages should be
like, one early question among many is: does it suffice to have languages in
which to express consistency, and its restoration, between just two models – we
say, languages to express binary bx – or do we need multiary transformations
(multx for short), to express and restore consistency relations between more
than two models? Figure 1 illustrates a ternary bx between Code, Safety and
Tests, although the other edges in this megamodel are all binary. This question
is addressed in detail in [44]: here it suffices to say that in many situations it
is reasonable to proceed by putting together binary bx in a network of models.
Then each edge in the network represents a binary bx: a restorable consistency
relation between two models.

Even if, as in Figure 1, edges are not restricted to being binary, it is useful
to express the consistency of a whole collection of models forming a megamodel



14 Perdita Stevens

by means of the edges in a network. The entire network is considered consistent
when every edge in it is consistent. To restore consistency in the network, we
apply the consistency restoration capabilities of each edge, in some sequence,
until, hopefully, the entire network is consistent. For example, we might apply
the roundtripconforms bx on the M-Code edge to update the Code with respect
to some changes in the model M, and then we might apply the safeconforms bx
to update the tests.

This approach has the advantage that it gives us a way to talk about the
overall consistency of the network, and even about how we restore consistency
in the network, even though the network is heterogeneous in both the expression
of consistency and the consistency restoration mechanisms.

Unfortunately, it is easy to see that we cannot hope for an arbitrary collection
of bx (even if they all happen all to be in the same language) to comprise a
complete solution to the problem of maintaining consistency in the network.
As explored in [44], several problems can arise. Most significant among them is
that when a model m ∈ M is connected by bx to several other models in the
network, restoring consistency in the whole network requires that an m′ ∈ M
be found which is consistent with all its neighbours. Even if each individual bx
can restore consistency with one of m’s neighbours, such an m′ may not exist.
Even if it does, reaching m′ from m may not be possible using any sequence of
applications of the consistency restoration procedures of the individual bx. And
even if there is a simultaneous solution and it is achievable, we may not have
confluence: that is, the eventual result achieved may depend on the order (and,
in general, direction) in which bx are applied.

6 Restoring consistency in megamodels

The problem of how to reason about the restoration of consistency in a network
of models can seem overwhelming. Even if we start with a collection of bidi-
rectional transformations that are, in principle, adequate, how on Earth do we
manage the process, avoiding confusion caused by the problems just discussed,
viz., that solutions may not exist or may not be unique? There may be no prac-
tical alternative to doing some “fixing up” in order to make bx incident on the
same model “play nicely together”, e.g. preventing the second bx applied from
undoing some necessary change made by the first; but requiring even a triv-
ial amount of manual work to be done after applying the bx negates some of
the value of using the bx. It is especially damaging to our vision of consistency
restoration being done without reference to software specialists.

An example (from [45], referring again to Figure 1) illustrates. Consider the
bx incident on the Code (a particular instance will be referred to as code following
our standard convention), and think about the problem of using these bx to
change code so as to bring it into consistency with its neighbours. (For the sake
of giving a simple example, we suppose that in this situation only code must be
altered – we say, its neighbours are for the present authoritative, that is, must not
be altered by the automated consistency restoration process.) For concreteness,



The Future of Programming and Modelling: a Vision 15

– Suppose the roundtripconforms edge requires that every class in m’s class
diagram should have a corresponding (in some sense we need not go into)
Java class in code. When the bx’s consistency restoration is invoked in the
direction of code, then if there is a class in m with no corresponding class in
code, one will be generated. No comments will ever be inserted in the Java.

– Suppose the safeconforms edge requires (among other things) that every
Java class in code corresponds to a test class in tests, unless the Java class
is marked with a special comment (// Not Yet To Be Tested or similar).
When this bx is invoked in the direction of code, any Java class that has
neither that special comment nor a corresponding test class will be deleted.
If there is a test class that lacks a corresponding Java class, then a Java class
will be generated.

First, observe that the order in which these bx are applied matters (we say
that they are not non-interfering [44]). One reason why this is so is that each of
the two bx will generate a missing Java class if necessary. Consider the case that
the “same” class exists in m and in tests, but there is currently no corresponding
class in code. Then the first bx to be applied will generate Java code for the
missing class, after which the second one will find the Java code already present
and not need to generate it. However, it may be that one of the bx is better at
generating useful Java code than the other. We would like human intelligence,
not an automatic framework that proceeds in ignorance of the specific setting,
to be making the choice of order of application of the bx, so that the better code
generator is used.

More interestingly, consider a case where a class is present in m, but not
in either code or tests. Here neither order of application of the available bx,
without adjustment, will succeed in restoring both the consistency relations. For
if roundtripconforms is applied first, it will create a Java class – but because
it does not insert the special comment, application of safeconforms will then
delete it again, breaking consistency according to roundtripconforms. On the
other hand, if safeconforms is applied first, and then roundtripconforms, the
result will be that a Java class is present in code, without the special comment,
but is not present in tests, so the safeconforms consistency relation does not
hold. However, some intelligent “fixing up” can easily solve this problem. What
we want to do is:

1. apply the roundtripconforms consistency restoration first, possibly creating
new classes in code, then

2. add the special comment to any such new classes, before
3. invoking the safeconforms consistency restoration.

In this way, a fully consistent state may be reached even though this would not
be possible with any combination of the bx unaided. Of course, a human could
carry out this procedure, manually invoking the bx and doing the “fixing up” as
necessary. But in order to realise our vision of most software maintenance taking
place without the involvement of software specialists, we need to automate the
whole process.



16 Perdita Stevens

Alongside tackling these semantic issues and ensuring that consistency can be
restored in a sensible way, we also note that, in practice, model transformations
can be computationally expensive and it will be important not to do unnecessary
work. We will want to avoid applying model transformations in situations where
we “should know” that they are not required.

It turns out we can make progress on all of these problems via the observation
that the problem of restoring consistency in a network of models is closely related
to the problem of software build, where both correctness (ensuring that software
is built correctly from its sources, according to the build rules, incorporating the
latest changes to every source) and optimality (ensuring that no unnecessary
compilation etc. is done) have been the subject of extensive study. Work by
Erdweg et al. on the pluto build system framework [10] is especially helpful:
it gives us the means to handle the problem of wanting human intelligence to
control the application of the bx and any necessary “fixing up”, as follows.

For each model that might need to be modified in the process of restoring
consistency overall, there is a builder which owns the responsibility of doing
that modification. That is, this builder controls the invocation of any bx that
will modify this model, and does any necessary “fixing up”. The builder is a
program: it might be a very simple one, which simply invokes one or more bx
in a fixed order, or it might be arbitrarily intelligent. The effect is to allow the
inter-operation of heterogeneous technologies; eliding some details, the builder’s
key post-condition is simply that, on successful completion, this model should,
somehow, have been brought into consistency with its (relevant) neighbours. The
builder provides the extra level of indirection advertised earlier.

Space forbids telling the full story of how the builders cooperate to restore
consistency in the megamodel as a whole. To cut a long story short, it turns out
that the pluto framework [10] can, with care, be adapted to our needs: provided
that we write builders obeying some natural constraints, pluto can manage the
invocation of the right builders in the right order, so that (if the build completes
without error) consistency is restored in the relevant part of the whole network,
without any unnecessary work having been done.

Key ingredients of the adaptation are:

– the decision to adopt a “pull” rather than a “push” model: rather than rolling
changes in one model out through the network, a build request produces a
version of a specified model, which has been brought into consistency with
its dependencies (transitively, but without modifying any model on which
the specified model does not depend);

– the use of an orientation model to capture project-level decisions about which
models may be automatically modified (and which are authoritative, i.e. may
not be modified right now) and in which direction bx should be applied
(hence, which model takes priority, right now, in the case of conflicts).

For more details, see [45].



The Future of Programming and Modelling: a Vision 17

7 Further work needed to realise this vision

Programming This vision has not, by any means, eliminated the need for pro-
gramming. What it has done is to concentrate it. Someone has to program the
bx, and the builders. There is something to be said for having the builders all
in Java, or another general purpose language, but, as mentioned in Section 4, it
is advantageous to write the individual bx in a specialist bx language. We have
already remarked that the development of bx languages is in its infancy, and “bx
programmer” is not yet a career. Perhaps it will be in future.

Modelling Achieving separation of concerns which is effective enough to make
it genuinely practical for non-software specialists to change the behaviour of
software by using only their own model, without needing to understand the rest
of the system into which their model fits, requires excellent support for both
developers and users of DSLs. It remains to be seen how far the idea can be
pushed, but it is a field which is already active [15].

Explainability, verification, validation More challenging may be the need to
achieve overall dependability of the framework into which the DSLs fit. When
the consistency restoration process produces results that surprise someone, how
can they tell whether there is a bug that should be reported? And, if the con-
sistency restoration process fails – e.g. because different stakeholders have made
decisions for which no simultaneous solution exists – what then? We will need
explainability beyond anything achieved so far.

The correctness and optimality of any framework realising the vision sug-
gested here is both crucial and subtle. Megamodelbuild [45], building on pluto
[10], is supported by hand-written proofs, but, especially in order to explore
more flexible variants, mechanisation is desirable. This is work in progress.

Enabling gradual adoption Something which is both a challenge and an oppor-
tunity is the flexible range of possible ambition inherent in this approach. At
the least ambitious end, we could have a set-up in which all we can do is check
consistency: every builder checks consistency of its model with relevant neigh-
bours and fails if any inconsistency is found. This might already be very useful,
even if the actual restoration of consistency has to be done manually following
meetings between stakeholders (and presumably, in this case, involving software
specialists). For example, it would permit any stakeholder to make any change
that does not break consistency. Over time, the builders, and the bx that they
apply, could be replaced by more sophisticated versions that can more often suc-
ceed in restoring consistency automatically. We could even envisage a learning
framework, in which the consistency restoration processes become automatically
more powerful over time, as they incorporate knowledge of what humans do to
restore consistency so that the next time a similar change is required it can
be made automatically. There is intriguing crossover with artificial intelligence
(principally good old-fashioned AI rather than machine learning, though that
too might have its place).



18 Perdita Stevens

8 Conclusions

In this paper I have argued that we need a radical change in how software is
conceived, developed and delivered. Without it, we have little hope of solving the
software development capacity crisis. I have suggested that a reorganisation of
software decision-making that empowers stakeholders to take more of the deci-
sions pertaining to their own concern has potential. To make this a reality we will
still need all the old programming language skills, but they will be directed to
where they are most needed: programming the consistency checking and restora-
tion processes. If achieved, this vision might deliver more flexible software for us
all; but many challenges need to be met to make it a reality.

Acknowledgements

I am grateful to NCSC/RIVeTSS project RFA20601-4214171 Mechanising the
Theory of Build Systems for funding, and to Steffen Zschaler, Julian Bradfield,
Robin Bradfield and all the participants of Dagstuhl no. 18491 on Multidirec-
tional Transformations and Synchronisations [40] for helpful comments and dis-
cussion. I thank the anonymous reviewers for insightful comments, questions and
pointers to relevant literature.

References

1. Anthony Anjorin, Zinovy Diskin, Frédéric Jouault, Hsiang-Shang Ko, Erhan
Leblebici, and Bernhard Westfechtel. Benchmarx reloaded: A practical bench-
mark framework for bidirectional transformations. In BX@ETAPS, volume 1827
of CEUR Workshop Proceedings, pages 15–30. CEUR-WS.org, 2017.

2. Jean Bézivin, Frédéric Jouault, and Pierre Valduriez. On the need for megamodels.
In Proc. OOPLSA/GPCE workshop: Best Practices for Model-Driven Software
Development, 2004.

3. Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz,
and Alan Schmitt. Boomerang: Resourceful lenses for string data. In PoPL, 2008.

4. Steve Boßelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait, Stefan Nau-
jokat, Johannes Neubauer, Dominic Wirkner, Philip Zweihoff, and Bernhard Stef-
fen. DIME: A programming-less modeling environment for web applications. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of For-
mal Methods, Verification and Validation: Discussion, Dissemination, Applications
- 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-
14, 2016, Proceedings, Part II, volume 9953 of Lecture Notes in Computer Science,
pages 809–832, 2016.

5. Julian C. Bradfield and Perdita Stevens. Enforcing QVT-R with mu-calculus and
games. In Fundamental Approaches to Software Engineering - 16th International
Conference, FASE 2013, volume 7793 of Lecture Notes in Computer Science, pages
282–296. Springer, 2013.

6. James Cheney, James McKinna, Perdita Stevens, and Jeremy Gibbons. To-
wards a repository of bx examples. In K. Selçuk Candan, Sihem Amer-
Yahia, Nicole Schweikardt, Vassilis Christophides, and Vincent Leroy, edi-
tors, Proceedings of the Workshops of the EDBT/ICDT 2014 Joint Conference



The Future of Programming and Modelling: a Vision 19

(EDBT/ICDT 2014), Athens, Greece, March 28, 2014, volume 1133 of CEUR
Workshop Proceedings, pages 87–91. CEUR-WS.org, 2014. See also http://bx-
community.wikidot.com/examples:home.

7. Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
JTL: A bidirectional and change propagating transformation language. In SLE
2010, volume 6563 of LNCS, pages 183–202. Springer, 2010.

8. Edsger W Dijkstra. Selected writings on Computing: A Personal Perspective, chap-
ter On the role of scientific thought, pages 60–66. Springer-Verlag, 1982.

9. Zinovy Diskin, Hamid Gholizadeh, Arif Wider, and Krzysztof Czarnecki. A three-
dimensional taxonomy for bidirectional model synchronization. Journal of Systems
and Software, 111:298–322, 2016.

10. Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A sound and optimal in-
cremental build system with dynamic dependencies. In OOPSLA, pages 89–106.
ACM, 2015.

11. Digital Economy European Commission and Skills (Unit F.4). Digital skills and
jobs. https://ec.europa.eu/digital-single-market/en/policies/digital-skills, Novem-
ber 2019.

12. Cedefop: European Centre for the Development of Vocational Train-
ing. ICT professionals: skills opportunities and challenges (2019 up-
date). https://skillspanorama.cedefop.europa.eu/en/analytical highlights/ict-
professionals-skills-opportunities-and-challenges-2019-update, November 2019.

13. J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem. ACM Trans. Program. Lang. Syst., 29(3):17,
2007.

14. Eclipse foundation. Emfatic: A textual syntax for emf ecore (meta-)models.
https://www.eclipse.org/emfatic/.

15. Martin Fowler and Rebecca Parsons. Domain-specific Languages. Addison-Wesley,
2010.

16. Object Management Group. Model driven architecture (MDA) MDA guide rev.
2.0, 2014.

17. Object Management Group. Unified modeling language v2.5.1. OMG document
formal/17-12-05, available from https://www.omg.org/spec/UML/2.5.1, 2017.

18. Frank Hermann, Susann Gottmann, Nico Nachtigall, Hartmut Ehrig, Benjamin
Braatz, Gianluigi Morelli, Alain Pierre, Thomas Engel, and Claudia Ermel. Triple
graph grammars in the large for translating satellite procedures. In Proceedings of
the 7th International Conference on Model Transformation (ICMT), volume 8568
of Lecture Notes in Computer Science, pages 122–137. Springer, 2014.

19. Zhenjiang Hu and Hsiang-Shang Ko. Principles and practice of bidirectional pro-
gramming in BiGUL. In Jeremy Gibbons and Perdita Stevens, editors, Bidirec-
tional Transformations - International Summer School, Oxford, UK, July 25-29,
2016, Tutorial Lectures, volume 9715 of Lecture Notes in Computer Science, pages
100–150. Springer, 2016.

20. John Edward Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristof-
fersen. Empirical assessment of MDE in industry. In ICSE, pages 471–480. ACM,
2011.

21. Michael Johnson and Robert D. Rosebrugh. Symmetric delta lenses and spans of
asymmetric delta lenses. Journal of Object Technology, 16(1):2:1–32, 2017.

22. Frederick P. Brooks Jr. No silver bullet – essence and accident in software engi-
neering. In Proceedings of the IFIP Tenth World Computing Conference, pages
1069–1076, 1986.



20 Perdita Stevens

23. Ralf Lämmel. Software Languages. Springer, 2018.
24. Kevin Lano. Constraint-driven development. Information & Software Technology,

50(5):406–423, 2008.
25. D. Lutterkort. Augeas: A linux configuration API, version 0.10.0, December 2011.

Available from http://augeas.net/.
26. Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek.

How software designers interact with sketches at the whiteboard. IEEE Trans.
Software Eng., 41(2):135–156, 2015.

27. Tiziana Margaria and Bernhard Steffen. Business process modeling in the jabc. In
Jorge S. Cardoso and Wil M. P. van der Aalst, editors, Handbook of Research on
Business Process Modeling, pages 1–26. IGI Global, 2009.

28. Tiziana Margaria and Bernhard Steffen. Service-orientation: Conquering com-
plexity with XMDD. In Mike Hinchey and Lorcan Coyle, editors, Conquering
Complexity, pages 217–236. Springer, 2012.

29. marketsandmarkets.com. Low-code development platform market by component
(solution and services (professional and managed)), deployment mode, organiza-
tion size, vertical (telecom and it, bfsi, government), and region - global fore-
cast to 2022. https://www.marketsandmarkets.com/Market-Reports/low-code-
development-platforms-market-103455110.html, January 2018.

30. Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana, and Masato
Takeichi. Bidirectionalization transformation based on automatic derivation of
view complement functions. In ICFP, pages 47–58, 2007.

31. Bertrand Meyer. Agile! The Good, the Hype and the Ugly. Springer, 2014.
32. Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty H. C.

Cheng, Philippe Collet, Benôıt Combemale, Robert B. France, Rogardt Heldal,
James H. Hill, Jörg Kienzle, Matthias Schöttle, Friedrich Steimann, Dave R.
Stikkolorum, and Jon Whittle. The relevance of model-driven engineering thirty
years from now. In MoDELS, volume 8767 of Lecture Notes in Computer Science,
pages 183–200. Springer, 2014.

33. Bashar Nuseibeh, Steve M. Easterbrook, and Alessandra Russo. Making incon-
sistency respectable in software development. Journal of Systems and Software,
58(2):171–180, 2001.

34. OMG. MOF2.0 query/view/transformation (QVT) version 1.3. OMG document
formal/2016-06-03, 2016. available from www.omg.org.

35. Marian Petre. UML in practice. In ICSE, pages 722–731. IEEE Computer Society,
2013.

36. Bob Reselman. Why the promise of low-code software platforms is deceiv-
ing. https://devopsagenda.techtarget.com/opinion/Why-the-promise-of-low-code-
software-platforms-is-deceiving, January 2018.

37. Andy Schürr. Specification of graph translators with Triple Graph Grammars.
In Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, Graph-
Theoretic Concepts in Computer Science (WG94), volume 903 of LNCS, pages
151–163. Springer, 1994.

38. Andy Schürr and Felix Klar. 15 years of Triple Graph Grammars. In Hartmut
Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, editors, ICGT,
volume 5214 of LNCS, pages 411–425. Springer, 2008.

39. Sir Nigel Shadbolt. Shadbolt review of computer sciences degree accreditation and
graduate employability. https://www.gov.uk/government/publications/computer-
science-degree-accreditation-and-graduate-employability-shadbolt-review, April
2016.



The Future of Programming and Modelling: a Vision 21

40. Stuart Shapiro. Research abstract. In William Aspray, Reinhard Keil-Slawik, and
David L. Parnas, editors, History of Software Engineering, pages 45–46. Dagstuhl
Seminar, August 1996.

41. Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues and
open questions. Journal of Software and Systems Modeling (SoSyM), 9(1):7–20,
2010.

42. Perdita Stevens. A simple game-theoretic approach to checkonly QVT Relations.
Journal of Software and Systems Modeling (SoSyM), 12(1):175–199, 2013. Pub-
lished online, 16 March 2011.

43. Perdita Stevens. Is bidirectionality important? In Alfonso Pierantonio and Trujillo
Salvador, editors, Modelling Foundations and Applications - 14th European Con-
ference, ECMFA 2018, Held as Part of STAF 2018, Toulouse, France, July 25-29,
2018, Proceedings, volume 10890 of LNCS, pages 1–11. Springer, 2018. Keynote
paper.

44. Perdita Stevens. Maintaining consistency in networks of models: Bidirectional
transformations in the large. Software and System Modeling, 19(1):39–65, 2019. In
print Jan 2020. Online first, May 2019.

45. Perdita Stevens. Connecting software build with maintaining consistency between
models: Towards sound, optimal, and flexible building from megamodels. Software
and System Modeling, 2020. In press. Online first, March 2020.

46. Tamás Török. Software development trends 2018: Latest research and data.
https://codingsans.com/blog/software-development-trends-2018, April 2018.

47. VersionOne. 12th annual state of agile report.
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-
agile-report.

48. Charles W. Wessner, editor. New Vistas in Transatlantic Science and Technology
Cooperation. National Academies Press, 1999.

49. Perdita Stevens with Rob Pooley. Using UML: software engineering with objects
and components. Addison-Wesley Longman, 1999. Current edition updated for
UML2: first published 1998 (as Pooley and Stevens).

50. Steven Witkop. MDA users’ requirements for QVT transformations. OMG docu-
ment 05-02-04, 2005. Available from www.omg.org.

51. Zirun Zhu, Yongzhe Zhang, Hsiang-Shang Ko, Pedro Martins, João Saraiva, and
Zhenjiang Hu. Parsing and reflective printing, bidirectionally. In Tijs van der
Storm, Emilie Balland, and Dániel Varró, editors, Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Language Engineering, Amster-
dam, The Netherlands, October 31 - November 1, 2016, pages 2–14. ACM, 2016.
See also http://biyacc.yozora.moe/.


