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Abstract. Multistage robust optimization problems can be interpreted
as two-person zero-sum games between two players. We exploit this
game-like nature and utilize a game tree search in order to solve quanti-
fied integer programs (QIPs). In this algorithmic environment relaxations
are repeatedly called to asses the quality of a branching variable and for
the generation of bounds. A useful relaxation, however, must be well bal-
anced with regard to its quality and its computing time. We present two
relaxations that incorporate scenarios from the uncertainty set, whereby
the considered set of scenarios is continuously adapted according to the
latest information gathered during the search process. Using selection,
assignment, and runway scheduling problems as a testbed, we show the
impact of our findings.

Keywords: multistage robust optimization · game tree search · relax-
ations · quantified integer programming.

1 Introduction

Most aspects of decision making are highly affected by uncertainty. In order to
take such uncertainty into account different methodologies have been developed,
such as stochastic programming [25] or robust optimization [4]. In this setting,
multistage models can be used to obtain an even more realistic description of
the underlying problem. While there are several real multistage stochastic ap-
proaches (e.g. [30,23]), extensions to robust optimization with more than two
stages only recently gained more attention (e.g. [11,5]). Due to their PSPACE-
complete nature [32], tackling multistage robust problems is a very complicated
task and for the human mind even comprehending a solution is rather challeng-
ing. Solution approaches include approximation techniques [6], dynamic pro-
gramming [36], and solving the deterministic equivalent problem (DEP), also
referred to as robust counterpart [4], often using decomposition techniques (e.g.
[38]). We, on the other hand, exploit the similarity of multistage robust problems
with two-person zero-sum games and apply a game tree search to solve quantified
integer programs (QIPs) [37,14]. QIPs are integer linear programs with ordered
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2 M. Hartisch

variables that are either existentially or universally quantified, and provide a
convenient framework for multistage robust optimization, allowing polyhedral
or even decision-dependent uncertainty sets [21]. The very intuitive approach of
applying game tree search to solve the very compact QIP formulation paves the
way for large multistage problems: a recent computational study showed that
solving robust discrete problems with multiple stages is well within the reach of
current computational prowess [17].

As in any tree search algorithm, a rapid but high-quality assessment of the
potential of different subtrees is crucial for the search process. This can be done
by relaxing some problem conditions in order to obtain a bound on the optimal
value of a (sub)problem. In mixed integer linear programming (MIP), variants of
the linear programming (LP)-relaxation of a problem are employed [3]. Equiv-
alently for QIPs, the quantified linear programming (QLP)-relaxation can be
used. But its DEP’s size remains exponentially large, even when tackled with
decomposition techniques [28]. By further relaxing the variables’ quantification
the LP-relaxation of a QIP arises, which, however, completely neglects the prob-
lem’s multistage and uncertain nature. In order to restore the robust nature of
the problem, we exploit that a solution must cope with any uncertain scenario:
fixing (originally) universally quantified variables in this LP-relaxation yields a
very powerful tool in our tree search algorithm. Furthermore, we show that if
only a small subset of the uncertainty set is considered in the QLP-relaxation,
the correseponding DEP remains small enough to yield an effective relaxation.
This local approximation, which has similarites to sampling techniques [18], is
utilized to eventually obtain the optimal solution for a multistage robust opti-
mization problem.

For both enhanced relaxations the selection of incorporated scenarios cru-
cially affects their effectiveness, i.e. having reasonable knowledge of which univer-
sal variable assignments are particularly vicious can massively boost the search
process. We partially rely on existing heuristics, developed to analyze and find
such promising assignments in a game tree search environment [2,35] as well as
for solving SAT problems [31]. As these heuristic evaluations change over time,
the relaxations adapt based on newly gathered information.

In Section 2 we introduce the basics of quantified programming and outline
the used game tree search. In Section 3 we present the utilized relaxations and
we illustrate the strength of our approach in a computational study in Section
4, before we conclude in Section 5.

2 Quantified Programming

In the following, we formally introduce quantified integer programming. [19] can
be consulted for a more detailed discussion.

2.1 Basics of Quantified Integer Programming

A QIP can be interpreted as a two-person zero-sum game between an existential
player setting the existentially quantified variables and a universal player setting
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the universally quantified variables. The variables are set in consecutive order
according to the variable sequence x1, . . . , xn. For each variable xj its domain
is given by Lj = {y ∈ Z | lj ≤ y ≤ uj} 6= ∅ and the domain of the entire
variable vector is L = {yyy ∈ Zn | ∀j ∈ [n] : yj ∈ Lj}. In the following, vectors are
always written in bold font and the transpose sign for the scalar product between
vectors is dropped for ease of notation. Let QQQ ∈ {∃,∀}n denote the vector of
quantifiers. We call each maximal consecutive subsequence in QQQ consisting of
identical quantifiers a block. The quantifier corresponding to the i-th quantifier
block is given by Q(i) ∈ {∃,∀}. Let β ∈ [n] denote the number of variable blocks.
With L(i) we denote the corresponding domain of the i-th variable block as
in L. At each move xxx(i) ∈ L(i), the corresponding player knows the settings of
xxx(1), . . . ,xxx(i−1) before taking her decision. Each fixed vector xxx ∈ L, that is, when
the existential player has fixed the existential variables and the universal player
has fixed the universal variables, is called a play. If xxx satisfies the existential
constraint system A∃xxx ≤ bbb∃, the existential player pays cccxxx to the universal
player. If xxx does not satisfy A∃xxx ≤ bbb∃, we say the existential player loses and the
payoff is +∞. Therefore, it is the existential player’s primary goal to ensure the
fulfillment of the constraint system, while the universal player tries to violate
some constraints. If the existential player is able to ensure that all constraints are
fulfilled he tries to minimize cccxxx, whereas the universal player tries to maximize
her payoff.

We consider QIPs with polyhedral uncertainty [20,19] and therefore a uni-
versal constraint system A∀xxx ≤ bbb∀ is introduced, with A∀∃ = 000, i.e. the submatrix
of A∀ corresponding to existentially quantified variables is zero. Here the main
goal of the universal player becomes satisfying this universal constraint system
and therefore the universally quantified variables are restricted to a polytope.
In particular, a universal variable assignment must not make it impossible to
satisfy the system A∀xxx ≤ bbb∀. Wit A∀∃ = 000 the system A∀xxx ≤ bbb∀ restricts uni-
versal variables in such way that their range only depends on previous universal
variables (cf. [21]).

Definition 1 (QIP with Polyhedral Uncertainty)
Let L and QQQ be given with Q(1) = Q(β) = ∃. Let ccc ∈ Qn be the vector of objective
coefficients, for which ccc(i) denotes the vector of coefficients belonging to block i.
The term QQQ ◦ xxx ∈ D with the component-wise binding operator ◦ denotes the
quantification sequence Q(1)xxx(1) ∈ D(1) Q(2)xxx(2) ∈ D(2)(xxx(1)) . . . Q(β)xxx(β) ∈
D(β)(xxx(1), . . . ,xxx(β−1)) such that every quantifier Q(i) binds the variables xxx(i) of

block i ranging in their domain D(i)(xxx(1), . . . ,xxx(i−1)), with D(i)(x̃xx(1), . . . , x̃xx(i−1)) ={
L(i) if Q(i) = ∃
{yyy ∈ L(i) | ∃xxx = (x̃xx(1), . . . , x̃xx(i−1), yyy,xxx(i+1), . . . ,xxx(β)) ∈ D} if Q(i) = ∀ .

We call

min
xxx(1)∈D(1)

(
ccc(1)xxx(1) + max

xxx(2)∈D(2)

(
ccc(2)xxx(2) + min

xxx(3)∈D(3)

(
ccc(3)xxx(3) + . . . min

xxx(β)∈D(β)
ccc(β)xxx(β)

)))
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s.t. QQQ ◦ xxx ∈ D : A∃xxx ≤ bbb∃

a QIP with polyhedral uncertainty given by the tuple (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ).

We use L∃ to describe the domain of the existentially quantified variables,
given by their variables bounds as in L. L∀ 6= ∅ is the domain of universally quan-
tified variables, i.e. the uncertainty set, given by their domain and the universal
constraint system. x∃x∃x∃ and x∀x∀x∀ denote the vectors only containing the existen-
tially and universally quantified variables of game xxx ∈ D, respectively. We call
x∀x∀x∀ ∈ L∀ a scenario and refer to a partially filled universal variable vector as
a subscenario. Additionally, we use Lrelax to describe the domain given by L
without the integrality condition.

2.2 Solving QIP via Game Tree Search

A game tree can be used to represent the chronological order of all possible
moves, given by the quantification sequence QQQ ◦ xxx ∈ D. The nodes in the game
tree represent a partially assigned variable vector and branches correspond to
assignments of variables according to their variable domain. A solution of a QIP
is a so-called winning (existential) strategy, that defines how to react to each legal
move by the universal player, in order to ensure A∃xxx ≤ bbb∃. Hence, a solution is
a subtree of the game tree with an exponential number of leaves with respect to
the number of universal variables. If no such strategy exists the QIP is infeasible.
If there is more than one solution, the objective function aims for a certain (the
“best”) one, whereat the value of a strategy is defined via the worst-case payoff
at its leaves (see Stockman’s Theorem [34]). The play x̃xx resulting in this leaf is
called the principal variation [8], which is the sequence of variable assignments
being chosen during optimal play by both players.

The heart of the used search-based solver for 0/1-QIPs [13] is an arithmetic
linear constraint database together with an alpha-beta algorithm, which has
been successfully used in gaming programs, e.g. chess programs for many years
[26,12]. The solver proceeds in two phases in order to find an optimal solution:

– feasibility phase: It is checked whether the instance has any solution. The
solver acts like a quantified boolean formula (QBF) solver [7,27] with some
extra abilities. Technically it performs a null window search [33].

– optimization phase: The solution space is explored via alpha-beta algorithm
in order to find the provable optimal solution.

The alpha-beta algorithm is enhanced by non-chronological backtracking and
backward implication [15,10]: when a contradiction is detected a reason in form
of a clause is added to the constraint database and the search returns to the
node where the found contradiction is no longer imminent. The solver deals
with constraint learning on the so-called primal side as known from SAT- and
QBF-solving (e.g. [29,16]), as well as with constraint learning on the dual side
known from MIP (e.g. [9]). Several other techniques are implemented, e.g. restart
strategies [24], branching heuristics [1], and pruning mechanisms [22]. Further-
more, relaxations are heavily used during the optimization phase: at every search
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node a relaxation is called in order to asses the quality of a branching decision,
the satisfiability of the existential constraint system or for the generation of
bounds.

3 Enhanced Relaxations

3.1 Relaxations for QIPs

In case of a quantified program, besides relaxing the integrality of variables, the
quantification sequence can be altered by changing the order or quantification
of the variables. An LP-relaxation of a QIP can be built by dropping the inte-
grality and also dropping universal quantification, i.e. each variable is considered
to be an existential variable with continuous domain. One major drawback of
this LP-relaxation is that the worst-case perspective is lost by freeing the con-
straint system from having to be satisfied for any assignment of the universally
quantified variables: transferring the responsibility of universal variables to the
existential player and solving the single-player game has nothing to do with the
worst-case outcome in most cases. In order to strengthen this relaxation we use
that for any assignment of the universally quantified variables the constraint
system must be fulfilled. Hence, fixing universally quantified variables according
to some element of L∀ still yields a valid relaxation. This can be interpreted as
knowing the opponent moves beforehand and adapting one’s own moves for this
special play.

Definition 2 (LP-Relaxation with Fixed Scenario)
Let P = (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ) and let x̂̂x̂x∀ ∈ L∀ be a fixed scenario. The LP

min
{
cccxxx | xxx ∈ Lrelax ∧ x∀x∀x∀ = x̂̂x̂x∀ ∧A∃xxx ≤ bbb∃

}
is called the LP-relaxation with fixed scenario x̂̂x̂x∀ of P .

Proposition 3 Let P = (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ) and let R be the corresponding
LP-relaxation with fixed scenario x̂̂x̂x∀ ∈ L∀. Then the following holds:

a) If R is infeasible, then also P is infeasible.
b) If R is feasible with optimal value zR, then either P is infeasible or P is

feasible with optimal value zP ≥ zR, i.e. zR constitutes a lower bound.

Proof.

a) If R is infeasible then

@xxx∃ ∈ L∃ : A∃∃xxx∃ ≤ bbb∃ −A∃∀x̂̂x̂x∀ ,

and since x̂̂x̂x∀ ∈ L∀ there cannot exist a winning strategy for P . As a gaming
argument we can interpret this the following way: If there is some move
sequence of the opponent we cannot react to in a victorious way—even if we
know the sequence beforehand—the game is lost for sure.
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b) Let zR = cccx̂̂x̂x be the optimal value of R, and let x̂̂x̂x∃ be the corresponding
fixation of the existential variables. It is

x̂̂x̂x∃ = arg min
x∃x∃x∃∈L∃

{
c∃c∃c∃x∃x∃x∃ | A∃∃x∃x∃x∃ ≤ bbb∃ −A∃∀x̂̂x̂x∀

}
. (1)

If P is feasible, scenario x̂̂x̂x∀ must also be present in the corresponding winning
strategy. Let x̃̃x̃x be the corresponding play, i.e. x̃̃x̃x∀ = x̂̂x̂x∀. With Equation (1)
obviously zR = cccx̂̂x̂x ≤ cccx̃̃x̃x and thus with Stockman’s Theorem [34] zR ≤ zP .

As we will show in Section 4 adding a scenario to the LP-relaxation already
massively speeds up the search process compared to the use of the standard
LP-relaxation. However, partially incorporating the multistage nature into a re-
laxation should yield even better bounds. Therefore, we reintroduce the original
order of the variables while only taking a subset of scenarios S ⊆ L∀ into account.

Definition 4 (S-Relaxation)
Given P = (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ). Let S ⊆ L∀ and let LS = {xxx ∈ Lrelax | x∀x∀x∀ ∈
S}. We call

min
xxx(1)∈L(1)

S

(
ccc(1)xxx(1) + max

xxx(2)∈L(2)
S

(
ccc(2)xxx(2) + min

xxx(3)∈L(3)
S

(
ccc(3)xxx(3) + . . . min

xxx(β)∈L(β)
S

ccc(β)xxx(β)

)))

s.t. Q ◦ xxx ∈ LS : A∃xxx ≤ bbb∃ (2)

the S-relaxation of P .

Proposition 5 Let P = (A∃, A∀, bbb∃, bbb∀, ccc,L,QQQ) be feasible and let R be the S-
relaxation with ∅ 6= S ⊆ L∀ and optimal value z̃R. Then z̃R is a lower bound on
the optimal value z̃P of P , i.e. z̃R ≤ z̃P .

Proof. Again we use a gaming argument: with S ⊆ L∀ the universal player is
restricted to a subset of her moves in problem R, while the existential player is
no longer restricted to use integer values. Furthermore, any strategy for P can
be mapped to a strategy for the restricted game R. Hence, the optimal strategy
for R is either part of a strategy for P or it is an even better strategy, as the
existential player does not have to cope with the entire variety of the universal
player’s moves. Therefore, z̃R ≤ z̃P .

In general, L∀ has exponential size with respect to the number of universally
quantified variables. Therefore, the main idea is to keep S a rather small subset
of L∀. This way the DEP of the S-relaxation—which is a standard LP— remains
easy to handle for standard LP solvers.

Example 6 Consider the following binary QIP (The min/max alternation in
the objective is omitted for clarity):

min −2x1 +x2 −x3 −x4

s.t. ∃x1 ∀x2 ∃x3 ∀x4 ∈ {0, 1}4 :
x1 +x2 +x3 +x4 ≤ 3
−x2 −x3 +x4 ≤ 0
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The optimal first-stage solution is x̃1 = 1, the principal variation is (1, 1, 0, 0)
and hence the optimal value is −1. Let S = {(1, 0), (1, 1)} be a set of scenarios.
The two LP-relaxations with fixed scenario accoring to the two scenarios in S
are shown in Table 1. Both yield the optimal first stage solution of setting x1 to

Table 1: Solutions of the single LP-relaxations with fixed scenarios.

scenario x2 = 1, x4 = 0 x2 = 1, x4 = 1

relaxation
min −2x1 −x3 +1
s.t. x1 +x3 ≤ 2

−x3 ≤ 1

min −2x1 −x3 +0
s.t. x1 +x3 ≤ 1

−x3 ≤ 0

solution x1 = 1, x3 = 1 x1 = 1, x3 = 0

objective -2 -2

one. Now consider the DEP of the S-relaxation in which x3(x̃2) represents the
assignment of x3 after x2 is set to x̃2:

min k
s.t. −2x1 −x3(1) +1 ≤ k

x1 +x3(1) ≤ 2
−x3(1) ≤ 1

Scenario (1, 0)

s.t. −2x1 −x3(1) +0 ≤ k
x1 +x3(1) ≤ 1
−x3(1) ≤ 0

Scenario (1, 1)

s.t. −2x1 , x3(1) ∈ [0, 1]

In the S-relaxation it is ensured that variables following equal sub-scenarios are
set to the same value. As x2 is set to 1 in each considered scenario in S, x3

must be set to the same value in both cases. The solution of the DEP is x1 = 1,
x3(1) = 0 and k = −1. Thus, the S-relaxation yields the lower bound -1 for the
original QIP. This is not only a better bound than the one obtained by the two
LP-relaxations with individually fixed scenarios but it is also a tight bound.

3.2 Scenario Selection

Both for the LP-relaxation with fixed scenario as well as the S-relaxation the
selection of scenarios is crucial. For the S-relaxation additionally the size of
the scenario set S affects its performance, in particular if too many scenarios
are chosen, solving the relaxation might consume too much time. We use three
heuristics to collect information on universal variables during the search:

VSIDS heuristic [31]. Each variable in each polarity has a counter, initialized to
0. When a clause is added, due to a found conflict, the counter associated with
each literal is incremented. Periodically, all counters are divided by a constant.
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Killer heuristic [2]. When a conflict is found during the search the current
assignment of universal variables—and thus the (sub)scenario leading to this
conflict—is stored in the killer vector. This is a short-term information and is
overwritten as soon as a new conflict is found.

Scenario frequency. For each scenario and subscenario the frequency of their
occurrence during the search is stored.

The LP-relaxation with fixed scenario is implemented as follows: before call-
ing the LP solver in a decision node, all variable bounds must be updated ac-
cording to the current node anyway. When doing so (yet unassigned) universally
quantified variables are set as in Algorithm 1. Hence, the considered scenario is
adapted in every decision node based on the latest heuristic information.

Algorithm 1 Building a scenario

1: for each universal variable block i ∈ {1, . . . , β | Q(β) = ∀} do
2: for each unassigned variable xj in block i, in random order do
3: if killer[j] 6= undefined then Value = killer[j]
4: else Value = arg maxp∈{0,1} VSIDS[j][p]

5: if setting xj to Value is legal according to D(i) then xj = Value

6: else xj = 1− Value

The S-relaxation is adapted at each restart. The scenario set S is rebuilt
by considering the S̄ ∈ N most frequently used (sub)scenarios. Subscenarios
are extended to a full scenario according to Algorithm 1. Even though starting
with S̄ (sub)scenarios, S often contains fewer unique scenarios, as extending a
subscenario may result in a scenario already contained in S.

Furthermore, our implementation merges the LP-relaxation with fixed sce-
nario into the S-relaxation: the final relaxation takes all scenarios in the scenario
set S, as well as one additional scenario that can be updated at each decision
node into account. Hence, the used relaxation in fact reflects |S| + 1 scenarios
and in case of S = ∅ the LP-relaxation with fixed scenario remains. The DEP of
this final relaxation is built and solved with an external LP solver.

The S-relaxation is currently only used while the search is in the very first
variable block, i.e. as soon as all variables of the first block are assigned, only the
LP-relaxation with fixed scenario is used. The reason why this relaxation is no
longer used in later variable blocks is that then universally quantified variables
are already fixed according to the current search node. Hence, some scenarios in
S are no longer relevant as they refer to other parts of the search tree. Therefore,
in order to use the S-relaxation in higher blocks it needs to be rebuilt each time
a universal variable block is bypassed.
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4 Experiments

4.1 Problem Descriptions

We conduct experiments on three different QIPs with polyhedral uncertainty.
For a more detailed discussion on the problem formulations we refer to [19].

Multistage robust selection. The goal is to select p out of n items with minimal
costs. In an initial (existential) decision stage a set of items can be selected
for fixed costs. Then, in a universal decision stage, one of N ∈ N cost scenario
is disclosed. In the subsequent existential decision stage further items can be
selected for the revealed costs. The latter two stages are repeated iteratively
T ∈ N times. Hence, there are 2T + 1 variable blocks.

Multistage robust assignment. The goal is to find a perfect matching for a bi-
partite graph G = (V,E), V = A ∪B, n = |A| = |B|, with minimal costs. In an
initial (existential) decision stage a set of edges can be selected for fixed costs.
Then, in a universal decision stage, one of N ∈ N cost scenario is disclosed. In
the subsequent existential decision stage further edges can be selected for the
revealed costs. Those two stages are repeated iteratively T ∈ N times. Both for
the selection and the assignment problem, a universal constraint system is used
to force the universally quantified variables to reveal exactly one scenario per
period.

Multistage robust runway scheduling. Each airplane i ∈ A has to be assigned to
exactly one time slot j ∈ S and at most b ∈ N airplanes can be assigned to one
time slot (as there are only b runways). As soon as the (uncertain) time window
in which the airplane can land is disclosed by universally quantified variables,
the initial plan has to be adapted. The goal is to find an initial schedule that can
be adapted according to the later disclosed time windows with optimal worst-
case costs, as for each slot that the airplane is moved away from its originally
planned time slot, a cost is incurred. The time window disclosure occurs in
T ∈ N periods: the airplanes are partitioned into T groups and after the initial
schedule is fixed the time windows are disclosed for one group after the other.
After each disclosure the schedule for the current group of airplanes has to be
fixed right away, before knowing the time windows for the subsequent groups.
The universal constraint system contains a single constraint, demanding that
the disclosed time windows are comprised of 3 time slots on average.

4.2 Computational Results

The used solver utilizes CPLEX (12.6.1) as its black-box LP solver to solve the
relaxations and all experiments were run with AMD Ryzen 9 5900X processors.

First we provide details on the benefit of utilizing the LP-relaxation with
fixed scenario as given in Definition 2 compared to the standard LP at each
decision node. Therefore, we consider the following testset:
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– 350 selection instances with n = 10 items, N = 4 scenarios per period and
T ∈ {1, . . . , 7} periods

– 1350 assignment instances with n ∈ {4, 5, 6}, N ∈ {21, 22, 23} scenarios per
period and T ∈ {1, . . . , 3} periods

– 270 runway scheduling instances with A ∈ {4, 5, 6} planes, b = 3 runways,
S ∈ {5, . . . , 10} time slot and T ∈ {1, . . . , 3} periods

In Table 2, as one of our major results, the overall runtimes when using the
basic LP-relaxation and the LP-relaxation with fixed scenario are display. In

Table 2: Overall runtime (in seconds) when only using the standard LP-
relaxation vs. the LP-relaxation with fixed scenario.

used relaxation selection assignment runway

LP 29 501 7 152 12 902
LP with fixed scenario 348 837 4 520

each case, explicitly setting the universally quantified to a fixed scenario results
in a massive speedup that is most impressive for the selection instances. This
emphasizes, that partially incorporating the worst-case nature of the underlying
problem into the basic LP-relaxation is clearly beneficial and does not have any
negative side effects: the bounds of the variables in the LP-relaxation have to
be updated at each search node anyway and fixing the universally quantified
variables even decreases the number of free variables in the resulting LP.

We now investigate how the use of the more sophisticated S-relaxation in
the first variable block changes the solver’s behavior. Therefore, the scenario set
S is built from S̄ = 2i (sub)scenarios, with i ∈ {0, . . . , 6}. In case of S̄ = 0 only
the LP-relaxation with fixed scenario is utilized in the first variable block. The
used testset consists of the following instances

– 1050 selection instances with n ∈ {10, 20, 30} items, N = 4 scenarios per
period and T ∈ {1, . . . , 7} periods

– 450 assignment instances with n ∈ {7}, N ∈ {21, 22, 23} scenarios per period
and T ∈ {1, . . . , 3} periods

– 360 runway scheduling instances with A ∈ {4, 5, 6, 7} planes, b = 3 runways,
S ∈ {5, . . . , 10} time slot and T ∈ {1, . . . , 3} periods

As one indicator we consider the number of decision nodes visited during the
optimization phase of the search. We denote N(i, S̄) the number of visited de-
cision nodes when solving instance i with S̄ scenarios used to build the cor-
responding S-relaxation. We compare each run with S̄ = 2i to the basic run

with S̄ = 0 by considering the relative difference Dr(i) = N(i,S̄)−N(i,0)
max(N(i,S̄),N(i,0))

. If

N(i, S̄) − N(i, 0) < 0, i.e. if fewer decision nodes were visited while using the
S-relaxation, Dr(i) is negative, with its absolute value indicating the percentage
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savings. Similarly, if N(i, S̄)−N(i, 0) > 0, Dr(i) is positive. The data on all in-
stances is cumulated in Figure 1 showing the corresponding box plots1. It can be

0
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1

20 21 22 23 24 25 26

b bbbbbbb bbbbbbbbbb
bbbbbbbbbbbbbbbbb
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(a) Selection
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(b) Assignment
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20 21 22 23 24 25 26

b b
bb bbbb bbb

(c) Runway

Fig. 1: Boxplots of the Dr values for all three testset and S̄ ∈ {20, . . . , 26}

seen that the median of the relative difference values is always negative and tends
to decrease when more scenarios are considered in S, i.e. the larger the scenario
set the fewer decision nodes have to be visited during the search. Note that com-
pared to the box plots for the selection and runway instances, for the assignment
instances the upper whisker remains at a rather high level. But does a decreasing
number of visited decision nodes also result in a lower runtime? For now consider
the columns of Table 3 representing the heuristic scenario selection as presented
in Section 3.2. Both for the selection and the runway scheduling problem the

Table 3: Overall runtime (in seconds) when using the S-relaxation with heuristic
and random scenario selection

selection instances assignment instances runway instances
S̄ heuristic random heuristic random heuristic random

0 12 561 53 348 2 091 1 853 33 335 32 401
20 11 324 35 316 2 111 1 865 29 313 30 418
21 9 900 30 970 2 022 2 046 25 876 26 412
22 9 700 31 158 2 210 2 232 25 876 26 101
23 9 394 29 087 2 220 2 708 23 915 24 795
24 9 030 27 503 2 931 3 718 23 958 24 860
25 8 843 26 857 4 223 7 300 21 788 26 777
26 9 149 26 590 8 632 17 400 23 073 30 292

overall runtimes tend to decrease when S̄ increases. Compared to only using the
LP-relaxation with fixed scenario (S̄ = 0), the runtimes decreased up to about
30% and 35% for the selection and runway scheduling instances, respectively.
The slightly increased runtime for S̄ = 64 indicates that the solution time of

1 Box plots are created using the macro psboxplot of the LATEX package pst-plot15.
The interquantile range factor, defining the area of outliers, is set to 1.5 by default.
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such a large relaxation can no longer be compensated by fewer visited decision
nodes. For the assignment instances, however, the overall runtime increases, up
to a factor of four times the runtime when solely using the LP-relaxation with
fixed scenario. Hence, even though fewer nodes are visited, the time it takes to
process and generate information at these nodes increases considerably for this
type of problem.

In Table 3 we additionally provide information on how well our scenario build-
ing routine performs on the considered testset. Therefore, instead of extending
the S̄ most frequently visited (sub)scenarios via Algorithm 1, the scenario set
S now contains S̄ random scenarios. Similiarly, for the LP-relaxation with fixed
scenario, we replace the heuristic Value selection in lines 3 and 4 of Algorithm
1 by randomly assigning the value 0 or 1. Note, however, that even though the
killer and VSIDS information is neglected while building the relaxation, it is still
utilized in other situations during the search. The overall runtimes are shown in
the according columns of Table 3. For the selection problem, randomly selecting
the scenario results in a runtime about three times longer compared to using the
heuristic selection process. For the runway instances, our heuristic also slightly
outperforms the use of random scenarios. For the assignment instances the ran-
dom scenario selection tends to be more favorable when only few scenarios are
involved.

5 Conclusion and Outlook

We investigated how adaptive relaxations influence our search-based solution
algorithm for multistage robust optimization problems. Our experimental re-
sults show that incorporating a single scenario in the standard LP-relaxation
significantly speeds up the search process and clearly dominates the basic LP-
relaxation. Furthermore, the use of the S-relaxation which incorporates a subset
of scenarios in a slim DEP, considerably decreases the number of visited nodes,
even if only utilized in the very first variable block. While this smaller search
space also resulted in a faster solution time for multistage selection and runway
scheduling problems, the solution time tended to increase for multistage assign-
ment instances. Additionally, we showed that our scenario selection heuristic
outperforms a random scenario selection.

Several research questions arise from the presented experimental results. Is
it possible to improve the heuristic scenario selection? Currently our heuristic
focuses on including seemingly harmful scenarios but does not consider the di-
versity of the scenario set S, which might be one reason why using random
scenarios already works quite well on specific problems. In contrast to our cur-
rently implemented search-information-based scenario selection heuristic, we find
it interesting to deploy AI methods in order to classify scenarios as relevant and
irrelevant for general QIP. Additionally, relevant characteristics of instances have
to be found, in order to dynamically adjust the size of the used scenario set S.
Furthermore, deploying the S-relaxation in all—not only the very first—variable
blocks is a very promising yet challenging task, as the implementation of such a
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frequently modified S-relaxation must be done carefully. In this case having the
ability to update all considered scenarios in each decision node is also of interest,
in particular as our results showed that having few scenarios in the relaxation is
already very beneficial.
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