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Abstract. Goal models and contracts offer complementary approaches
to requirement analysis. Goal modeling has been effectively used to cap-
ture designer’s intents and their hierarchical structure. Contracts empha-
size modularity and formal representations of the interactions between
system components. In this paper, we present CoGoMo (Contract-based
Goal Modeling), a framework for systematic requirement analysis, which
leverages a new formal model, termed contract-based goal tree, to repre-
sent goal models in terms of hierarchies of contracts. Based on this model,
we propose algorithms that use contract operations and relations to check
goal consistency and completeness, and support incremental and hierar-
chical refinement of goals from a library of goals. Model and algorithms
are implemented in a tool which enables incremental formalization and
refinement of goals from a web interface. We show the effectiveness of our
approach on an illustrative example motivated by vehicle platooning.

1 Introduction

Missing or erroneously formulated requirements can have a negative impact on
the quality of a design. Designers are often faced with the challenge of ensur-
ing the correctness of an implementation despite the growing complexity of the
requirement corpora [29]. Existing requirement-management tools are mostly
based on natural-language constructs that leave space for ambiguities, redun-
dancies, and conflicts [13,23]. Furthermore, the requirement elicitation process
is itself challenging, as it revolves around human-related considerations that are
intrinsically difficult to capture.

Goal modeling (e.g., as in KAOS [31,9]) has been used over the years as an in-
tuitive and effective means to capture the designer’s intents and their hierarchical
structure. The refinement process, however, mostly follows informal procedures,
e.g., by posing how questions about existing high-level goals (top-down pro-
cess) or why questions about low-level goals for the system under consideration
(bottom-up process) [32,29]. The main modeling challenges are framed in terms
of ensuring completeness and consistency of a specification. A set of hierarchi-
cally organised goals is incomplete when the high-level goal remains unsatisfied
even if the low-level goals, which are expected to capture its decomposition, are
satisfied, meaning that the designer could not anticipate all the possible operat-
ing scenarios for the design. There is, instead, a conflict when the satisfaction of
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a goal prevents the satisfaction of another goal [30]. The process of completely
refining a goal into sub-goals is not straightforward [11]. On the other hand,
independently-developed goals can include overlapping and conflicting behav-
iors [12]. Systematic methods to detect conflicts and incomplete requirements
remain an active research area [21,4,14].

This paper presents a framework, CoGoMo (Contract-based Goal Model-
ing), which addresses these challenges by representing goals via contract models.
Contract-based modeling has shown to enable formal requirement analysis in a
modular way, rooted in sound representations of the system semantics and de-
composition architecture [2,27,8,25,22,24,23]. A contract specifies the behavior
of a component by distinguishing the responsibilities of the component (guar-
antees) from those of its environment (assumptions). Contract operations and
relations provide formal support for notions such as stepwise refinement of high-
level contracts into lower-level contracts, compositional reasoning about contract
aggregations, and reuse of pre-designed components satisfying a contract. Co-
GoMo addresses correctness and completeness of goal models by formulating
and solving contract consistency and refinement checking problems. Specifically,
the contributions of the paper can be summarised as follows:

– A novel formal model, namely, contract-based goal tree (CGT), which repre-
sents a goal model as a hierarchy of assume-guarantee (A/G) contracts.

– Algorithms that exploit the CGT as well as contract-based operations to de-
tect conflicts and perform complete hierarchical refinements of goals. Specif-
ically, we introduce mechanisms that help resolve inconsistencies between
goals during refinement and a goal extension algorithm to automatically
refine the CGT using new goals from a library.

– A tool, which implements the proposed model and algorithms to incremen-
tally formalize and refine goals via an easy-to-use web-interface.

We illustrate the applicability of CoGoMo on a case study motivated by vehicle
platooning.

2 Background

Goals. A goal is a prescriptive statement of intent that the system should sat-
isfy, formulated in a declarative way. Goals can be decomposed, progressing from
high-level objectives to fine-grained system prescriptions [31]. For example, an
AND-refinement link relates a goal to a set of sub-goals. The parent can be
satisfied if all the sub-goals in the refinement are also satisfied. Establishing
correctness of the refinement amounts to ensuring that the sub-goals are con-
sistent, i.e., there are no conflicts among them, and complete, i.e., there are no
behaviours left unspecified that could result in a violation of the high-level goal
even if the lower-level goals are satisfied. We only refer to internal completeness,
i.e., we are not concerned with investigating whether all the information required
to define a design problem is in the specification [34]. Formally, we say that the
refinement of goal G into sub-goals G1,G2, . . . ,Gn is correct if and only if



Incremental Refinement of Goal Models with Contracts 3

{G1,G2, . . . ,Gn} 6|= false︸ ︷︷ ︸
consistency

∧ {G1,G2, . . . ,Gn} |= G,︸ ︷︷ ︸
completeness

where we denote by |= the entailment operator between goals and say that
{G1, . . . ,Gn} entails G to mean that, if all G1, . . . ,Gn are satisfied then G is
satisfied. Similarly, we write {G1,G2, . . . ,Gn} 6|= false to indicate that the logical
conjunction of {G1,G2, . . . ,Gn} does not lead to false.
Contracts. A contract C is a triple (V,A,G) where V is a set of variables, and
A and G are sets of behaviors over V . Behaviors are generic. For example, they
can be traces generated by the execution of a finite state machine, i.e., infinite
sequences of assignments to the variables in V , consisting of the input, output,
and state variables of the state machine. For simplicity, whenever possible, we
drop V from the definition and refer to contracts as pairs of assumptions and
guarantees, i.e., C = (A,G). A expresses the behaviors that a system expects
from its environment, while G expresses the behaviors that a system implemen-
tation promises under the environment assumptions. An environment E satisfies
a contract C whenever E and C are defined over the same set of variables and
all the behaviors of E are included in the assumptions of C, i.e., when |E| ⊆ A,
where |E| is the set of behaviors of E. An implementation M satisfies a con-
tract C whenever M and C are defined over the same set of variables and all
the behaviors of M are included in the guarantees of C when considered in the
context of the assumptions A, i.e., when |M | ∩ A ⊆ G. A contract C = (A,G)
can be placed in saturated form by re-defining its guarantees as Gsat = G ∪ A,
where A denotes the complement of A. A contract and its saturated forms are
semantically equivalent, i.e., they have the same set of environments and imple-
mentations. Therefore, in the rest of the paper, we assume that all the contracts
are expressed in saturated form [2].

We say that a contract is well-formed if and only if it is compatible, i.e.,
A 6= ∅ and consistent, i.e., G 6= ∅, that is, if and only if there exists at least an
environment and an implementation that satisfy the contract. Contract refine-
ment formalizes a notion of substitutability among contracts. Let C = (A,G)
and C′ = (A′, G′) be two contracts. C refines C′ if and only if all the assumptions
of C′ are contained in the assumptions of C and all the guarantees of C are in-
cluded in the guarantees of C′, that is, C � C′ if and only if A ⊇ A′ and G ⊆ G′.
Refinement entails relaxing the assumptions and strengthening the guarantees.
If C � C′, we also say that C′ is an abstraction of C and can be replaced by C.

Contracts can be combined through the operations of composition and con-
junction. Let C1 = (A1, G1) and C2 = (A2, G2) be two contracts. The compo-
sition C‖ = (A,G) = C1 ‖ C2 can be computed using the following expressions:

A = (A1∩A2)∪ (G1 ∩G2) and G = G1∩G2. The conjunction C∧ = C1 ∧ C2 can
instead be computed by taking the intersection of the guarantees and the union
of the assumptions, that is, C∧ = (A1 ∪ A2, G1 ∩G2). Intuitively, an implemen-
tation satisfying C‖ or C∧ must satisfy the guarantees of both C1 and C2, hence
the operation of intersection. The situation is different for the environments.
Composition requires that an environment satisfy the assumptions of both con-
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tracts, motivating the conjunction of A1 and A2. On the other hand, contract
conjunction requires that an implementation operate under all the environments
of C1 and C2, motivating the disjunction of A1 and A2.

In the following, we denote by Ci = (ψi, φi) the contract formalizing a goal
Gi, where ψi and φi are logic formulas used to represent the assumptions and the
guarantees, respectively. Finally, we perform operations among goals by trans-
lating them into operations on the corresponding contracts.

3 Running Example: Vehicle Platooning

We consider a case study inspired by vehicle platooning as an illustrative exam-
ple throughout the paper. We define goals for a vehicle participating in a platoon
in the following mode, which adjusts speed and steering angle based on what is
communicated by the leading vehicle. We assume that all the vehicles in the
platoon communicate via Vehicle Ad hoc Networks (VANETs), established with
the IEEE 802.11p standard, a specially designed protocol for intelligent trans-
portation systems (ITS) [33], offering at most 27 Mbps of data transmission rate.
The propagation delay is the difference between the time-stamps for message re-
ception, tRx, and message transmission, tTx, i.e., d = tRx − tTx. The necessary
time interval d(i,j) for a successful end-to-end transmission of a message of L
bits between a pair of vehicles (i, j) is:

d(i,j) =
L

f(i,j)
, (1)

where f(i,j) is the transmission rate between the i-th and the j-th vehicle. We
consider a platoon consisting of N vehicles, where the first one is the leader
and the remaining N − 1 are the followers. To reach all followers, a message
generated by the leader propagates for at most N −1 hops. We assume the same
transmission rate f = 3 Mbps between adjacent vehicles and a fixed message
length size L = 400 bytes.

4 The CoGoMo Approach

CoGoMo revolves around a new formal model, termed contract-based goal tree
(CGT), and a set of operations on it. A CGT is a tree T = (Υ,Σ), where each
node υ ∈ Υ = Γ ∪ ∆ is either a goal node γ ∈ Γ or an operator node δ ∈ ∆,
with Γ ∩∆ = ∅. Each goal node contains the formalization of a goal in terms of
a contract. Each operator node assumes a value in the set {‖,∧, �} of available
operators, namely, composition, conjunction, and refinement, respectively. Each
edge σ ∈ Σ connects a goal node in Γ to an operator node in ∆ or vice versa.
Figure 1 shows a portion of a CGT for the vehicle platooning example, where
each goal node includes a textual description of a goal. A library L of goals, at
the bottom of the figure, is used to automatically extend the CGT. A library
of goals is a set of pre-defined goals, e.g., specification patterns, that can be
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Fig. 1: Portion of the CGT for the vehicle platooning example.

labelled by a cost, capturing the overhead incurred when employing a certain
goal to extend the CGT, as further illustrated below.

A CGT can be built interactively using a web interface and with the support
of a proof-of-concept tool, which is released open-source [18]. A designer can in-
sert (new) goals by typing or uploading a structured text file, while the contracts
are specified by formulas expressed in the language of an SMT solver [10]. The
specification formalization process then iterates between two activities: (i) goal
identification and formalization with A/G contracts, and (ii) goal manipulation,
incrementally linking goals via composition, conjunction, and refinement. The
outcome is a formal specification in terms of a CGT.

4.1 Goal Formalization

CoGoMo enables requirement formalization by representing goals in terms of
contracts. It then solves contract verification problems to detect conflicts and
incompleteness among goals. Specifically, completeness and consistency checking
problems translate into checking the satisfiability and validity of logic formulas
via an SMT solver [10]. In this paper, we express contract assumptions and
guarantees as formulas in propositional logic, where atomic propositions include
Boolean variables or arithmetic predicates on real variables.

Detecting Conflicts. CoGoMo detects conflicts by checking the compatibil-
ity, consistency, and feasibility of each contract formalizing a goal in the CGT.
Feasibility checking aims to verify that there exists at least an implementa-
tion which does not violate the assumptions, that is, for contract C = (A,G),
A ∩ G 6= ∅ holds. CoGoMo verifies compatibility, consistency, and feasibility
of a contract (ψ, φ) by checking whether ψ, φ, and ψ ∧ φ are satisfiable, respec-
tively. In case of conflict, the SMT solver provides an explanation of infeasibility
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Fig. 2: Examples of three goals formalized by contracts. After linking the goals
via composition and refinement, CoGoMo detects that the refinement is incom-
plete.

in terms of an unsat core, i.e., a subset of clauses that are mutually unsatisfi-
able [10]. CoGoMo then links the conflicting clauses to the goals that generated
them and presents these goals to the designer.

Checking Completeness. CoGoMo checks completeness by verifying that all
the refinement links of the CGT are correct. Given two contracts, C = (ψ, φ) and
C′ = (ψ′, φ′), C � C′ holds if and only if ψ′ → ψ and φ→ φ′ are valid formulas,
i.e., they are tautologies for the language, where → denotes the implication.
Validity checking can be translated into checking the satisfiability of ψ′ → ψ or
φ→ φ′. If no solution is found, then the refinement is correct; otherwise, the
returned solution serves as a certificate of incompleteness, and is exhibited to
the designer.

4.2 Goal Manipulation via Composition and Refinement

CoGoMo uses composition to capture with a single goal the composite be-
haviors resulting from the composition of modules (implementations) that are
separately specified by different goals. For example, goal Gc in Figure 1 can be
refined by the composition of Gc1 with Gc2. Figure 2 proposes an initial for-
malization of Gc as a contract Cc and its further decomposition into two goals,
Gc1 and Gc2, establishing requirements on the network connection and the fol-
lower’s speed and angle ranges, respectively. Gc1 specifies the propagation delay
d according to the transmission rate f (in Mbps), the message length L, and
the position n of the follower participating in the platoon. Assuming a working
network connection, Gc2 guarantees that the speed of the follower is at most
150 km/h and its steering angle at most 30◦ (0.52 rad). We would like to show
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that Gc1 ‖ Gc2 = Gc1‖c2 can be connected to the top goal Gc via refinement,
i.e., Gc1‖c2 � Gc. To do so, CoGoMo first checks for conflicts between Gc1 and
Gc2 by verifying that the contract associated with Gc1‖c2 is compatible, consis-
tent, and feasible, which is the case in our example. However, CoGoMo detects
that Gc1‖c2 is not a refinement of Gc and provides a certificate showing that, for

the 10th follower in the platoon, the propagation delay is slightly larger than
d = 0.01, which violates the guarantees of Cc. It is, however, still possible to
circumvent the incompleteness of the refinement by strengthening the assump-
tions of Gc1‖c2 to limit the size of the platoon to less than 10 vehicles, and by
“propagating” this restriction to Gc via a mechanism of assumption propagation,
as detailed below.

Assumptions Propagation. When eliciting the top-level goals of a specifica-
tion in a hierarchical way, we may discover additional assumptions, associated
with lower-level goals in the hierarchy, which were not known a priori. This in-
consistency between assumptions at different levels of the hierarchy may be a
reason for incompleteness in the refinement. Let Ga and Gr be two goals, and
Ca = (ψa, φa) and Cr = (ψr, φr) their respective contracts. Assumption propaga-
tion ensures that ψa → ψr is valid, by propagating the assumption formula from
the lower-level contract to the upper-level contract and conjoining it with the
assumptions of the higher-level contract so that behaviors that are not in ψr are
removed from ψa and ψa is redefined as (ψa∧ψr). After assumption propagation,
the top-level guarantees will also be updated by bringing Ca again in saturated
form, i.e., by setting the guarantees to φa ∨ (ψa ∧ ψr). In our example, the new
assumptions for Cc after propagation become

ψc = 3 < f < 27 ∧ data ∧ n < 10,

which makes refinement complete and allows creating a refinement node in the
CGT as in Figure 1.

4.3 Goal Manipulation via Conjunction

CoGoMo uses conjunction to generate a goal that refines multiple goals or
scenarios, which are active under different assumptions, and may not be simul-
taneously satisfiable. In our example, the goal Gs, ‘Regulate Speed,’ in Figure 1
can be decomposed into two sub-goals, G1 and G2, specifying how the speed of
a vehicle s should be regulated according to the leader’s speed sl or accord-
ing to the distance dfront to the front vehicle, respectively. Because G1 and G2
should both be satisfied, albeit in different situations, we can define a single goal
Gs = G1 ∧ G2 for the system. The same procedure applies to the decomposition
of G1 and G2. For example, the goal ‘Adjust Speed’ in Figure 1 can be achieved
by satisfying ‘Increase Speed’ or ‘Decrease Speed’ or ‘Keep Speed,’ which are
not simultaneously satisfiable but are active under different assumptions.

If the assumptions of G1 and G2 are not mutually exclusive, the conjunction
may require that potentially conflicting guarantees be satisfied simultaneously.
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For example, one of the contracts contributing to G1 may prescribe an increase
of the follower’s speed when there is an increase in the leader’s speed, i.e., C11 =
(st < sl, st+1 > st) where sl, st and st+1 represent the current speed of the
leader and the speed of follower vehicle at times t and t + 1, respectively. On
the other hand, one of the contracts contributing to G2 may prescribe a decrease
in the follower’s speed when the distance to the vehicle in front is detected and
it is less than a certain threshold, i.e., C′22 = (dist ∧ dfront < Dp, st+1 < st),
where dist evaluates to true if and only if the distance from the vehicle in front
was detected correctly and dfront < Dp indicates that the distance should be less
than a constant (i.e., “the platooning distance”). The assumptions of C11 and
C′22 can be satisfied simultaneously, possibly causing conflicts in the guarantees
of the joint contract (ψ11 → (st+1 > st)) ∧ (ψ′22 → (st+1 < st)). CoGoMo
prevents such conflicts via a goal priority mechanism.

Goal Priority. A goal priority mechanism P(G1,G2) avoids such potential con-
flicts by making the assumptions mutually exclusive so that only one goal is
effective under any environment. For instance, a priority mechanism may set
C2 = (ψ2 ∧ ψ1, φ2), assuming that ψ2 ∧ ψ1 is satisfiable, so that C1 is granted
higher priority and dominates whenever both ψ2 and ψ1 hold. Because the as-
sumptions of C2 become stronger, an assumption propagation step may also be
needed to keep the refinement relations correct across the CGT. In our example,
prioritizing G1 versus G2 solves the potential conflict. Gs can then be satisfied
if the vehicle adjusts its speed according to the information provided by the
distance sensor. When dfront is not available, as denoted by dist, the vehicle
regulates its speed according to the speed of the leader of the platoon.

When composing a goal that was previously obtained by conjunction, e.g.,
when composing G2 with Gc in Figure 1, it may be useful to separately reason
about the different scenarios involved in the composition. To do so, we use the
fact that, given three contracts C1, C2, and Cc, [(C1∧C2) ‖ Cc] = [(C1 ‖ Cc)∧ (C2 ‖
Cc)] holds, and we can separately identify the scenarios associated with (C1 ‖ Cc)
and (C2 ‖ Cc) in the composition. In words, while composition is not distributive
over conjunction in general [2], the distributive property holds in the special case
of three contracts as above. A proof of this result is in the appendix.

5 CGT Extension

Given a leaf node G′ in a CGT and a library of goals L, the extension problem
consists in finding a set of goals G1, G2, . . . , Gn in L, that, once composed, refine
G′. The CGT is then extended by linking G′ to a node Gs via refinement, and Gs
to G1, G2,. . . ,Gn via composition. Formally, we require:

Cs = C1 ‖ C2 ‖ .... ‖ Cn = (ψs, φs),

where ψs ∧ ψ′ is satisfiable and φs → φ′ is valid.
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Algorithm 1: Goals Selection

Input: Library of goals L = {G1,G2, ...,Gn} with contracts {C1, C2, ..., Cn}
respectively, input-goal G′ with contract C′ = (ψ′, φ′)

Output: Set of goals Lc ⊆ L that composed would result in a goal Gl and
contract Cl = (ψl, φl) such that ψl ∧ ψ′ is satisfiable and φl → φ′ is
valid.

1 Lc = ∅ is the set of goals to be returned
2 R = {(G1,G2,G4), (G1,G5), (G2,G3), ...} is a set of candidate compositions,

where each element Ri ⊆ L and the composition of the goals contained in Ri

results in a goal with a contract Cp = (ψp, φp), such that
– ψp ∧ ψ′ is a satisfiable formula
– φp → φ′ is a valid formula

3 K = {Gi,Gj , ..,Gm} = optimal selection(R)
4 Lc ← K adds the selected goals to Lc

5 S ← K where S is the set of goals whose assumptions need to be searched
in the library

6 while S 6= ∅ do
7 for goal Gs in S where Cs = (ψs, φs) do

7.1 Q = {(G1,G2,G3), (G2,G5), (G1,G3), ...} is a set of candidate
compositions, where each element Qi ⊆ L and the composition of the
goals in Qi has a contract Cq = (ψq, φq) such that:

– ψq ∧ ψ′ ∧ ψs is a satisfiable formula
– φq → ψs is a valid formula

7.2 H = {Gi,Gj , ..,Gm} = optimal selection(Q)
7.3 Lc ← Lc ∪H, S ← S ∪H
7.4 S ← S − {Gs} removes the Gs from S

8 return Lc

When connecting Gs to G′ via a refinement edge, CoGoMo also uses assumption
propagation, as described in Section 4.2, to ensure that ψ′ → ψs is valid.

Algorithm 1 proposes a procedure to automatically extend a CGT leaf node.
The algorithm takes as inputs a goal node G′ and a library of goals L, and
returns the set of goals to be composed as output. We assume that each goal
in the library is labeled by a cost that is proportional to the number of clauses
in the assumptions. The cost of a solution is the sum of the costs of all the
selected goals. We first choose the lowest-cost selection of goals from L whose
guarantees, once composed, imply the guarantees of C′. Then, we choose the
lowest-cost selection of goals from L whose guarantees, once composed, imply
the assumptions of the goals selected in the previous iteration, and repeat this
step until there are no more goals in the library or there are no assumptions
that can be relaxed, i.e., discharged by the guarantees of another contract from
the library. Concretely, given a input-goal G′, where C′ = (ψ′, φ′), we look for
all the combinations of goals in L such that their composition Cl = (ψl, φl), has
guarantees φl that imply either the guarantees of the input goal φ′ (line 2) or its
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assumptions ψ′ (line 7.1). We evaluate the cost of all the candidate compositions
and select the candidate with the lowest cost (lines 3, 7.2). If multiple candidates
have the same cost, we compose all the goals in each candidate set and select
the composition that has the weakest assumptions.

Our cost metric favors the selection of goals with weaker assumptions (shorter
assumption formulas), as they pose less constraints to the environment and sup-
port a larger number of contexts. On the other hand, a goal with a longer
assumption formula tends to accept a smaller set of environments and require a
more complex aggregation of goals from the library to discharge the assumptions.
However, other cost functions are also possible. Searching for a composition of
goals in the library that minimizes a cost function can be exponential in the size
of the library. We circumvent the worst-case complexity by adopting a greedy
strategy, which select the lowest-cost goal at each iteration, even if this does
not necessarily lead to a globally optimal solution. As new goals are selected,
they are aggregated via composition. Therefore, at each iteration, Algorithm 1
searches for the weakest-assumption contract whose guarantees discharge the
assumptions of the composite contract obtained in the previous iteration.

As an example, we extend G′ in Figure 1, which specifies the precision with
which the distance from the vehicle in front is retrieved, when this information
is available. The associated contract C′ = (−−, dist ∧ dfront > 0 ∧ |dfront−
dreal| < δ) guarantees that the information on the distance dist is available and
that the perceived distance with the vehicle in front dfront is positive and has a
precision δ in all contexts, where δ is a constant. We then use a library of goals
specifying GPS modules, accelerometers, several kinds of radars with different
levels of accuracy, and communication components. The extension algorithm
returns 6 goals whose composition Gs is linked via refinement to G′ in Figure 3.

The left-hand side of Figure 3 shows the contracts formalizing the new goal Gs
and their interconnection structure. Each edge between contracts is labeled with
a proposition that represents the logic predicate forming the assumptions or the
guarantees of a contract (or both in case the guarantees of one contract imply
some of the propositions in the assumptions of another contract). For example,
the contract C3 in Figure 3, which specifies a Kalman Filter component, has
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100 200 300 400 500 600 700 800 900 1000

4 0.49 0.94 1.32 1.78 2.14 2.53 2.99 3.45 3.82 4.09

8 1.42 2.71 3.89 5.20 6.49 7.73 9.09 10.41 11.82 13.10

16 4.84 10.74 16.04 18.97 23.27 29.05 35.16 36.85 41.30 46.61

20 6.33 12.62 18.40 24.58 32.70 39.83 45.45 56.09 63.83 70.33

24 8.79 17.14 25.59 34.07 49.45 54.98 64.34 71.91 84.10 94.13

Table 1: Average execution times (sec) of 100 runs for different configurations of
library size (number of goals in the columns) and contract complexity (rows).

assumptions a ∧ cego and guarantees p. The composition of C3 with C1 = (v, a)
and C2 = (sgps, cego) results in a contract, where a and cego are no longer present
in the assumptions, since they are already supported by the guarantees. The net
result is a simpler assumption formula. By composing all the goals retrieved from
the library we obtain a new goal Gs and associated contract Cs = (ψs, φs), where

ψs = v ∧ sgps ∧ sradar ∧ snetwork ∧ a ∧ cego ∧ p ∧ drad ∧ cfront
∨ (a ∧ cego ∧ p ∧ drad ∧ cfront ∧ dfront)

φs = a ∧ cego ∧ p ∧ drad ∧ cfront ∧ dfront.

As in the previous example, the assumption formula reduces to ψs = (v ∧ sgps ∧
sradar∧snetwork∨dfront). We observe that φs refines the guarantees of C′ because
dfront = dist ∧ dfront > 0 ∧ |dfront − dreal| < ε where ε is a constant and ε ≤ δ.
Finally, to preserve the completeness of the refinement, CoGoMo propagates
the assumptions ψs to C′ and then to the parent nodes of G′ recursively, by
following the edges of the CGT up to the root.

Numerical Validation. Algorithm 1 is sound and complete. The soundness is
provided by the SMT solver, which checks the validity and satisfiability of the
formulas. The completeness is given by the fact that the algorithm searches over
the entire goal library. Because of the greedy procedure, the computation time
scales linearly with the number of goals in the library. We performed numer-
ical evaluation of synthetically generated libraries of different sizes populated
by randomly generated goals. Goals are captured by simple propositional logic
contracts, whose assumptions and guarantees are conjunctions of Boolean propo-
sitions. We use the length of these formulas, i.e., to quantify the complexity of
each contract. A configuration is defined by the number of goals in the library
and the complexity of the contracts. We evaluated the algorithm on up to 1000
library goals and up to 24 logical propositions in each contract for a total of
50 different configurations. For each configuration, we ran Algorithm 1 with 100
different input goals. Table 1 shows the average execution time for each config-
uration normalized by the number of goals returned by the algorithm. Figure 4
shows the execution times for 3 configurations, which scale linearly with the
number of returned goals and the size of the library.1

1 Complete results: http://bit.ly/3s5XD0L.

http://bit.ly/3s5XD0L
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Fig. 4: Execution times as a function of the number of returned goals for 3 simu-
lation configurations, with libraries of 600, 800, and 1000 elements, respectively,
and contract complexity equal to 4.

6 Related Work

In the context of contract-based verification, tools like OCRA [5] and AGREE [7]
use contracts to model system components and their aggregations and formally
prove the correctness of contract refinements [6] by using model checkers [3]. Re-
lated to system engineering, CONDEnSe [28] propose a methodology and a tool
that leverages the algebra of contracts to integrate artifacts developed in mecha-
tronic systems. More oriented toward requirement engineering, the CHASE [23]
framework combines a front-end formal specification language based on patterns
with rigorous, contract-based verification and synthesis. It uses a declarative
style to define the top-level requirements that are then translated into tempo-
ral logic, verified for consistency and, when possible, synthesized into a reactive
model. CoGoMo’s hierarchical and incremental approach to refinement of goal
models is complementary and can be naturally incorporated into CHASE.

In the context of goal-oriented requirement engineering, significant work has
addressed completeness and conflict detection using formal methods for goal
models based on KAOS [12,11,1]. While these approaches mostly focus on algo-
rithms that operate on a fixed set of requirements and environment expectations,
CoGoMo proposes a step-wise approach where refinement checking and con-
flict analysis are performed contextually in an incremental way as the goal tree
is built. Frameworks like COVER [20] use TROPOS as a goal modeling frame-
work, Modal Transition Systems (MTS) to model the system design, and Fluent
Linear Temporal Logic (FLTL) as a specification language for functional require-
ments. COVER checks the satisfaction of all the requirements by verifying the
properties on the system model. Requirement verification using formal methods
is common to the goal-oriented approaches above; however, to the best of our
knowledge, CoGoMo is the first effort toward formalizing goal models using
contracts, thus enhancing modularity and reuse in goal models.
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Compositional synthesis of reactive systems, i.e., finding generic aggregations
of reactive components such that their composition realizes a given specification,
is an undecidable problem [26,17]. The problem becomes decidable by imposing
a bound on the total number of component instances that can be used, but
remains difficult due to its combinatorial nature [16]. Our approach relates to the
one by Iannopollo et al. [16,15], proposing scalable algorithms for compositional
synthesis and refinement checking of temporal logic specifications out of contract
libraries. Our goal selection algorithm is, however, different, as it uses a cost
function based on the complexity of a specification, and a greedy procedure
that favors more compact and generic specifications (i.e., contracts with weakest
assumptions) to refine the goal tree, while keeping the problem tractable.

7 Conclusions

We presented CoGoMo, a framework that guides the designer in building goal
models by leveraging a contract-based formalism. CoGoMo leverages contract
operations and relations to check goal consistency, completeness, and support
the incremental and hierarchical refinement of goals from a library of goals. An
example motivated by vehicle platooning shows its effectiveness for incrementally
constructing contract-based goal trees in a modular way, with formal guarantees
of correctness. Numerical results also illustrate the scalability of the proposed
greedy heuristic to further extend a goal tree out of a library of goals. As future
work, we plan to extend the expressiveness of CoGoMo by i) supporting con-
tracts expressed in temporal logic and ii) supporting OR-refinements between
goals by allowing optional refinement relations between multiple candidate con-
tracts. Furthermore, we plan to improve the tool and incorporate its features into
CROME [19], our recent framework for formalizing, analyzing, and synthesizing
robotic missions.
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A Distribution of Composition over Conjunction

Given contracts C1 = (ψ1, φ1), C2 = (ψ2, φ2), and C3 = (ψ3, φ3), we show that
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Proof. Let (LA, LG) and (RA, RG) be the contracts on the left and right side
of (2), respectively. We prove that LA = RA and LG = RG. Both the composition
and conjunction operations requires the conjunction of the guarantees, hence we
obtain LG = RG = φ1 ∧ φ2 ∧ φ3. The assumptions of the contract on the left
side can be computed as

LA = (ψ1 ∨ ψ2) ∧ ψ3 ∨ (φ1 ∧ φ2 ∧ φ3) = (ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3) ∨ φ1 ∨ φ2 ∨ φ3.

On the right side, we obtain

C1 ‖ C3 =
(

(ψ1 ∧ ψ3) ∨ (φ1 ∧ φ3), φ1 ∧ φ3
)

and

C2 ‖ C3 =
(

(ψ2 ∧ ψ3) ∨ (φ2 ∧ φ3), φ2 ∧ φ3
)
,

which leads to

RA = (ψ1 ∧ ψ3) ∨ (φ1 ∧ φ3) ∨ (ψ2 ∧ ψ3) ∨ (φ2 ∧ φ3)

= (ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3) ∨ φ1 ∨ φ2 ∨ φ3.

Finally, we also obtain LA = RA, which concludes our proof (2).
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