
TASK-BASED AD-HOC TEAMWORK with
ADVERSARY

Elnaz Shafipour and Saber Fallah

University of Surrey
{e.shafipour,s.fallah}@surrey.ac.uk

Abstract. Many real-world applications require agents to cooperate and collab-
orate to accomplish shared missions; though, there are many instances where the
agents should work together without communication or prior coordination. In the
meantime, agents often coordinate in a decentralised manner to complete tasks
that are displaced in an environment (e.g., foraging, demining, rescue or fire-
fighting). Each agent in the team is responsible for selecting their own task and
completing it autonomously. However, there is a possibility of an adversary in
the team, who tries to prevent other agents from achieving their goals. In this
study, we assume there is an agent who estimates the model of other agents
in the team to boost the team’s performance regardless of the enemy’s attacks.
Hence, we present On-line Estimators for Ad-hoc Task Allocation with Adver-
sary (OEATA-A), a novel algorithm to have better estimations of the teammates’
future behaviour, which includes identifying enemies among friends.

Keywords: Autonomous Systems, Adversary Agent, Learning Agent, Multi-agent
system, Decentralised Task Allocation.

1 Introduction

The world is moving towards “smart systems”, which rely on some form of intelligent
agent technology, that can autonomously collect information from their surrounding
environment and act upon it. An example is multiple rovers in space, which attempt
to accomplish their missions cooperatively. These agents may work collaboratively to-
ward the completion of common tasks that they cannot handle individually. However,
there might be differences between the agents in terms of origin, access to information,
and perceptual and actuation capabilities. Therefore, such teamwork might take place
without any prior coordination protocol or even, in some cases, any form of explicit
communication. These kinds of teams are known as ad-hoc teams. Moreover, many do-
mains require agents to work together to accomplish tasks that are distributed across
the system. In these systems, several tasks need to be accomplished in an uncertain en-
vironment with no centralised mechanism to allocate tasks. Accordingly, the agents in
the team are not managed to perform their tasks, and they autonomously decide which
one to complete, without being directly assigned [4]. The decentralised allocation is
quite natural in ad-hoc teamwork, as we cannot assume that other agents would be
programmed to follow a centralised controller. For example, imagine a natural disas-
ter and hazardous situation where autonomous robots (agents) have been dispatched

2 Elnaz Shafipour and Saber Fallah

from different countries or different organisations to handle the emergency conditions.
Rather than waiting for communication and coordination protocols to develop, these
robots need to act immediately to avoid putting lives at risk. In other words, each robot
chooses its own strategy for saving as many lives as possible and behaves accordingly.

Nevertheless, there is a possibility of existing potential enemies in the system which
are unknown to the rest of the team. The agents of this type display destructive be-
haviours that prevent their teammates from reaching their targets. This work focused on
the tasks-based teams where the team involves multiple agents with a range of coopera-
tive and disruptive behaviours in a decentralised distributed system. As such, we refer to
this task-based ad hoc team working with an adversary as Task-based Ad-hoc Teamwork
with Adversary. Hence, learning and reasoning about the team members are mandatory
to improve the team’s performance. In our system, there are some learning agents, who
are aware of pre-existing standards for coordination and communication, so they can try
to learn about their teammates with limited information [3]. Through such intelligent
coordination in this ad-hoc team, the shared goals will be achieved more efficiently.
However, the sole aim of our team study is not to improve collaboration, and we need
to reduce the hostile behaviour of some team members by identifying and examining
the enemies correctly. Our solution to this problem is On-line Estimators for Ad-hoc
Task Allocation with Adversary (OEATA-A), a novel algorithm for estimating team-
mates future behaviours. We show that our algorithm converges to a perfect estimation
when the number of tasks to be performed gets larger.

2 Related Works

In the literature, there are many works considering the presence of opponents in the
team. In the majority of these studies, the team members know who the adversary agent
is. Celli [5] focuses on ex-ante coordination, where team members have an opportunity
to discuss and agree on tactics before the game starts, but will be unable to communicate
during the game.

Mirchevska [8] presents a domain-independent Multi-Agent Strategy Discovering
Algorithm (MASDA), which discovers strategic behaviour patterns of a group of agents
under the described conditions. The algorithm represents the observed multi-agent ac-
tivity as a graph, where graph connections correspond to performed actions and graph
nodes correspond to environment states at action starts. Based on such data represen-
tation, the algorithm applies hierarchical clustering and rule induction to extract and
describe strategic behaviour.

There is another work [9], which is focused on resilience in cooperative MAS and
propose an Antagonist-Ratio Training Scheme (ARTS) by reformulating the original
target MAS as a mixed cooperative-competitive game between a group of protagonists
which represent agents of the target MAS and a group of antagonists which represent
failures in the MAS. However, Lin [7] introduces a novel attack where the attacker first
trains a policy network with reinforcement learning to find a wrong action it should en-
courage the victim agent to take. Then, the adversary uses targeted adversarial examples
to force the victim to take this action. Uesato [11] addresses the problem of evaluating
learning systems in safety-critical domains such as autonomous driving, where failures

TASK-BASED AD-HOC TEAMWORK with ADVERSARY 3

can have catastrophic consequences. In our work, we assume that we are not aware
of which teammate is the adversary agent. However, by observing their behaviour, we
show that our method could obtain a better estimation which leads better performance
for the team.

3 Methodology

3.1 Ad-hoc Teamwork with Adversaries

Our ad-hoc team consists of several agents, which do not have enough knowledge about
each other. The team’s goal is to work together and cooperate to accomplish shared
goals. There is, however, a possibility of there being an adversary agent among team
members. This agent is attempting to minimise the team’s performance in a way the
other agents are not aware of.

Three main groups of agents are working together as part of this ad hoc team. The
first group is the naive agents (ω ∈ Ω), which attempt to improve the team’s achieve-
ment. Agents of this type use static algorithms to accomplish their tasks, and they can-
not learn from what is happening in their environment. Second are the adversaries, who
attempt to defeat the goals of other agents. In our team, we assume there is only one
adversary agent, Λ. The last group is the learning agents, and again we consider only
one learning agent, φ, in our team. The objective of the learning agent is to find the best
actions that maximise the performance of the team. The φ agent is the only agent in
the team which can learn teammates’ future actions as it estimates and discovers their
models over time.

In this system, there is a set of tasks (T) that team members make an effort to ac-
complish autonomously, except the adversary group. A task τ ∈ T may require multiple
agents, as well as several time steps to finish successfully. For instance, in a foraging
problem, a heavy item may require two or more robots to be collected. Furthermore,
the robots would need to move towards the task location, taking multiple time steps to
move from their initial position.

Model of Naive Agents All naive agents try to perform their tasks autonomously
within the environment. However, choosing and completing each task τ by each ω
is dependent on its internal algorithm and capabilities. The algorithm for each ω can
be varied in different domains. We assume that all these algorithms have a set of in-
puts, which we denote as parameters of these algorithms. For example, in the foraging
domain [10] (explained in detail in Section 4.1), there might be multiple boxes in the
robot’s visible area. Hence, the algorithms in this domain would be the way the robot
chooses an item to collect. The algorithm might be selecting the closest box or the
lightest box among the visible ones. In addition, the size of the robot’s visible cone,
as well as its ability to collect the box, are considered its parameters. Like previous
works [1,12], we consider the algorithm of choosing targets as the type of naive agents.
Furthermore, we suppose the learning agent knows the set of possible types Θ in the
system. However, the type of each ω agent is unknown to it. Thus, naive agents’ be-
haviour and actions mirror the type and parameter of the agents, and we define each

4 Elnaz Shafipour and Saber Fallah

ω ∈ Ω as a tuple (θ, p). θ ∈ Θ in this tuple is ω agent’s type and p represents its
parameters, which is a vector p =< p1, p2, ..., pn >. Each element pi in the vector p
is defined in a fixed range [pmini , pmaxi] [1]. Choosing a new task (considered as the
agent’s “target”) happens in the very first state, and whenever ω agent finishes a task.
We call these states as Choose Target State (s).

Model of Adversary Agent The adversary agent has the full observation of the en-
vironment, and we define a Markov Decision Problem model for it. Although there
are multiple agents in the team, we set the model under the point of view of the agent
Λ. Therefore, we consider a set of states SΛ, a set of actions AΛ, a reward function
R : SΛ × AΛ × SΛ → [0, 1], and a transition function T : SΛ × AΛ × SΛ → [0, 1]
for the Λ agent. The actions in the model are only the Λ agent’s actions and not any
of others. Additionally, the goal of the Λ agent is minimising the reward function. In Λ
agent’s MDP model, all naive agents and the learning agent are considered as a part of
the environment, and they are not directly represented in the MDP model. The Λ agent
can only decide its own actions and has no control over the actions of any other agents in
the team. However, the Λ agent has not the ability to learn the other teammates’ types
and parameters. Therefore, it will not be able to estimate the future behaviour of the
teammates, and it considers them as obstacles in the environment. The Λ agent employ
UCT-H [12] for its on-line planning.

Model of the Learning Agent Like the adversary agent, the learning agent has full ob-
servability and its model is defined as a single agent MDP, under the point of view of the
agent φ, as in previous works [1,12]. Like the adversary agent, for the φ agent, we con-
sider a set of states Sφ, a set of actionsAφ, a reward functionR : Sφ×Aφ×Sφ → [0, 1],
and a transition function T : Sφ × Aφ × Sφ → [0, 1], where the actions in the model
are only the φ agent’s actions and not any of others. Similar to the adversary agent,
we apply UCT-H to solve the MDP model of the learning agent. It is clear that in the
actual problem, the next state depends on the actions of all agents as they are dynamic
in the environment. Whereas, the φ agent is unsure about the teammates’ next actions.
By taking naive agents’ into account, given a state s, an agent ω ∈ Ω has an unknown
probability distribution (pdf) across a set of actions Aω , which is given by ω’s internal
algorithm (θ, p). Additionally, as we mentioned earlier, the learning agent has the abil-
ity to estimate teammates’ future actions. Note that the agents’ types and parameters
are actually not observable, but in this MDP model that is not directly considered. The
estimated types and parameters are used during online planning, affecting the current
transition function.

As mentioned earlier, in this task-based ad-hoc team, φ agent attempts to help the
team to get the highest possible achievement. For this reason, the learning agent needs
to find the optimal value function, which maximises the expected sum of discounted
rewards E[

∑∞
j=0 γ

jrt+j], where t is the current time, rt+j is the reward φ agent re-
ceives at j steps in the future, γ ∈ (0, 1] is a discount factor. Also, we consider that we
obtain the rewards by solving the tasks τ ∈ T of the team. That is, we define φ agent’s
reward as

∑
rτ , where rτ is the reward obtained after the task τ completion. Note that

the sum of rewards is not only across the tasks completed by φ agent but all tasks are

TASK-BASED AD-HOC TEAMWORK with ADVERSARY 5

completed by any set of agents in a given state. Furthermore, there might be some tasks
in the system that cannot be achieved without cooperation between the agents. Hence,
the number of required agents for finishing a task τ depends on each specific task and
the set of agents that are jointly trying to complete it.

3.2 On-line Estimators for Ad-hoc Task Allocation with Adversary

In this paper, we introduce On-line Estimators for Ad-hoc Task Allocation with Adver-
sary (OEATA-A), which is based on the work done by Shafipour [10], called OEATA.
In this method, we want to check if all the team members collaborate to finish common
tasks. In other words, our goal is to check if there is any adversary agent in the team that
has non-collaborative behaviours and wishes to avoid other team members to reach their
goals which are called In OEATA-A, when the learning process starts, we assume there
is no adversary agent in the team. Additionally, we suppose all non-learning agents will
accomplish shared tasks. For this purpose, we record all tasks that each agent accom-
plishes (except for the learning agent φ). The reason for keeping the completed task by
each agent is to compare them with the predictions of a set of estimators.

All estimators are initialised at the beginning of the process and evaluated whenever
a task is done. The ones that are not able to make good predictions are removed after
several incorrect estimations, and replaced by new estimators that can either be created
using successful ones or entirely random. Moreover, if the agent is an adversary, then
there will not be a recorded task for it.

In OEATA-A as well as OEATA, we have a set of estimators to keep the poten-
tial parameters p for a possible type θ, which are applied to predict task selections.
Additionally, we have history of tasks to keep track of all tasks completed by each
non-learning agent. Additionally, in OEATA-A, we have bags of successful parame-
ters, which is borrowed from OEATA. However, in OEATA-A, we introduce suspicious
agent to hold any uncooperative behaviour of the agent. The details of all these funda-
mentals are described below.

3.3 OEATA-A Fundamentals

3.4 Sets of Estimators

In OEATA-A, there are sets of estimators Eθ
δ for each type θ and each non-learning

agents (δ ∈ ∆), whereas each set Eθ
δ has a fixed number of N estimators. Therefore,

the total number of sets of estimators for all agents are |∆| × |Θ|. An estimator e of
Eθ
δ is a tuple: {pe, se, τe, ce, fe}, pe is the vector of estimated parameters, and each

element of the parameter vector is defined in the corresponding element range; se is the
initial state or the last Choose Target State , where the non-learning agent δ completed
a task and wants to find a new task; τe is the task that δ agent would try to complete,
assuming type θ and parameters pe. By having estimated parameters pe and type θ, we
assume it is easy to predict non-learning agent’s target task at se; ce holds the number
of times that e was successful in predicting δ agent’s next task; fe holds the number of
failures in predicting correct task.

6 Elnaz Shafipour and Saber Fallah

History of Tasks As well as OEATA, in OEATA-A, we keep the history of the com-
pleted task for all non-learning agents. Therefore, along with the sets of estimators,
φ agent keeps track of the tasks completed by each non-learning agent, as History of
Tasks. Hence, the History of Tasks is defined as Hδ = {(s0, τ0), . . . , (sn, τn)}, where
si is the ith Choose Target State, where δ agent plans to find a new target, and τ i is
the actual task that the same agent completes afterwards. As mentioned before, Choose
Target State is the initial state or the state where δ agent accomplishes a task and wants
to choose a new one.

Bags of successful parameters As we mentioned earlier, we assume all non-learning
agents as naive agents. Therefore, the same as OEATA, we keep a bag of successful
parameters for each δ agent. Hence, if any estimator e succeeds in task prediction,
for the vector of parameters pe =< p1, p2, ..., pn >, we keep each element of the
parameter vector pe in their respective bags of successful parameters.

Suspicious Agent In OEATA-A, we have a new variable called Suspicious Agent ζδ .
this value increases when the learning agent notices an unusual behaviour from a spe-
cific agent.

3.5 Process of Estimation

After presenting the fundamental elements of OEATA-A, we will explain how we de-
fine the process of estimating the parameters and type for each non-learning agent. The
algorithm has five steps: (i) Initialisation; (ii) Evaluation; (iii) Generation and (iv) Es-
timation. Additionally, an (v) Revision step is executed for all agents in ∆, any time a
task is completed by any agent of the team, including agent φ. Notice that the other dif-
ference between OEATA and OEATA-A is here in the processing stage. Unlike OEATA,
OEATA-A does not have update step, and instead, we have revision step to find out the
adversary agents. These steps are described below:

Initialisation At the very first step, all estimators should be initialised. Therefore,
agent φ needs to generate N estimators for each type θ ∈ Θ and each δ ∈ ∆. For
every estimator, first, we create a random value per element of the parameter vectors
pe from the uniform distribution. Generated elements of the parameter vector should
be in their defined range. For all estimators, in the initialisation phase, the initial state
of the environment is set as the Choose Target State se. By having the type θ and the
parameter vector pe of the δ agent, the agent φ will be able to estimate its future task
τe. Lastly, both ce and fe are initialised to zero.

Evaluation The evaluation of all sets of estimators Eθ
δ for a certain agent δ starts when

it completes a task τδ . In this step we check if the τe (estimated task by assuming pe to
be δ’s parameters with type θ in state se) is equal to τδ . If they are equal, we consider
them as successful parameters and save each pi in the pe vector in a respective bag
Bθ,i
δ . If the estimated task τe is equal to the real task τδ , we set fe to zero and increase

TASK-BASED AD-HOC TEAMWORK with ADVERSARY 7

ce. This penalisation of estimators for successive failures aids us in the type estimation.
If τe is not equal to τδ , then we increase fe and decrease ce. We do not remove an
estimator e after a failure since it may still have correct parameters. Hence, we define a
threshold ξ for it, and if fe is greater than ξ, we remove e from its belonging set. In this
step, after finding successful and failing estimators, we update se and τe of all survived
estimators of the sets Eθ

δ . We replace every se with the current state sc, and the τe with
the new predicted task, by considering the current state sc as the Choose Target State
and assuming pe as δ agent’s parameter vector, and θ as its type. Additionally, at the
end of this step, as a task has just been completed, we update δ agent’s history Hδ , in
order to use it for future evaluations.

Generation Lets suppose that E′
θ
δ is the new set with only the surviving estimators for

agent δ and type θ that were not removed in the Evaluation step. In this step, the aim
is to generate new estimators, in order to have the size of the sets Eθ

δ equal to N again.
Therefore,N−|E′θδ | new estimators should be generated. Unlike the Initialisation step,
we do not only create random parameters for new estimators, but generate a proportion
of them using previously successful parameters from the bags Bθ,i

δ . Therefore, we will
be able to use a new combination of parameters that had at least one victory in pre-
vious steps. Moreover, as the number of copies of the parameter pi in the bag Bθ,i

δ

is equivalent to the number of successes of the same parameter in previous steps, the
chance of choosing very successful parameters will increase. The main part of produc-
ing new estimators is creating a new parameter vector p′, and then updating the other
elements of the estimator accordingly. Parameters for a portion (N−|E′θδ |)× 1

m (where
m > 1) of the new estimators will be randomly sampled from a distribution (e.g., uni-
form within the parameters range, if there is no domain knowledge). The other portion
(N −|E′θδ |)× (1− 1

m) will be generated as a new combination from the corresponding
bags, which are holding previously victorious parameters. That is, each position p′i of
the parameter vector p′ of the new estimator is populated by randomly sampling from
the corresponding bag Bθ,i

δ . If the corresponding bag Bθ,i
δ is empty, then that position

of the parameter vector will be randomly generated. If all bags are empty, then all pa-
rameters will be random. Before creating a new estimator e′, we check if the newly
generated parameter p′ would have at least one success across the history Hδ so far.
This improves our algorithm since it decreases the likelihood of wasting an estimator
with a parameter p′ that would not be able to make any correct prediction in the pre-
vious steps. As a result, if the output of the function is zero then p′ will be discarded,
otherwise, it will be considered as the parameter vector pe′ of the new estimator e′.

Estimation At each iteration after doing evaluation and generation, it is required to
estimate a parameter and type for each δ ∈ ∆ for decision-making. First, based on
the current sets of estimators, we calculate the probability distribution over the possible
types. First of all, we calculate the probability of the agent being adversary. For that,
we consider ζδ value. If it is bigger than zero we will assume that the agent δ is the
adversary. Otherwise, we calculate the probability of agent δ having type θ, P(θ)δ , we
use the success rate ce of all estimators of the corresponding type θ. That is, for each
δ ∈∆, we add up the non-negative success rates ce of all estimators in Eθ

δ of each type

8 Elnaz Shafipour and Saber Fallah

θ:kθδ =
∑
e∈Eθ

δ
max(0, ce). It means that we want to find out which set of estimators

is the most successful in estimating correctly the tasks that the corresponding non-
learning agent completed. In the next step we normalise the calculated kθδ , to convert

it to a probability estimation: P(θ)δ =
kθδ∑

θ′∈Θ kθ
′

δ

. After calculating the probability

distribution over types for each δ ∈∆, we use aggregation rules like median, mode, or
mean across all parameter vectors pe of each set of estimators Eθ

δ . As a result, we will
have one estimated parameter vector p per θ ∈ Θ for each δ ∈∆.

Revision The Revision step triggers when a task τ is completed by any agent in the
team. As mentioned earlier, there is a possible issue that might arise in our estimation
process when a certain task τ is accomplished by any of the team members (including
agent φ), and some other non-learning agent was targeting to achieve it. This step has
two sub-steps: Updating Tasks and Checking Suspicious Agents.

– Updating Tasks: Consequently, agent δ, would notice in the state s that the task is
completed by other agents, and it will try to find a different task at this state. Hence,
swould be a new Choose Target State for the agent δ. This problem would affect all
estimators as well. Therefore, once a task τ is completed by any agent in the team,
we check every τe in all sets Eθ

δ , for all non-learning agents (δ ∈ ∆) that have not
just completed τ , to see if there is any estimator e that predicts the same task as τ .
If there is any ewith the same task, we will consider s as the Choose Target State se
of e, and will update its target task τe accordingly based on the current parameters
of the estimator pe and the type θ of the set.

– Checking Suspicious Agents:In this sub-step, we check the sum of all success rates
for each agent

∑
e∈Eθ

δ
ce. If the result is zero then we increase the value of ζδ by 1.

4 Experiments

4.1 Level-based Foraging Domain

We evaluate our approach in level-based foraging, a common problem for evaluating
ad-hoc teamwork [2,1,10]. In this domain, a set of collaborative agents must collect
items (tasks) displaced in the environment and non-collaborative (adversary) agents
surround items and prevent other collaborative agents from reaching items. Each item
has a certain weight, and each agent has a certain (unknown) skill-level. If the sum of
the skill levels of the agents (try to collect an item) that surround a target is greater than
or equal to the item’s weight, it is “loaded” by the team (Figure 1). Each collaborative
agent has 5 possible actions, in a grid-world environment: North, South, East, West, and
Load.

For the Naive Agents, the two “leader” types defined in [1]. Additionally, the visibil-
ity region of each δ has an angle and a maximum radius, which are unknown. Therefore,
there are 3 parameters to be learned for each δ: Skill-level, Angle and Radius. Based on
the agent’s type and parameters, the target item (task) will be selected. These two types

TASK-BASED AD-HOC TEAMWORK with ADVERSARY 9

are L1 and L2. For L1, the target is the furthest visible item that has a lower weight
than the agent’s skill level. If the agent has the type L2, its target will be the visible
item with the highest weight below own skill-level, or the item with the highest weight
if none are below own level; In both types, the target will be if the agent could not find
any item that meets the criteria. After choosing the target, the naive agents will move
towards the target using the A∗ algorithm [6].

1.0

0.5

0.3

ω2 ω1

Λ

φ

Fig. 1: Level-based foraging domain.
There are four agents in three dif-
ferent types in the grid. Boxes are
the items that should be collected.
Dashed cells in the grid are obsta-
cles.

Each non-collaborative agent has 5 possi-
ble actions, in a grid-world environment: North,
South, East, West, and Stay. In our experiments
both the adversary agent and the learning agent
have full observation of the whole environment.

4.2 Results

For evaluating our novel method, we compare
our algorithm OEATA-A against using POMCP-
based Estimation [10] for finding the exis-
tence of an adversary in the team. When us-
ing POMCP-based Estimation to find the en-
emy, we still consider that the agent can see the
whole environment. However, agent type and
parameters are not observable and hence are es-
timated using POMCP’s particle filter. We use
N×|∆|×|Θ| particles, matching the total num-
ber of estimators in our approach (since we have
N per agent, for each type). We executed 100
runs for each experiment and plotted the average results and the confidence interval
(ρ = 0.01). When we say that a result is significant, we mean statistically significant
considering ρ ≤ 0.01.

OEATA-A used the following parameters: N = 100, t = 2, m = 0.2. Type and
parameters of agents in ∆ are chosen uniformly randomly, and the weight of each
item is chosen uniformly randomly (between 0 and 1). Each scenario is also randomly
generated. Agent φ and agent Λ’s skill-level are fixed at 1, so every generated instance
is solvable. We ran UCT-H, which introduced [12] for 100 iterations per time step, and
a maximum depth of 100. We fixed the scenario size as 20×20, and ran experiments for
a varying number of items (|T |). We first show how the learning agent φ is recognising
the adversary agent among six teammates where the number of non-learning agents is 5
(|Ω| = 5). The Figure 2 illustrates, the mean absolute error for the type, and 1− P(θ∗)
we show here the average error across all types.

As it is shown, the type estimation error of OEATA-A is consistently significantly
lower than the other algorithm from the second iteration, and it monotonically decreases
as the number of iterations increases. POMCP-estimation, on the other hand, does not
show any sign of converging to a low error as the number of iterations increases. We
can also see that type estimation of OEATA-A becomes quickly better than POMCP,
significantly overcoming them after a few iterations. In Figure 3 (a), we showed how
finding the adversary among agents works among six agents with a varying number of

10 Elnaz Shafipour and Saber Fallah

items in the grid. In these scenarios, the size of the grid is 20× 20. As it is clear, we are
significantly better than POMCP-estimation and as the number of items increases the
error of finding the enemy decreases.

20 40 60 80
Number of Items

0.3

0.4

0.5

0.6

0.7

Ad
ve

rs
ar

y
Ty

pe
 E

rro
r

OEATA-A
POMCP

(a) Type estimation errors

20 40 60 80
Number of Items

170

180

190

200

Nu
m

be
r o

f I
te

ra
tio

ns

OEATA-A
POMCP

(b) Performance

20 40 60 80
Number of Items

0.10

0.15

0.20

0.25

0.30

0.35

Pa
ra

m
et

er
 E

rro
r

OEATA-A
POMCP

(c) Parameter

Fig. 3: Type estimation errors for a varying number of items in full observability.Error
estimating agent parameters when there are 7 agents in the team with |Ω| = 5.

0 50 100 150 200
Number of Items

0.3

0.4

0.5

0.6

0.7

Ad
ve

rs
ar

y
Ty

pe
 E

rro
r OEATA-A

POMCP

Fig. 2: Error of finding adversary
agent when there are 7 agents in
the team with |Ω| = 5.

Figure 3 (b) illustrate the performance of the
team as the number of items increases in the grid
size 20×20, and with the same seven agents in the
team where one of them is the learning agent φ,
one in adversary agent Λ and the other five agents
are the naive ones. As we see, with 20 items we
are better with a p-value less than 0.05, but as the
number of items increases, we can say that we are
significantly better. In addition to estimating ad-
versary agents, we need to estimate the parame-
ters of the ω agents as well and the Figure 3 (c),
we proved that results for OEATA-A have an error
between 0 and 0.15. Additionally, for all number
of items we are better than the other method.

5 Conclusion

We studied ad-hoc teamwork with an adversary for decentralised task allocation. One
ad-hoc agent learns its teammates and could distinguish the opponent agent in the team
and despite its existence, makes better decisions concerning overall team performance.
We proposed a novel algorithm On-line Estimator for Ad-hoc Task Allocation with ad-
versary, that obtained better estimations than previous works in ad-hoc teamwork, lead-
ing to better performance. OEATA-A converged to zero error, and in our experiments,
the error decreased with the number of iterations. We also showed estimations with par-
tial observability for the first time in ad-hoc teamwork, and still outperform previous

TASK-BASED AD-HOC TEAMWORK with ADVERSARY 11

works. In our future works, we are planning to increase the number of the adversary
and learning agents to find out how the results would change.

References

1. Albrecht, S., Stone, P.: Reasoning about hypothetical agent behaviours and their parameters.
In: Proceedings of the 16th International Conference on Autonomous Agents and Multiagent
Systems. AAMAS’17 (May 2017)

2. Albrecht, S.V., Ramamoorthy, S.: A game-theoretic model and best-response learning
method for ad hoc coordination in multiagent systems. Tech. rep., The University of Ed-
inburgh (February 2013)

3. Barrett, S., Rosenfeld, A., Kraus, S., Stone, P.: Making friends on the fly: Cooperating with
new teammates. Artificial Intelligence 242, 132–171 (2017)

4. Berman, S., Halasz, A., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allo-
cation in swarms of robots. IEEE Transactions on Robotics 25(4) (Aug 2009)

5. Celli, A., Ciccone, M., Bongo, R., Gatti, N.: Coordination in adversarial sequential team
games via multi-agent deep reinforcement learning. arXiv preprint arXiv:1912.07712 (2019)

6. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of min-
imum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107
(1968)

7. Lin, J., Dzeparoska, K., Zhang, S.Q., Leon-Garcia, A., Papernot, N.: On the robustness of
cooperative multi-agent reinforcement learning. arXiv preprint arXiv:2003.03722 (2020)

8. Mirchevska, V., Luštrek, M., Bežek, A., Gams, M.: Discovering strategic behaviour of multi-
agent systems in adversary settings. Computing and Informatics 33(1), 79–108 (2014)

9. Phan, T., Gabor, T., Sedlmeier, A., Ritz, F., Kempter, B., Klein, C., Sauer, H., Schmid, R.,
Wieghardt, J., Zeller, M., et al.: Learning and testing resilience in cooperative multi-agent
systems. In: Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems. pp. 1055–1063 (2020)

10. Shafipour Yourdshahi, E., Do Carmo Alves, M., Soriano Marcolino, L., Angelov, P.: De-
centralised task allocation in the fog: Estimators for effective ad-hoc teamwork. In: 11th
International Workshop on Optimization and Learning in Multiagent Systems (2020)

11. Uesato, J., Kumar, A., Szepesvari, C., Erez, T., Ruderman, A., Anderson, K., Heess, N.,
Kohli, P., et al.: Rigorous agent evaluation: An adversarial approach to uncover catastrophic
failures. arXiv preprint arXiv:1812.01647 (2018)

12. Yourdshahi, E.S., Pinder, T., Dhawan, G., Marcolino, L.S., Angelov, P.: Towards large scale
ad-hoc teamwork. In: 2018 IEEE International Conference on Agents (ICA). pp. 44–49.
IEEE (2018)

	TASK-BASED AD-HOC TEAMWORK with ADVERSARY

