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Abstract. This paper proposes a one-shot voice conversion (VC) solu-
tion. In many one-shot voice conversion solutions (e.g., Auto-encoder-
based VC methods), performances have dramatically been improved due
to instance normalization and adaptive instance normalization. However,
one-shot voice conversion fluency is still lacking, and the similarity is not
good enough. This paper introduces the weight adaptive instance nor-
malization strategy to improve the naturalness and similarity of one-shot
voice conversion. Experimental results prove that under the VCTK data
set, the MOS score of our proposed model, weight adaptive instance nor-
malization voice conversion (WINVC), reaches 3.97 with five scales, and
the SMOS reaches 3.31 with four scales. Besides, WINVC can achieve a
MOS score of 3.44 and a SMOS score of 3.11 respectively for one-shot
voice conversion under a small data set of 80 speakers with 5 pieces of
utterances per person.

Keywords: One-shot voice conversion · Generative adversarial networks
(GANs) · Weight adaptive instance normalization.

1 Introduction

Voice conversion aims to preserve the source voice content information while
replacing the non-content information in the voice with the target speaker.
It has attracted many researchers for its potential applications in security [1],
medicine [2], entertainment [3] and education [4].

There are two types of VC, parallel and non-parallel. Due to the difficulty
and expensiveness of parallel data collection, several methods based on paral-
lel data, such as the gaussian mixture model (GMM) [5], dynamic time warping
(DTW) [6], and deep neural network (DNN) [7], are not particularly effective so-
lutions. In order to overcome this limitation, the phonetic posteriorgrams(PPG)

� corresponding authors
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Fig. 1. Comparison of source, target, and converted mel-spectrograms.

based models [8], generative adversarial network (StarGAN) based models [9,
10], and variational auto-encoder (VAE) based models [11] are adopted to solve
the problem of non-parallel VC. These methods get rid of the dependence on par-
allel data. However, when dealing with unseen speakers, a long time adaptation
process or a large amount of data is required.

One-shot voice conversion [12–14] and zero-shot voice conversion [15, 16] solve
the unseen speaker problem. They convert the source voice to an unseen speaker’s
voice by referring to only a few target utterances. Moreover, neither the source
nor the target utterances appear in the training set during the training phase.
They require the model to have a solid ability to separate content information
from non-content information in the voice.

Due to the development of the normalization strategy, the performance of the
one-shot voice conversion task has been improved. There are two mainstream
frameworks for better one-shot VC in recent years, including the auto-encoder
based one [12, 15] and the vector quantization (VQ) based one [13, 14]. [15]
uses the batch normalization (BN) [17] strategy to implement the one-shot voice
conversion successfully. In [13, 14], the instance normalization (IN) [18] strat-
egy is adopted. Compared with the BN strategy used in [15], IN normalizes
each input object separately to improve one-shot voice conversion quality. More-
over, AdaINVC [12] innovatively adopts the adaptive instance normalization
(AdaIN) [19] strategy. The AdaIN strategy significantly improves the one-shot
voice conversion and achieves an improved similarity. Nevertheless, it is chal-
lenging to disentangle speaker information and content information through an
unsupervised learning method. Moreover, researchers are helpless if the similar-
ity of converted speech is unsatisfying.

In this paper, we propose a weight adaptive instance normalization (WIN)
voice conversion system for one-shot VC. The model framework bases on StarGAN-
VC2 [10] because it has good effectiveness and convenience, and the model struc-
ture is improved. We use the speaker encoder jointly trained with the generator
to extract the non-linguistic information of the target speaker. Under the VCTK
[20] data set, we compare the WINVC with AdaINVC. The mel-spectrograms
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(Fig.1) show that WINVC performs better in content intelligibility and reten-
tion, and subjective evaluations show that WINVC achieves better results than
AdaINVC on the one-shot voice conversion task. Furthermore, WINVC achieves
a competitive one-shot voice conversion performance under the extreme training
conditions of using only 80 speakers with 5 utterances per person. In addition,
we apply the WIN [21] strategy to AdaINVC, and experimental results show
that AdaINVC’s one-shot performance has been improved.

To summarize, we list the core contributions of this paper as follows:

1. We design a new model WINVC based on the WIN strategy and StarGAN-
VC2. It outperforms the state-of-the-art (SOTA) model AdaINVC naturally
and similarly on one-shot voice conversion tasks under non-parallel data.

2. Furthermore, WINVC can perform competitive one-shot voice conversion
results even with small amount of data.

3. We also apply the WIN strategy to the previous SOTA model AdaINVC and
significantly improves its performance.

4. We use the jointly trained speaker encoder as the non-linguistic information
extractor and employ the speaker embedding cycle loss to help the model
perform the one-shot VC task better.

2 StarGAN-VC/VC2

This section reviews two previous StarGAN-based voice conversion models:
StarGAN-VC [9] and StarGAN-VC2 [10]. As shown in Fig.2, StarGAN-VC uses
the StarGAN [22] model for voice conversion, which includes three modules: a
generator (G), a discriminator (D) and a domain classifier (C). G takes an
acoustic feature sequence x ∈ R with an arbitrary attribute and a target at-
tribute label c as the inputs, and generates an acoustic feature sequence,

ŷ = G(x, c) (1)

D is designed to produce a probability D(y, c) that an input y is a real speech
feature whereas C is designed to produce class probabilities pC(c | y) of y.
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Fig. 2. The architecture of StarGAN-VC.
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2.1 Training Objectives

StarGAN-VC/VC2 includes adversarial loss [23], cycle consistency loss [24], and
identity mapping loss [25]. StarGAN-VC2 deletes classification loss [26] and up-
dates the BN strategy to the CIN strategy. These loss functions are as follows.

Adversarial loss is

LD
adv(D) =− Ec∼p(c),y∼p(y|c)[logD(y, c)]

− Ex∼p(x),c∼p(c)[log(1−D(G(x, c), c))],
(2)

LG
adv(G) = −Ex∼p(x),c∼p(c)[logD(G(x, c), c)]. (3)

Cycle-consistency loss is to preserve the composition in conversion, which
is presented as follows:

Lcyc (G) = Ec′∼p(c),x∼p(x|c′),c∼p(c) [‖G (G(x, c), c′)− x‖] . (4)

Identity-mapping loss is to facilitate input preservation, which is presented
as follows:

Lid(G) = Ec′∼p(c),x∼p(x|c′) [‖G (x, c′)− x‖] . (5)

Classification loss is to force the generated data to be similar to the target
speaker’s, which has been abandoned in StarGAN-VC2:

LC
cls(C) = −Ec∼p(c),y∼p(y|c) [log pC(c | y)] , (6)

LG
cls(G) = −Ex∼p(x),c∼p(c) [log pC(c | G(x, c))] . (7)

To summarize, the full objectives of StarGAN-VC to be minimized with
respect to G, D and C are given as:

LG(G) =LG
adv(G) + λclsL

G
cls(G) + λcycLcyc(G) + λidLid(G), (8)

LD(D) = LD
adv(D), (9)

LC(C) = LC
adv(C). (10)

2.2 Generator Architectures

In order to improve voice quality, the StarGAN-VC2 model removes the domain
classifier module. StarGAN-VC uses the BN [17] strategy, and StarGAN-VC2
uses the CIN [27] strategy instead.

Given an input batch x∈RBCHW , BN(x) normalizes the mean and standard
deviations for the individual feature channel:

BN(x)=γsingle

(

x−µ(x)batch
σ(x)batch

)

+βsingle, (11)
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where γ, β ∈RC are affine parameters learned from data. µ (x),σ (x) ∈RC are
the mean and standard deviations, computed across batch size and spatial di-
mensions independently for each feature channel.

[13] and [14] employ the IN [18] strategy of image style conversion to achieve
a better one-shot voice conversion performance.

IN(x) = γsingle

(

x− µ(x)sample

σ(x)sample

)

+ βsingle, (12)

where x is the input feature. γ and β form a single set of affine parameters learned
from data. µ and σ are computed across spatial dimensions independently for
each channel and each sample.

StarGAN-VC2 [10] uses the conditional instance normalization (CIN) [27]
strategy, as shown in equation (13), where γ (exy) and β (exy) are domain-specific
scales and bias parameters that allow transforming the modulation in a domain-
specific manner. exy is selected depending on both the source domain code ex
and the target domain code ey.

CIN(x, exy) = γstyles (exy)

(

x− µ(x)sample

σ(x)sample

)

+ βstyles (exy) , (13)

exy = concat ([ex, ey]) . (14)

3 The Proposed Model

3.1 Workflow

Input

Generator

Speaker

Encoder

Source

Real

Converted

Fake

Source

Target

Source
spk_id

Target 
spk_id

Speaker 
Embedding

Real / Fake

Probability
Discriminator

Source

MUX

Fig. 3. The workflow diagram of the proposed model

This section introduces the various modules and implementation details of
our proposed model5. The entire workflow is shown in Fig.3, consisting of a Gen-
erator, a Discriminator, and a Speaker Encoder, where MUX means randomly
sending source real data or converted fake data to Discriminator.

5 Further details may be found in our implementation code:
https://github.com/One-Shot-Voice-Conversion-with-WIN/WINVC
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3.2 The generator with weight adaptive instance norm
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Fig. 4. The module details of G. In input, output, and res-block layers, B, C, T ,H and
E represent batch, channel, the number of frames, the hidden size and the embedding
size of speaker embedding respectively. In each convolution layer, k, c, and s denote the
kernel size, the number of channels and stride, respectively. IN, GLU, Cat and WIN
indicate instance normalization, gated linear unit, concatenating and the proposed
weight adaptive instance normalization.

As shown in Fig.4, the generator is composed of 1D-convolution, which
includes three parts: up-sampling, bottleneck resblocks, and down-sampling.
Unlike StarGAN-VC2, our upsampling and downsampling both use the 1D-
convolution structure and IN strategy. In the first convolutional layer of upsam-
pling, we use eight different convolution kernel sizes (respectively [1,1,3,3,5,5,7,7])
with 1D-convolution, and finally, concatenate all the 1D-convolution results
along the channel dimension. The number of channels of the feature is changed
from 80 to a hidden-size of 256. There are nine resblocks in total, all of which
composed of WIN modules. The activation function used is gated linear units
(GLU).

We propose a new normalization strategy, WIN, into the generator’s res-
blocks. Next, we first introduce AdaIN briefly, and then propose WIN.

Adaptive instance normalization AdaINVC adopts the AdaIN strategy,
a particular case of instance normalization, which makes a simple extension
to CIN. AdaINVC uses a speaker encoder to extract the speaker embedding
ey = E(y), making it possible to exploit rich information in speaker embedding.
The speaker embedding controls the scaling and bias variables of AdaIN. Unlike
BN, IN, or CIN, AdaIN has no learnable affine parameters. Instead, it adaptively
computes the affine parameters from the style input ey.

AdaIN(x, ey)=σ(ey)

(

x− µ(x)sample

σ(x)sample

)

+µ(ey). (15)

In equation (15), x is a content input to the operator, and ey is the speaker
embedding. µ(x) and σ(x) are the mean and the standard deviations of the
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feature x across time. σ(ey) and µ(ey) are adaptive linear functions. AdaIN
(equation 15) performs standard modulation on feature x first, and then uses
the adaptive scaling and bias variables, obtained according to the speaker em-
bedding, to perform standard normalization on the features, and finally achieves
the integration of feature x and speaker embedding.

Weight adaptive instance normalization To improve the data efficiency of
one-shot voice conversion task, we propose the WIN [21]strategy in the bottle-
neck blocks of the generator, which was initially proposed for image style transfer
tasks. Fig.5 illustrates the architectur of WIN[21] module:
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Fig. 5. The architecture of the WIN module.

w′
ijk(wijk, ey) = γi(ey) ∗ wijk + βi(ey) (16)

σj =

√

∑

i,k

w′
ijk

2
(17)

WIN(wijk, ey) = w′
ijk/

√

∑

i,k

w′
ijk

2 + ǫ (18)

In equation (16), w and w′ are the original and modulated weights, i denotes
the ith input feature map, and j and k enumerate the output feature maps and
spatial footprint of the convolution, respectively. ey is target speaker embedding.
In equation (17), σj is the standard deviation of modulated weights. In equation
(18), ǫ is a small constant to avoid numerical issues.

Different from AdaIN, the demodulation strategy of WIN (equation 18) is
related to weight normalization [28]. The modulation (equation 16) and demod-
ulation (equation 18) strategies perform as a part of reparameterizing the weight
tensor w. In equation (16), γi(ey) and βi(ey) are two affine transformations ap-
plied to speaker embedding ey corresponding to the ith input feature map, which
generate style-dependent scaling and the bias variables. Then they are applied to
normalize the convolution weight wijk, and finally get the intermediate variables
w′

ijk. In equation (18), we demodulate it again into the convolution weights,
which is now embedding related.
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The WIN strategy in our proposed WINVC model shows a better one-shot
voice conversion performance than the state-of-the-art model AdaINVC. Also,
we replace AdaIN with WIN in the baseline AdaINVC. The subjective evalu-
ation shows that WIN enables AdaINVC to achieve a better MOS score and
SMOS score, indicating better voice quality and better similarity. Furthermore,
the objective evaluation shows that WIN helps AdaINVC get higher speaker
verification accuracy.

3.3 The speaker encoder and the discriminator
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Fig. 6. The architecture of the speaker encoder.

The architecture of the speaker encoder is shown in Fig.6, which adopts a
full 1D-convolution form and uses the LeakyRelu activation function after each
convolution layer. And it uses a statistic pooling layer as in the xvector [29]. We
pass the pool results through a linear function to generate a speaker embedding.
Further more, we use a speaker embedding cycle loss (equation 19) to help model
get better similarity:

Lspkcyc = cos (E (xt) , E (G (xs, E (xt)))) , (19)

where E is the speaker encoder, xs and xt denote the source feature and target
feature.
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Fig. 7. The module details of D. LeakyRelu indicate LeakyRelu activation. spk id and
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The discriminator structure is shown in Fig.7, which introduces PatchGAN [30]
which uses convolution in each layer to reduce parameters and stabilize GAN
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training. After the last 2D-convolution, the data size obtained is [Batch, num speakers].
Finally, by specifying the target speaker attribute, the evaluation result of real
or fake probability is obtained.

3.4 Training objectives

We use the speaker encoder to extract the non-linguistic information of the tar-
get speaker, which is jointly trained with the generator G. And then send the
extracted speaker embedding to the generator. G generates the voice conver-
sion result, which is then judged by the discriminator D. In the one-shot stage,
AdaINVC, together with most unsupervised models, is helpless if the converted
speech’s similarity is not satisfactory. However, our model can further improve
the similarity of the existing results.

In our proposed model, there are four training objectives: adversarial loss
(equation 2,3), cycle consistency loss (equation 4), identity loss (equation 5),
and speaker embedding cycle loss (equation 19). The adversarial loss, cycle con-
sistency loss and identity loss are consistent with the corresponding formulas in
StarGAN-VC2. The speaker embedding cycle loss is used to calculate the cosine
similarity between the converted voice and the ground truth target voice.

Full objective: The full objective is written as

LD = −Lt−adv, (20)

LG=λadvLt−adv+λspkcycLspkcyc+λcycLcyc+λidLid. (21)

where D and G are optimized by minimizing LD and LG respectively.

4 Experiments

4.1 Datasets

Our experiments are conducted on the VCTK English data set. All selected
training utterances are longer than 256 frames. And we use third-party pre-
trained Parallel WaveGAN [31]6 as vocoder for all comparison models. For the
one-shot voice conversion experiment, we use a training dataset of 80 speakers
with all utterances, another dataset of 10 unseen speakers, including 5 men and
5 women for unseen-to-unseen one-shot voice conversion. In addition, to further
improve the similarity on the existing results, we take an adaption stage, with
only one utterance each is used to adapt the pretrained model quickly, and the
objective evaluation (Fig.11) show that the similarity can quickly upgrade within
5,000 iterations. For a fair comparison, we make the training set of AdaINVC
also contain the 10 unseen speakers with one utterance each. In the end, among
the 10 one-shot speakers, we use their other voice data to complete the unseen-
to-unseen one-shot voice conversion experiments.

6 https://github.com/kan-bayashi/ParallelWaveGAN
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4.2 Training details

The learning rates of G and D are 2e-4 and 1e-4, respectively. The batch size
is 8, and the minimum length of the training data is 256 frames. The values of
λid, λcyc, λadv and λspkcyc are 2, 4, 1 and 5. The WIN convolution kernel size
is 3. The number of training iterations is 100k, with the training converging in
10 hours on a single 1080ti. The further adaption stage can be converged within
half hour with 5k iterations.

4.3 Subjective evaluations

We analyze the performance7 differences among the ground truth VCTK utter-
ances (Target), our proposed model trained with (80 speakers×all utterances)
and adapted with another (10 speakers×1 utterance)(WINV C), the proposed
model trained with (80 speakers× 5 utterances) and adapted with another (10
speakers×1 utterance) (WINV C5), the baseline model trained with (80 speak-
ers×all utterances + 10 speakers×1 utterance) (AdaINV C), and the baseline
model replaces AdaIN strategy with WIN strategy and is also trained with (80
speakers× all + 10 speakers× 1 utterance) (AdaINV C W ).

We conduct mean opinion score (MOS) tests, similarity mean opinion score
(SMOS) tests, and ABX tests. The target ground truth utterances (Target)
are used as anchor samples. Evaluation utterances are selected based on gender
combination for each model. Each gender combination includes 2 pairs of speak-
ers. Each pair of speakers have 20 utterances. Each model is evaluated with
4 × 2 × 20 = 160 utterances. Each utterance is evaluated once. All subjective
tests are evaluated with 13 participants.

MOS As shown in Fig.8, ”F” means ”female”, ”M” means ”male”. For example,
”F-M” denotes that female source voice is converted into male target voice, and
so on. ”Target” means the ground truth voice of corresponding target speaker.
In the subjective naturalness test (MOS), WINVC achieves the highest MOS
scores. WINVC5 trained with few data can also achieve a competitive results.
In addition, the MOS score of AdaINVC W is higher than AdaINVC, which
indicates that the WIN strategy can indeed make AdaINVC achieve more natural
results.

SMOS Fig.9 shows the similarity SMOS. WINVC achieves the highest SMOS
scores, WINVC5 can also achieve competitive results. The scores of WINVC
and WINVC5 are very close, and all outperform AdaINVC, which denotes that
WINVC5 with low resource of training data can also achieve nice similarity. And
AdaINVC W also performs better than AdaINVC, this indicates that the WIN
strategy can indeed make AdaINVC achieve better similarity results.

7 For more details, please refer to the website:
https://one-shot-voice-conversion-with-win.github.io
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Fig. 10. The ABX test between WINVC and AdaINVC from the aspects of naturalness
and similarity.

The ABX test As shown in Fig.10, in the ABX tests, participants need to
choose better voice conversion results for the samples of WINVC and AdaINVC
from two aspects: similarity and naturalness. From the results, we can conclude
that WINVC achieves significant results compared to AdaINVC. Together with
the results of MOS and SMOS, which indicate that WIN strategy can indeed
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enhance the performance AdaINVC, and WINVC can perform better one-shot
voice conversion task than AdaINVC from both naturalness and similarity.

4.4 Objective evaluations
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Fig. 11. Comparison of speaker verification accuracy between WINVC and AdaINVC.
For better similarity comparision, one unseen utterance of each unseen speaker is used
for quick adaption.

The speaker verification accuracy We use speaker verification accuracy
as objective metrics. The speaker verification accuracy measures whether the
transferred voice belongs to the target speaker. For fair comparison, we used
a xvector [29] pretrained with all data of VCTK to verify the speaker identity
from the converted voices. As shown in Fig.11, the verification accuracy of our
model is obviously higher than that of AdaINVC after quick adaption with 5,000
iterations. Further more, WINVC5 trained with only 5 utterances each speaker,
and achieve competitive accuracy as well. After replacing the AdaIN strategy in
AdaINVC with the WIN strategy, AdaINVC W achieved better similarity than
AdaINVC.

Disentanglement discussion In addition to the speaker verification accuracy
comparison with AdaINVC, we conduct a t-SNE [32] visualization of the latent
spaces of the WINVC model. As shown in Fig.12, speaker embeddings from the
same speaker are well clustered, and speaker embeddings from different speakers
separate in a clean manner. The clear pattern indicates our speaker encoder can
verify the speakers’ identity from the voice samples.
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Fig. 12. t-SNE visualization for speaker embeddings of WINVC. The embeddings are
extracted from the voice samples of 10 different one-shot speakers. 3,000 embeddings
for each person.

5 Conclusions

In this paper, we proposed a novel WIN strategy. In addition, we proposed
a WINVC model to perform one-shot voice conversion under the condition of
multi-speaker non-parallel data, which achieved significant results. Furthermore,
even with a smaller amount of training data, it has achieved a better performance
from subjective and objective evaluations than the baseline model, which trained
with a larger amount of training data. Besides, with the help of the WIN strategy,
the baseline model also performed better. Based on this work, the cross-lingual
one-shot voice conversion can be further studied in the future.
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