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Abstract

Population protocols are a model of distributed computation intended for the study of networks of

independent computing agents with dynamic communication structure. Each agent has a finite number

of states, and communication occurs nondeterministically, allowing the involved agents to change their

states based on each other’s states.

In the present paper we study unreliable models based on population protocols and their variations

from the point of view of expressive power. We model the effects of message loss. We show that for a

general definition of protocols with unreliable communication with constant-storage agents such protocols

can only compute predicates computable by immediate observation (IO) population protocols (sometimes

also called one-way protocols). Immediate observation population protocols are inherently tolerant to

unreliable communication and keep their expressive power under a wide range of fairness conditions. We

also prove that a large class of message-based models that are generally more expressive than IO becomes

strictly less expressive than IO in the unreliable case.

Keywords. population protocols • message loss • expressive power

1 Introduction

Population protocols have been introduced in [1, 2] as a restricted yet useful subclass of general distributed

protocols. In population protocols each agent has a constant amount of local storage, and during the protocol

execution pairs of agents are selected and permitted to interact. The selection of pairs is assumed to be done

by an adversary bound by a fairness condition. The fairness condition ensures that the adversary cannot

trivially stall the protocol. A typical fairness condition requires that every configuration that stays reachable

during an infinite execution is reached infinitely many times.

∗The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme under grant agreement No 787367 (PaVeS)
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Population protocols have been studied from various points of view, such as expressive power [5], veri-

fication complexity [19], time to convergence [3, 17], privacy [13], impact of different interaction scheduling

[10] etc. Multiple related models have been introduced. Some of them change or restrict the communication

structure: this is the case for immediate, delayed, and queued transmission and observation [5], as well as

for broadcast protocols [18]. Some explore the implications of adding limited amounts of storage (below the

usual linear or polynomial storage permitted in traditional distributed protocols): this is the case for com-

munity protocols [23] (which allow an agent to recognise a constant number of other agents), PALOMA [11]

(permitting logarithmic amount of local storage), mediated population protocols [26] (giving some constant

amount of common storage to every pair of agents), and others.

The original target application of population protocols and related models is modelling networks of

restricted sensors, starting from the original paper [1] on population protocols. On the other hand, verifying

distributed algorithms benefits from translating the algorithms in question or their parts into a restricted

setting, as most problems are undecidable in the unrestricted case. Both applications motivate study of

fault tolerance. Some papers on population protocols and related models [12, 23, 4, 24] consider questions

of fault tolerance, but in the context of expressive power the fault is typically expected to be either a total

agent failure or a Byzantine failure. There are some exceptions such as a study of fine-grained notions of

unreliability [15, 14] in the context of step-by-step simulation of population protocols by distributed systems

with binary interactions. However, these studies answer a completely different set of questions, as they are

concerned with simulating a protocol as a process as opposed to designing a protocol to achieve a given

result no matter in what way.

In a practical context, many distributed algorithms pay attention to a specific kind of failure: message

loss. While the eventual convergence approach typical in study of population protocols escapes the question

of availability during a temporary network partition (the problem studied, for example, in [22]), the onset

of a network partition may include message loss in the middle of an interaction. In such a situation the

participants do not always agree whether the interaction has succeeded or failed. In terms of population

protocols, one of the agents assumes that an interaction has happened and updates the local state, while a

counterparty thinks the interaction has failed and keeps the old state.

In the present paper we study the expressive power of a very wide class of models with interacting

constant-storage agents when unreliability of communication is introduced. This unreliability corresponds

to the loss of atomicity of interactions due to message loss. Indeed, in the distributed systems ensuring

that both sides agree on whether the interaction has taken place is often the costliest part; a special case

of it is “exactly-once” message arrival, known to be much more complex to ensure than “at most-once”.

We model such loss of atomicity by allowing some agents to update their state based on an interaction,

while other agents keep their original state because they assume the interaction has failed. For a bit more

generality, corresponding, for example, to request-response interactions with the response being impossible

if the request is lost, we allow to require that some agents can only update their state if the others do.

We consider the expressive power in the context of computing predicates by protocols with eventual
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convergence of individual opinions. We show that under very general conditions the expressive power of

protocols with unreliable communication coincides with the expressive power of immediate observation pop-

ulation protocols. Immediate observation population protocols, modelling interactions where an agent can

observe the state of another one without the observee noticing, provide a model that inherently tolerates

unreliability and is considered a relatively weak model in the fully reliable case. This model also has other

nice properties, such as relatively low complexity (PSPACE-complete) of verification tasks [21]. Our results

hold under any definition of fairness satisfying two general assumptions (see Definition 10), including all the

usually used versions of fairness.

We prove it by observing a general structural property shared by all protocols with unreliable commu-

nication. Informally speaking, protocols with unreliable communication have some special fair executions

which can be extended by adding an additional agent with the same initial and final state as a chosen

existing one. This property is similar to the copycat arguments used, for example, for proving the exact

expressive power of immediate observation protocols. The usual structure of the copycat arguments includes

a proof that we can pick an agent in an execution and add another agent (copycat) which will repeat all

the state transitions of the chosen one. In the immediate observation case the corresponding property is

almost self-evident once defined. A slightly stronger but still straightforward argument is needed in the case

of reconfigurable broadcast networks [8]. The latter model is equivalent to unreliable broadcast networks;

a sender broadcasts a message and changes the local state, and an arbitrary set of receivers react to the

message (immediately). However, unlike all the previous uses of the copycat-like arguments in the context

of population protocols and similar models, proving the necessary copycat-like property for a general notion

of protocols with unreliable communication (sufficient to handle assymetry of message loss where loss for

sender requires loss for receiver) requires careful analysis using different techniques.

Note that although the natural way to design population protocols for our setting involves the use of

immediate observation population protocols, we still need to rule out additional opportunities arising from

the fact that eventually a two-agent interaction with both agents correctly updated will happen. However,

in contrast to self-stabilising protocols [16, 6], the protocols cannot rely on the message loss being absent for

an arbitrarily long time.

Surprisingly, asynchronous transmission and receipt of messages, which provides more expressive power

than immediate observation population protocols in the reliable setting, turns out to have strictly less

expressive power in the unreliable setting. Note that message reordering is allowed already in the reliable

setting, while unreliability is essentially a generalisation of message loss. One could say that an unbounded

delay in message delivery becomes a liability instead of an asset once there is message loss.

The rest of the present paper is organised as follows. First, in Section 2 we define a general protocol

framework generalising many previously studied approaches. Then in Section 3 we summarise the results from

the literature on the expressive power of various models covered by this framework. Afterwards in Section 4

we formally define our general notion of a protocol with unreliable communication. Then in Section 5 we

formalise the common limitation of all the protocols with unreliable communication, and provide the proof
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sketches of this restriction and the main result. Afterwards in Section 6 we show that fully asynchronous

(message-based) models become strictly less powerful than immediate observation in the unreliable setting.

The paper ends with a brief conclusion and some possible future directions.

1.1 Main results (preview)

The precise statements of our results require the detailed definitions introduced later. However, we can

roughly summarise them as follows.

First, we characterise the expressive power of all fixed-memory protocols given unreliable comunication.

Proposition 1. Adding unreliability of communication to population protocols restricts the predicates they

can express to boolean combinations of comparisons of arguments with constants.

This is the same expressive power as the immediate observation protocols.

Next we show that unreliability changes the expressive power non-monotonically for some natural classes.

Proposition 2. Queued transmission protocols with unreliable communication are strictly less expressive

than immediate observation population protocols (with or without unreliable communication).

Note that without unreliability queued transmission protocols are strictly more expressive than immediate

observation population protocols.

2 Basic definitions

2.1 Protocols

We consider various models of distributed computation where the number of agents is constant during

protocol execution, each agent has a constant amount of local storage, and agents cannot distinguish each

other except via the states. We provide a general framework for describing such protocols. Note that we

omit some very natural restrictions (such as decidability of correctness of a finite execution) because they

are irrelevant for the problems we study. We allow agents to be distinguished and tracked individually for

the purposes of analysis, even though they cannot identify each other during the execution of the protocol.

We will use the following problem to illustrate our definitions: the agents have states q0 and q1 corre-

sponding to input symbols 0 and 1 and aim to find out if all the agents have the same input. They have an

additional state q⊥ to represent the observation that both input symbols were present. We will define four

protocols for this problem using different communication primitives.

• Two agents interact and both switch to q⊥ unless they are in the same state (population protocol

interaction).

• An agent observes another agent and switches to q⊥ if they are in different states (immediate observa-

tion).
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• An agent can send a message with its state, q0, q1 or q⊥. An agent in a state q0 or q1 can receive a

message (any of the pending messages, regardless of order); the agent switches to q⊥ if the message

contains a state different from its own (queued transmission).

• An agent broadcasts its state without changing it; each other agent receives the broadcast simultaneouly

and switches to q⊥ if its state is different from the broadcast state (broadcast protocol interaction).

Definition 1. A protocol is specified by a tuple (Q,M,Σ, I, o,Tr,Φ), with components being a finite

nonempty set Q of (individual agent) states, a finite (possibly empty) set M of messages, a finite nonempty

input alphabet Σ, an input mapping function I : Σ → Q, an individual output function o : Q → {true, false},

a transition relation Tr (which is described in more details below), and a fairness condition Φ on executions.

The protocol defines evolution of populations of agents (possibly with some message packets being

present).

Definition 2. A population is a pair of sets: A of agents and P of packets. A configuration C is a population

together with two functions, CA : A → Q provides agent states, and CP : P → M provides packet contents.

Note that if M is empty, then P must also be empty. As the set of agents is the domain of the function

CA, we use the notation Dom(CA) for it. The same goes for the set of packets Dom(CP ). Without loss of

generality Dom(CP ) is a subset of a fixed countable set of possible packets.

The message packets are only used for asynchronous communication; instant interaction between agents

(such as in the classical rendezvous-based population protocols or in broadcast protocols) does not require

describing the details of communication in the configurations.

Example 1. The four example protocols have the same set of states Q = {q0, q1, q⊥}. The first two protocols

have the empty set of messages, and the last two have the set of messages M = {m0,m1,m⊥}. The example

protocols all have the same input alphabet Σ = {0, 1}, input mapping I : i 7→ qi, and output mapping

o : q0 7→ true, q1 7→ true, q⊥ 7→ false.

The definition of the transition relation uses the following notation.

Definition 3. For a function f and x /∈ Dom(f) let f∪{x 7→ y} denote the function g defined on Dom(f)∪{x}

such that g |Dom(f)= f and g(x) = y. For u ∈ Dom(f) let f [u 7→ v] denote the function h defined on Dom(f)

such that h |Dom(f)\{u}= f |Dom(f)\{u} and h(u) = v. For symmetry, if w = f(u) let f \ {u 7→ w} denote

restriction f |Dom(f)\{u}.

Use of this notation implies an assertion of correctness, i.e. x /∈ Dom(f), u ∈ Dom(f), and w = f(u).

We use the same notation with a configuration C instead of a function if it is clear from context whether

CA or CP is modified.

Now we can describe the transition relation that tells us which configurations can be obtained from a

given one via a single interaction. In order to cover broadcast protocols we define the transition relation as
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a relation on configurations. The restrictions on the transition relation ensure that the protocol behaves like

a distributed system with arbitrarily large number of anonymous agents.

Definition 4. The transition relation of a protocol is a set of triples (C,A⊙, C′), called transitions, where

C and C′ are configurations and A⊙ ⊂ Dom(CA) is the set of active agents (of the transition); agents in

Dom(CA) \ A⊙, are called passive. We write C
A⊙

−−→ C′ for (C,A⊙, C′) ∈ Tr, and let C → C′ denote the

projection of Tr: C → C′ ⇔ ∃A⊙ : C
A⊙

−−→ C′. The transition relation must satisfy the following conditions

for every transition C
A⊙

−−→ C′:

• Agent conservation. Dom(CA) = Dom(C′
A).

• Agent and packet anonymity. If hA and hP are bijections such that DA = CA ◦hA, D
′
A = C′

A ◦hA,

DP = CP ◦ hP , and D′
P = C′

P ◦ hP , then D
h−1(A⊙)
−−−−−−→ D′.

• Possibility to ignore extra packets. For every p /∈ Dom(CP ) ∪ Dom(C′
P ) and m ∈ M : C ∪ {p 7→

m}
A⊙

−−→ C′ ∪ {p 7→ m}.

• Possibility to add passive agents. For every agent a /∈ Dom(CA) and q ∈ Q there exists q′ ∈ Q

such that: C ∪ {a 7→ q}
A⊙

−−→ C′ ∪ {a 7→ q′}.

Informally speaking, the active agents are the agents that transmit something during the interaction.

The passive agents can still observe other agents and change their state. The choice of active agents is used

for the definition of protocols with unreliable communication, as a failure to transmit precludes success of

reception. The formal interpretation will be provided in Definition 13.

Many models studied in the literature have the transition relation defined using pairwise interaction. In

these models the transitions are always changing the states of two agents based on their previous states.

When discussing such protocols, we will use the notation (p, q) → (p′, q′) for a transition where agents in the

states p and q switch to states p′ and q′, correspondingly.

Example 2. The four example protocols have the following transition relations.

• In the first protocol for a configuration C and two agents a, a′ ∈ Dom(CA) such that CA(a) 6= CA(a
′)

we have C
{a,a′}
−−−−→ C[a 7→ q⊥][a

′ 7→ q⊥] (in other notation, (C, {a, a′}, C[a 7→ q⊥][a
′ 7→ q⊥]) ∈ Tr).

• In the second protocol for a configuration C and two agents a, a′ ∈ Dom(CA) such that CA(a) 6= CA(a
′)

we have C
{a}
−−→ C[a 7→ q⊥]. We can say that a observes a′ in a different state and switches to q⊥.

• In the third protocol there are two types of transitions. Let a configuration C be fixed. For an agent

a ∈ Dom(CA), i ∈ {0, 1,⊥} such that CA(a) = qi, and a new message identity p /∈ Dom(CP ) we

have C
{a}
−−→ C ∪ {p 7→ mi} (sending a message). If CA(a) = qi for some i ∈ {0, 1}, for each message

p ∈ Dom(CP ), we also have C
{a}
−−→ C[a 7→ q′] \ {p 7→ CP (p)} where q′ is equal to qi if CP (p) = mi and

q⊥ otherwise (receiving a message).
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• In the fourth protocol, for a configuration C and an agent a ∈ Dom(CA) we can construct C′ by

replacing CA with C′
A that maps each a′ ∈ Dom(CA) to CA(a

′) if CA(a) = CA(a
′) and q⊥ otherwise.

Then we have C
{a}
−−→ C′. We can say that a broadcasts its state and all the agents in the other states

switch to q⊥.

2.2 Definitions of the protocol classes studied in the literature

Many previously studied models can be defined inside out framework. Among such models are population

protocols, immediate transmission population protocols, immediate observation population protocols, queued

transmission protocols, broadcast protocols. These general definitions are similar to the definitions for specific

protocols provided as exampled, and our results do not depend on these definitions. We provide them as a

corroboration of sufficient generality of our framework.

First we translate the initial definition of the population protocols [1].

Definition 5. A population protocol is described by an interaction relation δ ⊆ Q2×Q2. The set of messages

is empty. A configuration C′ can be obtained from C, if there are agents a1, a2 ∈ Dom(CA) and states

q1, q2, q3, q4 ∈ Q such that CA(a1) = q1, CA(a2) = q2, C
′ = C[a1 7→ q3][a2 7→ q4], and ((q1, q2), (q3, q4)) ∈ δ.

The set of active agents A⊙ is {a1, a2}.

Now we proceed to the variants of the population protocols appearing in the paper on expressive power

of population protocols and their variants [5].

Definition 6. An immediate transmission population protocol is a population protocol such that q3 depends

only on q1, i.e. the following two conditions hold. If ((q1, q2), (q3, q4)) ∈ δ and ((q1, q
′
2), (q

′
3, q

′
4)) ∈ δ then

q3 = q′3. If ((q1, q2), (q3, q4)) ∈ δ then for every q′2 there exists q′4 such that ((q1, q
′
2), (q3, q

′
4)) ∈ δ.

Definition 7. An immediate observation population protocol is an immediate transmission population pro-

tocol such that every possible interaction ((q1, q2), (q3, q4)) ∈ δ has q1 = q3.

We can consider only the first agent to be active.

Definition 8. Queued transmission protocol has a nonempty set M of messages. It has two transition

relations: δs ⊆ Q × (Q ×M) describing sending the messages, and δr ⊆ (Q ×M) ×Q describing receiving

the messages. If agent a has state q = CA(a) and (q, (q′,m)) ∈ δs, it can send a message m as a fresh packet

p and switch to state q′: C
{a}
−−→ C[a 7→ q′] ∪ {p 7→ m}. If agent a has state q = CA(a), packet p contains

message m = CP (p) and ((q,m), q′)) ∈ δr, agent a can receive the message: C
{a}
−−→ C[a 7→ q′] \ {p 7→ m}.

Delayed transmission protocol is a queued transmission protocol where every message can always be

received by every agent, i.e. the projection of δr to Q×M is the entire Q×M .

Delayed observation protocol is a delayed transmission protocol where sending a message doesn’t change

state, i.e. (q, (q′,m)) ∈ δs implies q = q′.

As the last example, we consider broadcast protocols [18].
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Definition 9. Broadcast protocol is defined by two relations: δs ⊆ Q × Q describing a sender transition,

and δr ⊆ (Q × Q) × Q. To perform a transition from a configuration C, we pick an agent a ∈ Dom(CA)

with state q and change its state to q′ such that (q, q′) ∈ δs. At the same time, we simultaneously update

the state of all other agents, in such a way that an agent in state qj can switch to any state q′j such that

((qj , q), q
′
j) ∈ δr.

We consider the transmitting agent to be the only active one.

Remark 1. In the literature, the relations δ, δs, δr and δs are sometimes required to be partial functions. As

we use relations in the general case, we use relations here for consistency.

2.3 Fair executions

In this section we define the notion of fairness. This notion is traditionally used to exclude the most

pathological cases without a complete probabilistic analysis of the model. For the population protocols

fairness has been a part of the definition since the introduction [1, 2]. However, in the general study of

distributed computation there has long been some interest in comparing effects of different approaches to

fairness in execution scheduling [7]. For example, the distinction between weak fairness and strong fairness

and the conditions where one can be made to model the other has been studied in [25]. The difference

between weak and strong scheduling is that strong fairness executes infinitely often every interaction that is

enabled infinitely often, while weak fairness only guarantees anything for continuously enabled interactions.

As there are multiple notion of fairness in use, we define their basic common traits. Our results hold for

all notions of fairness satisfying these basic requirements, including all the notions of fairness used in the

literature, as well as much stronger and much weaker fairness conditions.

Definition 10. An execution is a sequence (finite or infinite) Cn of configurations such that at each moment

i either nothing changes, i.e. Ci = Ci+1 or a single interaction occurs, i.e. Ci → Ci+1. A configuration C′

is reachable from configuration C if there exists an execution C0, . . . , Cn with C0 = C and Cn = C′ (and

unreachable otherwise).

A protocol defines a fairness condition Φ which is a predicate on executions. It should satisfy the following

properties.

• A fairness condition is eventual, i.e. every finite execution can be continued to an infinite fair execution.

• A fairness condition ensures activity, i.e. if an execution contains only configuration C after some

moment, only C itself is reachable from C.

Definition 11. The default fairness condition accepts an execution if every configuration either becomes

unreachable after some moment, or occurs infinitely many times.

Example 3. The example protocols use the default fairness condition.

It is clear that the default fairness condition ensures activity.

8



Lemma 1 (adapted from [5]). Default fairness condition is eventual.

Proof. Consider a configuration after a finite execution. Then there is a countable set of possible configu-

rations (note that the set of potential packets is at most countable). Consider an arbitrary enumeration of

configurations that mentions each configuration infinitely many times.

We repeat the following procedure: skip unreachable configurations in the enumeration, then perform

the transitions necessary to reach the next reachable one. If we skip a configuration, it can never become

reachable again. Therefore all the configurations that stay reachable infinitely long are never skipped and

therefore they are reached infinitely many times.

The fairness condition is sometimes said to be an approximation of probabilistic behaviour. In our

general model the default fairness condition provides executions similar to random ones for protocols without

messages but not always for protocols with messages. The arguments from [20] with minimal modification

prove this. The core idea in the case without messages is observing we have a finite state space reachable

from any given configuration; a random walk eventually gets trapped in some strongly connected component,

visiting all of its states infinitely many time. If we do have messages, the message count might behave like

a biased random walk; while consuming all the messages stays possible in principle, with probability one it

only happens a finite number of times.

2.4 Functions implemented by protocols

In this section we recall the standard notion of a function evaluated by a protocol. Here the standard

definition generalises trivially.

Definition 12. An input configuration is a configuration where there are no packets and all agents are in

input states, i.e. P = ∅ and Im(CA) ⊆ Im(I) where Im denotes the image of a function. We extend I to

be applicable to multisets of input symbols. For every x ∈ N
Σ, we define I(x) to be a configuration of |x|

agents with
∑

I(σ)=qi
x(σ) agents in input state qi (and no packets).

A configuration C is a consensus if the individual output function yields the same value for the states of all

agents, i.e. ∀a, a′ ∈ Dom(CA) : o(CA(a)) = o(CA(a
′)). This value is the output value for the configuration.

C is a stable consensus if all configurations reachable from C are consensus configurations with the same

value.

A protocol implements a predicate ϕ : NΣ → {true, false} if for every x ∈ N
Σ every fair execution

starting from I(x) reaches a stable consensus with the output value ϕ(x). A protocol is well-specified if it

implements some predicate.

Example 4. It is easy to see that each of the four example protocols implements the predicate ϕ(x) ⇔

(x(0) = 0) ∨ (x(1) = 0) on N
2. In other words, the protocol accepts the input configurations where one of

the two input states has zero agents and rejects the configurations where both input states occur.
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This framework is general enough to define the models studied in the literature, such as population pro-

tocols, immediate transmission protocols, immediate observation population protocols, delayed transmission

protocols, delayed observation protocols, queued transmission protocols, and broadcast protocols.

3 Expressive power of population protocols and related models

In this section we give an overview of previously known results on expressive power of various models related

to population protocols. We only consider predicates, i.e. functions with the output values being true and

false because the statements of the theorems become more straightforward in that case.

The expressive power of models related to population protocols is expressed in terms of semilinear,

coreMOD, and counting predicates. Semilinear predicates on tuples of natural numbers can be expressed

using the addition function, remainders modulo constants, and the order relation, such as x+ x ≥ y + 3 or

x mod 7 = 3. Roughly speaking, coreMOD is the class of predicates that become equivalent to modular

equality for inputs with only large and zero components. An example could be (z = 1 ∧ x ≥ y) ∨ (x + y

mod 2 = 0), a semilinear predicate which becomes a modular equality whenever z = 0 or z is large (i.e.

z ≥ 2). Counting predicates are logical combinations of inequalities including one coordinate and one

constant each, for example, x ≥ 3.

Theorem 1 (see [5] for details). Population protocols and queued transmission protocols can implement

precisely semilinear predicates.

Immediate transmission population protocols and delayed transmission protocols can implement precisely

all the semilinear predicates that are also in coreMOD.

Immediate observation population protocols implement counting predicates.

Delayed observation protocols implement the counting predicates where every constant is equal to 1.

Theorem 2 (see [9] for details). Broadcast protocols implement precisely the predicates computable in non-

deterministic linear space.

4 Our models

4.1 Proposed models

We propose a general notion of an unreliable communication version of a protocol. Our notion models

transient failures, so the set of agents is preserved. The intuition we formalise is the idea that for every

possible transition some agents may fail to update their states (and keep their corresponding old states). We

also require that for some passive agent to receive a transmission, the transmission has to occur (and active

agents who transmit do not update their state if they fail to transmit, although a successful transmission

can still fail to be received).
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Definition 13. A protocol with unreliable communication, corresponding to a protocol P , is a protocol that

differs from P only in the transition relation. For every allowed transition C
A⊙

−−→ C′ we also allow all the

transitions C
A⊙

−−→ C′′ where C′′ satisfies the following conditions.

• Population preservation. Dom(C′′
A) = Dom(C′

A), Dom(C′′
P ) = Dom(C′

P ).

• State preservation. For every agent a ∈ Dom(C′′
A): C

′′
A(a) ∈ {CA(a), C

′
A(a)}.

• Message preservation. For every packet p ∈ Dom(C′′
P ): C

′′
P (p) = C′

P (p).

• Reliance on active agents. Either for every agent a /∈ A⊙ we have C′′
A(a) = CA(a), or for every

agent a ∈ A⊙ we have C′′
A(a) = C′

A(a).

Example 5. • Population protocols with unreliable communication allow an interaction to update the

state of only one of the two agents.

• Immediate transmission population protocols with unreliable communication allow the sender to update

the state with no receiving agents.

• Immediate observation population protocols with unreliable communication do not differ from ordinary

immediate observation population protocols, because each transition changes the state of only one

agent. Failing to change the state means a no-change transition which is already allowed anyway.

• Queued transmission protocols with unreliable communication allow messages to be discarded with no

effect. Note that for delayed observation protocols unreliable communication doesn’t change much, as

sending the messages also has no effect.

• Broadcast protocols with unreliable communication allow a broadcast to be received by an arbitrary

subset of agents.

4.2 The main result

Our main result is that no class of protocols with unreliable communication can be more expressive than

immediate observation protocols.

Definition 14. A cube is a subset of Nk defined by a lower and upper (possibly infinite) bound for each

coordinate. A counting set is a finite union of cubes.

A counting predicate is a membership predicate for some counting set. Alternatively, we can say it is a

predicate that can be computed using comparisons of input values with constants and logical operations.

Theorem 3. The set of predicates that can be implemented by protocols with unreliable communication is the

set of counting predicates. All counting predicates can be implemented by (unreliable) immediate observation

protocols.
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5 Proof of the main result

Our main lemma is generalises of the copycat lemma normally applied to specific models such as immediate

observation protocols. The idea is that for every initial configuration there is a fair execution that can be

extended to a possibly unfair execution by adding a copy of a chosen agent. In some special cases, for

example, broadcast protocols with unreliable communication, a simple proof can be given by saying that

if the original agent participates in an interaction, the copy should do the same just before the original

without anyone ever receiving the broadcasts from the copy. The copycat arguments are usually applied to

models where a similar proof suffices. The situation is more complex for models like immediate transmission

protocols with unreliable communication. As a message cannot be received without being sent, the receiver

cannot update its state if the sender doesn’t. We present an argument applicable in the general case.

Definition 15. Let E be an arbitrary execution of protocol P with initial configuration C. Let a ∈ Dom(CA)

be an agent in this execution. Let a′ /∈ Dom(CA) be an agent, and C′ = C ∪ {a′ 7→ CA(a)}. A set Ea of

executions starting in configuration C′ is a shadow extension of the execution E around the agent a if the

following conditions hold:

• removing a′ from each configuration in any execution in Ea yields E;

• for each moment during the execution, there is a corresponding execution in Ea such that a and a′

have the same state at that moment.

The added agent a′ is a shadow agent, and elements of Ea are shadow executions. A protocol P is shadow-

permitting if for every configuration C there is a fair execution starting from C that has a shadow extension

around each agent a ∈ Dom(CA).

Note that the executions in Ea might not be fair even if E is fair.

Not all population protocols are shadow-permitting. For example, consider a protocol with one input

state q0, additional states q+ and q−, and one transition (q0, q0) → (q+, q−). As the number of agents in the

states q+ and q− is always the same, one can’t add a single extra agent going from state q0 to state q+.

Lemma 2. All protocols with unreliable communication are shadow-permitting.

The intuition behind the proof is the following. We construct a fair execution together with the shadow

executions and keep track what states can be reached by the shadow agents. The set of reachable states will

not shrink, as the shadow agent can always just fail to update. If an agent a tries to move from a state q to

a state q′ not reachable by the corresponding shadow agent in any of the shadow executions, we “split” the

shadow execution reaching q: one copy just stays in place, and in the other the shadow agent a′ takes the

place of a in the transition while a keeps the old state. In the main execution there is no a′ so a participates

in the interaction but fails to update. Afterwards we restart the process of building a fair execution.

Proof. We construct an execution and the families Ea in parallel, then show that the resulting execution E

is fair. We say that a state q is a-reachable after k transitions, if there is an execution in Ea such that a′ has
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state q after k transitions. The goal of the construction is to ensure that the set of a-reachable states grows

as k increases and contains the state of a after k transitions.

Consider an initial configuration C. We build the execution E and its shadow extensions Ea for each

a ∈ Dom(CA) step by step. Initially, E = (C) and Ea has exactly one execution, namely (C∪{a′ 7→ CA(a)}).

We pick an arbitrary fair continuation E∞ starting with E.

At each step we extend E = (E0 = C,E1, . . . , Ek) by one configuration and update Ea for each a ∈

Dom(CA). Consider the next configuration in E∞, which we can denote E∞
k+1. By definition there exists a

set of agents A⊙ such that E∞
k

A⊙

−−→ E∞
k+1. We consider the following cases.

Case 1: For each agent a the state E∞
k+1(a) is a-reachable (after k transitions).

We set Ek+1 = E∞
k+1(a) and keep the same E∞. In other words, we just copy the next transition from

E∞. Then for each agent a ∈ Dom(CA) and for each E′
a ∈ Ea we set (E′

a)k+1 = Ek+1 ∪ {a′ 7→ (E′
a)k(a

′)},

i.e. say that a′ fails to update its state.

Case 2: For each active agent a⊙ ∈ A⊙ the state E∞
k+1(a

⊙) is a⊙-reachable, but there is a passive agent

a /∈ A⊙ such that the state E∞
k+1(a) is not a-reachable (after k transitions).

We construct Ek+1 such that Ek+1(a
⊙) = E∞

k+1(a
⊙) for each active a⊙ ∈ A⊙, and Ek+1(a) = Ek(a)

for each passive agent a ∈ Dom(CA) \ A⊙. In other words, all the active agents perform the update, but

all the passive agents fail to update. The message packets are still consumed or created as if we performed

the transition Ek = E∞
k

A⊙

−−→ E∞
k+1, i.e. (Ek+1)P = (E∞

k+1)P . As E∞ is now not a continuation of E, we

replace E∞ with an arbitrary fair continuation of our new E. Then for each E′
a ∈ Ea we set (E′

a)k+1 =

Ek+1 ∪ {a′ 7→ (E′
a)k(a

′)} like in the previous case. Also, for each passive agent a ∈ Dom(CA) \A
⊙ we add a

trajectory E′′
a to Ea obtained by modifying an existing trajectory E′

a ∈ Ea such that (E′
a)k(a

′) = (E′
a)k(a).

We set (E′′
a )k+1(a

′) = E∞
k+1(a), and keep everything else the same as in E′

a. In other words, we make a′

perform the update that a would perform in E∞.

Case 3: There is an active agent a ∈ A⊙ such that the state E∞
k+1(a) is not a-reachable (after k

transitions).

We set (Ek+1)A = (Ek)A, i.e. we say that all the agents fail to update. The message packets are still

consumed or created as if we performed the transition Ek = E∞
k

A⊙

−−→ E∞
k+1, i.e. (Ek+1)P = (E∞

k+1)P . As

E∞ is now not a continuation of E, we replace E∞ with an arbitrary fair continuation of our new E. Then

for each E′
a ∈ Ea we set (E′

a)k+1 = Ek+1 ∪ {a′ 7→ (E′
a)k(a

′)} (like in the previous two cases). Also, for each

active agent a ∈ A⊙ we add a trajectory E′′
a to Ea obtained by modifying an existing trajectory E′

a ∈ Ea

such that (E′
a)k(a

′) = (E′
a)k(a). We set (E′′

a )k+1(a
′) = E∞

k+1(a), and keep everything else the same as in E′
a.

In other words, we allow a′ to update its state in the way a would do in E∞.

We now prove that the above construction is always correctly defined and yields a fair execution E

together with shadow extensions around each agent.

First we show that we always continue E in a valid way, i.e. Ek
A⊙

−−→ Ek+1. In the first case it is true by

construction as Ek = E∞
k and Ek+1 = E∞

k+1. In the second and the third case, we modify the states of some

agents in the second configuration of a valid transition E∞
k

A⊙

−−→ E∞
k+1 by assigning them the states from the
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first configuration. Such changes clearly cannot violate population preservation and message preservation.

State preservation is satisfied because we replace the agent’s state in the second configuration with the state

from the first configuration. The case split between the cases 2 and 3 ensures reliance on active agents; we

either make sure that all the active agents update their state, or none of them. Therefore, all the conditions

of the Definition 13 are satisfied and the changed transition is also present in the protocol with unreliable

communication.

As the updated execution E is a valid finite execution, we can find a fair continuation E∞ as the fairness

condition is eventual.

When we extend the executions in the shadow extensions by repeating the same state, we just use

possibility to add passive agents to add a′ to the valid transition from E, then observe that making a passive

agent fail to update is always allowed in an protocol with unreliable communication.

When we add new trajectories in cases 2 and 3, we use possibility to add passive agents to add a′ to the

valid transition from E, then we use agent anonymity to swap the state changes of a and a′, then we use

unreliability to make the (passive) agent a fail to update the state, as well as either all the passive or all the

agents from Dom(CA).

So far we know that the construction can be performed and yields a valid execution E and some valid

executions in each Ea. Now we check that each Ea is a shadow extension around a, and E is fair. We observe

that our construction indeed only increases the set of a-reachable states as the number of transitions grows.

Furthermore, at each step either agent a moves to an a-reachable state, or a stays in an a-reachable state,

thus Ea is indeed a shadow extension around the agent a. Whenever the fair continuation E∞ is changed, for

at least one agent a the set of a-reachable states strictly increases. As the set of agents is finite and cannot

change by agent conservation, and the set of states is finite, all but a finite number of steps correspond to

the case 1. Therefore from some point on E∞ does not change and E coincides with it, and therefore E is

fair.

This concludes the proof of the lemma.

We also use a straightforward generalisation of the truncation lemma from [5]. The lemma says that all

large amounts of agents are equivalent for the notion of stable consensus.

Definition 16. A protocol is truncatable if there exists a number K such that for every stable consensus

adding an extra agent with a state q that is already represented by at least K other agents yields a stable

consensus.

Lemma 3 (adapted from [5]). All protocols (not necessarily with unreliable communication) are truncatable.

Proof. Every configuration can be summarised by an element of NQ∪M (each state is mapped to the number

of agents in this state, each message is mapped to the number of packets with this message). In other words,

we can forget the identities and consider the multiset of states and messages. If a configuration is a consensus

(correspondingly, stable consensus), all the configurations with the same multiset of states and messages are
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also consensus configurations (correspondingly, stable consensus configurations). The set ST of elements

of NQ∪M not representing stable consensus configurations is upwards closed, because reaching a state with

a different local output value cannot be impeded by adding agents or packets. Indeed, if we can reach a

configuration CST with some state q present, we can always use addition of passive agents to each transition

of the path and still have a path of valid transitions from a larger configuration to some configuration C∗
ST

with state q still present. By possibility to ignore extra packets, we can also allow additional packets in the

initial configuration. By Dickson’s lemma, the set ST of non-stable-consensus state multisets has a finite

set of minimal elements STmin. We can take K larger than all coordinates of all minimal elements. Then

adding more agents with the state that already has at least K agents leads to increasing a component larger

than K in the multiset of states. This cannot change any component-wise comparisons with multisets from

STmin, and therefore belonging to ST and being or not a stable consensus.

Remark 2. A specific bound on the truncation threshold K can be obtained using the Rackoff’s bound for

the size of configuration necessary for covering in general Vector Addition Systems [27].

Lemma 4. If a predicate ϕ can be implemented by a shadow-permitting truncatable protocol, then ϕ is a

counting predicate.

Proof. Let K be the truncation constant. We claim that ϕ can be expressed as a combination of threshold

predicates with thresholds no larger than |Q| ×K.

More specifically, we prove an equivalent statement: adding 1 to an argument already larger than |Q|×K

doesn’t change the output value of ϕ. Let us call the state corresponding to this argument q. Indeed, consider

any corresponding input configuration. We can build a fair execution starting in it with shadow extensions

around each agent. As the predicate is correctly implemented, this fair execution has to reach a stable

consensus. By assumption (and pigeonhole principle), more than K agents from the state q end up in the

same state. By definition of shadow extension, there is an execution starting with one more agent in the

state q, and reaching the same stable consensus but with one more agent in a state with more than K other

ones (which doesn’t break the stable consensus). Continuing this finite execution to a fair execution we see

that the value of ϕ must be the same. This concludes the proof.

For the lower bound, we adapt the following lemma from [5].

Lemma 5. All counting predicates can be implemented by immediate observation protocols (possibly with

unreliable communication), even if the fairness condition is replaced with an arbitrary different (activity-

ensuring) one.

Proof. We have already observed that immediate observation population protocols do not change if we add

unreliability. It was shown in [5] that immediate observation population protocols implement all counting

predicates. Moreover, the protocol (k, k) 7→ (k+1, k); (k, n) 7→ (n, n) provided there for threshold predicates

has the state of each agent increase monotonically. It is easy to see that ensuring activity is enough for this
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protocol to converge to a state where no more configuration-changing transitions can be taken. Also, the

construction for boolean combination of predicates via direct product of protocols used in [5] converges as

long as the protocols for the two arguments converge. Therefore it doesn’t need any extra restrictions on

the fairness condition.

Theorem 3 now follows from the fact that all the protocols with unreliable communication are shadow-

permitting (by Lemma 2) and truncatable (by Lemma 3), therefore they only implement counting predicates.

By Lemma 5 all counting predicates can be implemented.

6 Non-monotonic impact of unreliability

In this section we observe that, surprisingly, while delayed transmission protocols and queued transmission

protocols are more powerful than immediate observation population protocols, their unreliable versions are

strictly less expressive than immediate observation population protocols (possibly with unreliable communi-

cation).

Definition 17. A protocol is fully asynchronous if for each allowed transition (C,A⊙, C′) the following

conditions hold.

• There is exactly one active agent, i.e. |A⊙| = 1.

• No passive agents change their states.

• Either the packets are only sent or the packets are only consumed, i.e. Dom(CP ) ⊆ Dom(C′
P ) or

Dom(CP ) ⊇ Dom(C′
P ). Packet contents do not change, i.e. CP |Dom(CP )∩Dom(C′

P
)= C′

P |Dom(CP )∩Dom(C′
P
).

It turns out that given unreliable communication such protocols can check presence of states but cannot

count. As our old notion of ensuring activity doesn’t force any messages to be ever received, we need a

slightly stronger fairness condition for any positive claims.

Definition 18. A fairness condition ensures communication if the following two conditions hold in every

fair run.

1. If the agent states CA do not change after some moment, from each configuration occurring after some

later moment there is no possible transition changing CA.

2. If the set of messages present in CP (ignoring multiplicities) does not change after some moment, then

for each configuration after some later moment there is no possible transition that creates a packet

with a new message.

Theorem 4. Fully asynchronous protocols with unreliable communication compute exactly the predicates

that are boolean combinations of positivity of single coordinates.

The upper bound holds under any eventual fairness condition, while the lower bound requires a fairness

conditions that ensures communication.
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The core idea of the proof is to ensure that in a reachable situation rare messages do not exist and cannot

be created. In other words, if there is a packet with some message, or if such a packet can be created,

then there are many packets with the same message. This makes irrelevant both the production of new

messages by agents, and the exact number of agents needing to follow a particular sequence of transitions.

This idea has some similarity with the message saturation construction from [20], but here the production of

new messages might require consuming some of the old ones. We choose the threshold for “many” packets

depending on the number of messages that do not yet have “many” packets. The threshold ensures that a

new message will become abundant before we exhaust the packets for any previously numerous message.

Definition 19. The in-degree of a fully asynchronous protocol is the maximum number of messages con-

sumed in a single transition.

The supply of a message m ∈ M in configuration C is the number of packets in C with the message m,

i.e. |C−1
P (m)|.

Let F (x, y, z, n, k) = (32(xyzn + 1))32(xyzn+1)−2k. An abundance set is the largest set M∞ ⊆ M such

that the supply of each message in M∞ is at least F (|Q|, |M |, d, |CA|, |M
∞|) where d is the in-degree. As

F decreases in the last argument, the abundance set M∞(C) is well-defined. A message m is abundant in

configuration C if it is in the abundance set, i.e. m ∈ M∞(C). A message m is expendable at some moment

in execution E if it is abundant in some configuration that has occurred in E before that moment. A packet

is expendable if it bears an expendable message.

An execution E is careful if no transition that decreases the supply of non-expendable messages changes

agent states.

Remark 3. The function F is chosen to make its rate of growth obviously sufficient in the following calcula-

tions. A much smaller function would suffice for a more tedious analysis.

Lemma 6. Every fully asynchronous protocol with unreliable communication has a careful fair execution

starting from any configuration without message packets.

Moreover, if the protocol is well-specified, there is a careful fair execution that runs each packet-consuming

transition twice in a row, failing to update the state the first time, until stable consensus is reached.

Proof. We start with an execution with only the initial configuration.

In the first phase, as long as it is possible to create a packet with a non-expendable message (without

making the execution careless), we do it while consuming the minimal possible number of packets with

expendable messages. After creating each packet we increase the abundance set if possible.

In the second phase, a long as it is possible to consume a packet with a non-expendable message, we do

it (but fail to update the agent states).

In the third phase we reach a stable consensus by consuming the minimal number of packets. We call

the end of the third phase the target moment. Afterwards we pick an arbitrary fair continuation.

We now prove that each abundance set with a new message obtained during the first phase includes all

the previous abundance sets. We only use the ways to create a new non-expendable packet that do not
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require consuming any non-expendable packets. Indeed, consuming a non-expendable packet is not allowed

to change the internal state by definition of carefulness, and cannot create any new messages by definition of

a fully asynchronous protocol. Note that reaching the internal state that can create a new non-expendable

packet can take most |Q|×n transitions as all the expendable packets are already available for consumption

and thus there is no reason to repeat the same internal state of the same agent twice. Therefore creating

an additional non-expendable packet can consume at most |Q| × n × d packets. To make the supply of

some message reach F (|Q|, |M |, d, n, k + 1), we need to repeat this at most F (|Q|, |M |, d, n, k + 1) × |M |

times consuming at most F (|Q|, |M |, d, n, k+1)×M | × |Q| × n× d expendable packets. We might consume

twice as many expendable packets if we want to fail every other packet consumption transition. As 3 ×

F (|Q|, |M |, n, d, k + 1)× |M | × |Q| × n× d < F (|Q|, |M |, d, n, k), all the expendable messages together with

this message form an abundance set.

In the second phase, we run consumption in at most |Q| states; reaching each of them requires at most |Q|

transitions. Thus the state changes consume at most |Q|2×d expendable packets. Note that consuming a non-

expendable packet requires consuming at most d expendable packets. As the supply of each non-expendable

message is less than F (|Q|, |M |, d, n, |M∞|+1), we consume at most d×(|Q|2+|M |×F (|Q|, |M |, d, n, |M∞|+

1)). We also could have spent twice as many expendable messages if the non-expendable messages were not

the limiting factor. Therefore we still have more than F (|Q|, |M |, d, n, |M∞|+ 1) > 4× |Q| × n× d packets

with each expendable message left by the time there are no non-expendable packets that can be received in

a reachable state and no possibility to create a non-expendable packet.

A reachable stable consensus exists if the protocol computes some predicate. As it is impossible to

produce or consume new non-expendable messages, we cannot violate the carefulness property. Moreover,

we can reach it while spending at most |Q|×n× d expendable packets (or twice as many if we fail to update

the state every second time). That many packets are available, so producing new expendable packets is not

required.

We see that the construction indeed provides a careful fair execution. Thus the lemma is proven.

As the execution obtained via the previous lemma wastes a lot of messages, we can add one more agent

to make use of those messages.

Lemma 7. Consider a fully asynchronous protocol with unreliable communication that computes some pred-

icate.

Then for any input configuration, adding one more agent in an already present input state cannot change

the value of the predicate.

Proof. Consider a careful execution constructed by Lemma 6. Consider an extra agent that we want to use

as a copycat of an existing one, which we call target.

If a transition performed by the target agent sends messages, so does the copycat agent. If a transition

requires receiving messages and the target agent updates the state, we cancel the previous transition where

the target agent failed to update the state after consuming the same messages, and let the copycat agent
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receive those messages and update the state. Thus the copycat agent always mimics the state of the target

agent.

Additionally, we extend phase two of the execution to consume the non-expendable messages sent by the

copycat agent. They are the same as the target agent has sent, and there is a reserve of expendable messages

for consuming these non-expendable messages (those that can be consumed in some reachable state).

As consumption of expendable messages did not allow to emit any non-expendable messages after reaching

the stable consensus, the same must be true when we add the copycat agent as the set of reachable agent

states without producing or consuming non-expendable messages is the same. But then the set of all the

reachable states is the same, and we get a stable consensus with the same answer.

As the protocol is well-specified, this concludes the proof.

Corollary 1. A predicate computed by a fully asynchronous protocol with unreliable communication only

depends on which coordinates are positive.

Proof. Consider two configurations with the same set of represented input states. By repeated addition of

copycat agents we can prove that the predicate value for either of configurations is the same as the predicate

value for their union.

It is clear that the predicates that only depend on the set of positive coordinates can be computed.

Lemma 8. For any fairness condition ensuring communication, and for any predicate only depending on

positivity of arguments, there is a fully asynchronous protocol computing that predicate.

Proof. We just describe the protocol informally. The messages correspond to the input states. The states

correspond to nonempty states of the input state (which are known to the agent to be initially present).

An agent can send a message corresponding to an initial state in the agent’s set. An agent can receive a

message and add the corresponding initial state to the set. An agent has output value equal to the value of

the predicate on the input where all the input states from the agent’s set get the value 1, while the others

get 0.

Ensuring communication implies that the only stable situation is when all the initially present input

states are reflected in message packets, and are also reflected in the sets of all the agents.

The theorem now follows from Corollary 1 and Lemma 8.

Remark 4. This result doesn’t mean that fundamentally asynchronous nature of communication prevents us

from using any expressive models for verification of unreliable systems. It is usually possible to keep enough

state to implement, for example, immediate observation via request and response.

7 Conclusion and future directions

We have studied unreliability based on message loss, a practically motivated approach to fault tolerance in

population protocols. We have shown that inside a general framework of defining protocols with unreliable
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communication we can prove a specific structural property that bounds the expressive power of protocols with

unreliable communication by the expressive power of immediate observation population protocols. Immediate

observation population protocols permit verification of many useful properties, up to well-specification,

correctness and reachability between counting sets, in polynomial space. We think that relatively low

complexity of verification together with inherent unreliability tolerance and locally optimal expressive power

under atomicity violations motivate further study and use of such protocols.

It is also interesting to explore if for any class of protocols adding unreliability makes some of the veri-

fication tasks easier. Both complexity and expressive power implications of unreliability can be studied for

models with larger per-agent memory, such as community protocols, PALOMA and mediated population

protocols. We also believe that some models even more restricted than community protocols but still per-

mitting a multi-interaction conversation are an interesting object of study both in the reliable and unreliable

settings.
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