Skip to main content

High-Quality Noise Detection for Knowledge Graph Embedding with Rule-Based Triple Confidence

  • Conference paper
  • First Online:
Book cover PRICAI 2021: Trends in Artificial Intelligence (PRICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13031))

Included in the following conference series:

Abstract

Knowledge representation learning is usually used in knowledge reasoning and other related fields. Its goal is to use low-dimensional vectors to represent the entities and relations in a knowledge graph. In the process of automatic knowledge graph construction, the complexity of unstructured text and the incorrect text may make automatic construction tools unable to accurately obtain the semantic information in the text. This leads to high-quality noise with matched entity types but semantic errors. Currently knowledge representation learning methods assume that the knowledge in knowledge graphs is completely correct, and ignore the noise data generated in the process of automatic construction of knowledge graphs, resulting in errors in the vector representation of entities and relations. In order to reduce the negative impact of noise data on the construction of a representation learning model, in this study, a high-quality noise detection method with rule information is proposed. Based on the semantic association between triples in the same rule, we propose the concept of rule-based triple confidence. The calculation strategy of triple confidence is designed inspired by probabilistic soft logic (PSL). The influence of high-quality noise data in the training process of the model can be weakened by this confidence. Experiments show the effectiveness of the proposed method in dealing with high-quality noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, X., Chen, H., Wu, G., Liu, J., Zheng, Q., He, X., et al.: Knowledge engineering with big data. IEEE Intell. Syst. 30(5), 46–55 (2015)

    Article  Google Scholar 

  2. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 601–610 (2014)

    Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  4. Lehmann, J., Isele, R., Jakob, M., et al.: DBpedia – a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  5. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th international conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  6. Bordes, A., Weston, J., Usunier, N.: Open question answering with weakly supervised embedding models. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 165–180. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_11

    Chapter  Google Scholar 

  7. Saxena, A., Tripathi, A., Talukdar, P.: Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4498–4507 (2020)

    Google Scholar 

  8. Zheng, Z., Si, X., Li, F., Chang, E. Y., Zhu, X.: Entity disambiguation with freebase. In: IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, pp. 82–89 (2012)

    Google Scholar 

  9. Jiang, T., Bu, C., Zhu, Y., Wu, X.: Two-stage entity alignment: combining hybrid knowledge graph embedding with similarity-based relation alignment. In: The 16th Pacific Rim International Conference on Artificial Intelligence, pp. 162–175 (2019)

    Google Scholar 

  10. Li, J., Bu, C., Li, P., Wu, X.: A coarse-to-fine collective entity linking method for heterogeneous information networks. Knowl.-Based Syst. 288(2), 107286 (2021)

    Google Scholar 

  11. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  12. Pujara, J., Augustine, E., Getoor, L.: Sparsity and noise: where knowledge graph embeddings fall short. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1751–1756 (2017)

    Google Scholar 

  13. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  14. Zhang, Z., Cai, J., Zhang, Y., Wang, J: Learning hierarchy-aware knowledge graph embeddings for link prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3065–3072 (2020)

    Google Scholar 

  15. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, pp. 2181–2187 (2015)

    Google Scholar 

  16. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M: Representation learning of knowledge graphs with entity descriptions. 30th AAAI Conf. Artif. Intell. 30(1) (2016)

    Google Scholar 

  17. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic Web 8(3), 489–508 (2017)

    Article  Google Scholar 

  18. Melo, A., Paulheim, H.: Detection of relation assertion errors in knowledge graphs. In: Proceedings of the Knowledge Capture Conference, pp. 22:1–22:8 (2017)

    Google Scholar 

  19. De Meo, P., Ferrara, E., Fiumara, G., Ricciardello, A.: A novel measure of edge centrality in social networks. Knowl.-Based Syst. 30, 136–150 (2012)

    Article  Google Scholar 

  20. Xie, R., Liu, Z., Lin, F., Lin, L.: Does William Shakespeare really write Hamlet? Knowledge representation learning with confidence. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pp. 4954–4961 (2018)

    Google Scholar 

  21. Jia, S., Xiang, Y., Chen, X., Wang, K.: Triple trustworthiness measurement for knowledge graph. In: The World Wide Web Conference, pp. 2865–2871 (2019)

    Google Scholar 

  22. Shan, Y., Bu, C., Liu, X., Ji, S., Li, L.: Confidence-aware negative sampling method for noisy knowledge graph embedding. In: 2018 IEEE International Conference on Big Knowledge, pp. 33–40 (2018)

    Google Scholar 

  23. Kimmig, A., Bach, S., Broecheler, M., Huang, B., Getoor, L: A short introduction to probabilistic soft logic. In: NIPS Workshop on PPFA, pp.1–4 (2012)

    Google Scholar 

  24. Hong, Y., Bu, C., Jiang, T.: Rule-enhanced noisy knowledge graph embedding via low-quality error detection. In: IEEE International Conference on Knowledge Graph, pp. 544–551 (2020)

    Google Scholar 

  25. Bu, C., Yu, X, Hong, Y., Jiang, T.: Low-quality error detection for noisy knowledge graph. J. Database Manage. 32(4), article 4

    Google Scholar 

  26. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE. VLDB J. 24(6), 707–730 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (No. 61806065 and No. 91746209), the Fundamental Research Funds for the Central Universities (No. JZ2020HGQA0186), and the Project funded by the China Postdoctoral Science Foundation (No. 2018M630704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Bu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, Y., Bu, C., Wu, X. (2021). High-Quality Noise Detection for Knowledge Graph Embedding with Rule-Based Triple Confidence. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13031. Springer, Cham. https://doi.org/10.1007/978-3-030-89188-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89188-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89187-9

  • Online ISBN: 978-3-030-89188-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics