Skip to main content

Multi-label Learning by Exploiting Imbalanced Label Correlations

  • Conference paper
  • First Online:
PRICAI 2021: Trends in Artificial Intelligence (PRICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13032))

Included in the following conference series:

  • 1444 Accesses

Abstract

Multi-label classification refers to the supervised learning problem where an instance may be associated with multiple labels. It is well known that exploiting label correlations is important for multi-label learning. Existing approaches typically assume that the distribution of classes is balanced. In many real-world applications, multi-label datasets with imbalanced class distributions occur frequently, which may make various multi-label learning methods ineffective. Since the existing multi-label learning algorithms pay less attention to the problem of correlation with imbalanced label sets, this paper proposed a Multi-Label learning model by exploiting Imbalanced Label Correlations (ML-ILC). ML-ILC uses graph convolution neural network to learn the correlation between labels. At the same time, we suggest that the regularization of minority classes is stronger than that of frequent classes, which can improve the generalization error of minority classes. To investigate the performance of the proposed multi-label learning model, we considered two benchmark datasets including VOC2007 and COCO. The proposed method successfully achieved better classification performance compared to the state-of-the-art compression methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Gupta, A., Prabhu, Y., Varma, M.: Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages, pp. 13–23 (2013)

    Google Scholar 

  2. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss (2019)

    Google Scholar 

  3. Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: A first approach to deal with imbalance in multi-label datasets. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS (LNAI), vol. 8073, pp. 150–160. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40846-5_16

    Chapter  Google Scholar 

  4. Chen, S., Chen, Y., Yeh, C., Wang, Y.F.: Order-free rnn with visual attention for multi-label classification. In: AAAI Conference on Artificial Intelligence, pp. 6714–6721 (2018)

    Google Scholar 

  5. Chen, Z., Wei, X., Wang, P., Guo, Y.: Multi-label image recognition with graph convolutional networks. In: Conference on Computer Vision and Pattern Recognition, pp. 5172–5181 (2019)

    Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  7. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Kao, T.: Advanced parametric mixture model for multi-label text categorization (2006)

    Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations, pp. 1–7 (2017)

    Google Scholar 

  11. Li, L., Wang, H.: Towards label imbalance in multi-label classification with many labels. arXiv (2016)

    Google Scholar 

  12. Li, P., Xie, J., Wang, Q., Gao, Z.: Towards faster training of global covariance pooling networks by iterative matrix square root normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 947–955 (2018)

    Google Scholar 

  13. Lin, T., et al.: Microsoft coco: common objects in context. In: European Conference on Computer Vision, pp. 740–755 (2014)

    Google Scholar 

  14. Liu, B., Tsoumakas, G.: Making classifier chains resilient to class imbalance. In: Asian Conference on Machine Learning, pp. 280–295. PMLR (2018)

    Google Scholar 

  15. Ma, H., Chen, E., Xu, L., Xiong, H.: Capturing correlations of multiple labels: a generative probabilistic model for multi-label learning. Neurocomputing 92, 116–123 (2012)

    Article  Google Scholar 

  16. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  17. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)

    Article  MathSciNet  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, pp. 1–8 (2015)

    Google Scholar 

  19. Tsoumakas, G., Zhang, M.: Learning from multi-label data (2009)

    Google Scholar 

  20. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: Cnn-rnn: a unified framework for multi-label image classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2016)

    Google Scholar 

  21. Wang, X., Li, G.Z., Zhang, Q., Huang, D.: Multip-schlo: multi-label protein subchloroplast localization prediction. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 86–89. IEEE (2014)

    Google Scholar 

  22. Wang, Y., Xie, Y., Liu, Y., Zhou, K., Li, X.: Fast graph convolution network based multi-label image recognition via cross-modal fusion. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1575–1584 (2020)

    Google Scholar 

  23. Wang, Z., Chen, T., Li, G., Xu, R., Lin, L.: Multi-label image recognition by recurrently discovering attentional regions. In: IEEE International Conference on Computer Vision, pp. 464–472 (2017)

    Google Scholar 

  24. Wei, Y., et al.: Hcp: a flexible cnn framework for multi-label image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1901–1907 (2016)

    Google Scholar 

  25. Wu, B., Lyu, S., Ghanem, B.: Constrained submodular minimization for missing labels and class imbalance in multi-label learning. In: The Thirtieth AAAI Conference on Artificial Intelligence (AAAI) (2016)

    Google Scholar 

  26. Wu, X.Z., Zhou, Z.H.: A unified view of multi-label performance measures. In: International Conference on Machine Learning, pp. 3780–3788. PMLR (2017)

    Google Scholar 

  27. Wu, Y., Wu, W., Zhang, X., Li, Z., Zhou, M.: Improving recommendation of tail tags for questions in community question answering, pp. 3066–3072 (2016)

    Google Scholar 

  28. Zeng, W., Chen, X., Cheng, H.: Pseudo labels for imbalanced multi-label learning. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA), pp. 25–31. IEEE (2014)

    Google Scholar 

  29. Zhang, J., Wu, Q., Shen, C., Zhang, J., Lu, J.: Multi-label image classification with regional latent semantic dependencies. IEEE Trans. Multimedia 20(10), 2801–2813 (2016)

    Article  Google Scholar 

  30. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

  31. Zhang, M.L., Li, Y.K., Yang, H., Liu, X.Y.: Towards class-imbalance aware multi-label learning. IEEE Trans. Cybern. 99, 1–13 (2020)

    Google Scholar 

  32. Zhu, F., Li, H., Ouyang, W., Yu, N., Wang, X.: Learning spatial regularization with image-level supervisions for multi-label image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2027–2036 (2017)

    Google Scholar 

  33. Zhu, Z., Chen, H., Hu, Y., Li, J.: Age estimation algorithm of facial images based on multi-label sorting. EURASIP J. Image Video Process. 2018(1), 1–10 (2018). https://doi.org/10.1186/s13640-018-0353-z

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC under Grant 62076179, and Grant 61732011, Beijing Natural Science Foundation under Grant Z180006, Tianjin Science and Technology Plan Project under Grant 19ZXZNGX00050, Funded by Open Research Fund of the Public Security Behavioral Science Laboratory, People’s Public Security University of China under Grant 2021SYS02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, S., Yang, L., Li, Y., Li, H. (2021). Multi-label Learning by Exploiting Imbalanced Label Correlations. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds) PRICAI 2021: Trends in Artificial Intelligence. PRICAI 2021. Lecture Notes in Computer Science(), vol 13032. Springer, Cham. https://doi.org/10.1007/978-3-030-89363-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89363-7_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89362-0

  • Online ISBN: 978-3-030-89363-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics