
ar
X

iv
:2

10
8.

13
54

4v
1

 [
cs

.D
S]

 3
0

A
ug

 2
02

1

Approximation Algorithms for Priority Steiner

Tree Problems

Faryad Darabi Sahneh1, Stephen Kobourov1, and Richard Spence1

University of Arizona, Tucson, AZ 85721, USA

Abstract. In the Priority Steiner Tree (PST) problem, we are given an
undirected graph G = (V,E) with a source s ∈ V and terminals T ⊆
V \{s}, where each terminal v ∈ T requires a nonnegative priority P (v).
The goal is to compute a minimum weight Steiner tree containing edges
of varying rates such that the path from s to each terminal v consists
of edges of rate greater than or equal to P (v). The PST problem with k
priorities admits a min{2 ln |T | + 2, kρ}-approximation [Charikar et al.,
2004], and is hard to approximate with ratio c log log n for some constant
c [Chuzhoy et al., 2008]. In this paper, we first strengthen the analysis
provided by [Charikar et al., 2004] for the (2 ln |T | + 2)-approximation
to show an approximation ratio of ⌈log2 |T |⌉+ 1 ≤ 1.443 ln |T |+ 2, then
provide a very simple, parallelizable algorithm which achieves the same
approximation ratio. We then consider a more difficult node-weighted
version of the PST problem, and provide a 2 ln(|T | + 1)-approximation
using extensions of the spider decomposition by [Klein & Ravi, 1995].
This is the first result for the PST problem in node-weighted graphs.
Moreover, the approximation ratios for all above algorithms are tight.

Keywords: priority Steiner tree · approximation algorithms · network
design

1 Introduction

We consider generalizations of the Steiner tree and node-weighted Steiner tree
(NWST) problems in graphs where the terminals T possess varying priority or
quality of service (QoS) requirements, in which we seek to connect the terminals
using edges of the appropriate rate or better. These problems have applications
in multimedia and electric power distribution [4, 21, 26], multi-level graph visu-
alization [1], and other network design problems where a source or root is to be
connected to a set of heterogeneous receivers possessing different bandwidth or
priority requests. We define a Priority Steiner Tree (PST) as follows:

Definition 1 (Priority Steiner Tree (PST)). Given an undirected graph
G = (V,E), a source s ∈ V , and terminals T ⊆ V \ {s}, where each terminal
v ∈ T requires a nonnegative priority P (v), a PST is a tree T ⊆ G rooted at s
containing edges of varying rates such that for all terminals v ∈ T , the s–v path
in T consists of edges of rate P (v) or higher.

http://arxiv.org/abs/2108.13544v1

2 F. Darabi Sahneh et al.

We denote by k the number of distinct priorities. Vertices in V \ (T ∪ {s}) have
zero priority but may be included in T . Let w(e, r) denote the weight of edge e
at rate r. We assume w(e, 0) = 0 and w(e, r1) ≤ w(e, r2) for all 0 ≤ r1 ≤ r2 and
edges e (i.e., higher-rate edges weigh at least as much as lower-rate edges). The
weight of a PST T is the sum of the weights of the edges in T at their respective
rates, namely w(T) :=

∑

e∈E(T) w(e,R(e)).

Problem 1 (Priority Steiner Tree problem). Given a graph G = (V,E),
source s, terminals T ⊆ V , priorities P (·), and edge weights w : E×R≥0 → R≥0,
compute a PST T with minimum weight.

While Problem 1 in the case where edge weights are proportional to rate (i.e.,
w(e, r) = r·w(e, 1) for all e ∈ E and r ≥ 0) admits O(1)–approximations [1,6,18],
the best known approximation ratio for Priority Steiner tree with arbi-
trary weights is min{2 ln |T | + 2, kρ} by Charikar et al. [6] (see Section 2). On
the other hand, Chuzhoy et al. [9] show that Priority Steiner tree can-
not be approximated with ratio c log logn for some constant c unless NP ⊆
DTIME(nO(log log logn)), even with unit edge weights1.

In Section 3, we introduce a node-weighted variant of Priority Steiner

Tree, called Priority NWST (Def. 2). Here we assume edges have zero weight,
as an instance with edge and vertex weights can be converted to an instance
with only vertex weights by subdividing each edge uv into two edges uw, wv
and assigning the weight of edge uv to vertex w.

Definition 2 (Priority Node-Weighted Steiner Tree (PNWST)). Given
an undirected graph G = (V,E), source s, and terminals T ⊆ V \{s}, where each
terminal v ∈ T requires a nonnegative priority P (v), a priority node-weighted
Steiner tree (PNWST) is a tree T rooted at s containing vertices of varying rates
R(v) such that for all terminals v ∈ T , the s–v path in T consists of vertices of
rate P (v) or higher.

In particular, we require R(v) ≥ P (v) for all v ∈ T . Further, we can assume
w.l.o.g. that the path from s to each terminal uses vertices of non-increasing
rate (see Def. 3). As in the NWST problem, it is conventional to also assume
terminals have zero weight, as they must be included in any feasible solution;
thus, we assume w(v, r) = 0 for 0 ≤ r ≤ P (v) and w(v, r1) ≤ w(v, r2) for all
0 ≤ r1 ≤ r2. The weight of a PNWST T with vertex rates R(·) is w(T) :=
∑

v∈V (T) w(v,R(v)).

Problem 2 (Priority NWST problem). Given a graph G = (V,E), source s,
terminals T ⊆ V \ {s}, vertex priorities P (·), and vertex weights w : V ×R≥0 →
R≥0, compute a PNWST T with minimum weight.

1 We remark that the formulation of Priority Steiner Tree given in [9] is slightly
more specific; each edge has a single weight ce as well as a quality of service (priority)
Q(e) on input, and the goal is to compute a Steiner tree such that the path from
root to each terminal v uses edges of quality of service greater than or equal to P (v).

Approximation Algorithms for Priority Steiner Tree Problems 3

The Priority NWST problem generalizes the NWST problem, and hence
cannot be approximated with ratio (1−o(1)) ln |T | unless P = NP [12,13,19], via
a reduction from the set cover problem. In Section 3, we show that the Priority
NWST problem admits a 2 ln(|T |+1)–approximation (Theorem 2) using exten-
sions of the spider decomposition given by Klein and Ravi [19] to accommodate
the priority constraints of the Priority NWST problem. The generalization is
not immediately obvious; in particular it is not immediate whether an instance of
Priority NWST can be formulated as an instance of NWST. However, NWST
and Priority NWST can be easily reduced to Steiner arborescence (or directed

Steiner tree), which admits a quasi-polynomialO
(

log2 |T |
log log |T |

)

-approximation [14].

Notation. A graph G = (V,E) with n = |V | and m = |E| is undirected and con-
nected, unless stated otherwise. Given terminals u, v ∈ T for the PST problem,
denote by σ(u, v) the weight of a minimum weight u–v path in G using edges of
rate min{P (u), P (v)}, and let puv denote such a path. For terminals u, v ∈ T in
the Priority NWST problem, we define σ(u, v) to be the weight of a minimum
u–v path using vertices of rate min{P (u), P (v)} not including the endpoints u
and v, and similarly define σb(u, v) to be the weight of a minimum weight vertex-
weighted path using vertices of rate b, so that σ(u, v) = σmin{P (u),P (v)}(u, v). In
particular, we have σb(v, v) = 0. Note that σ is symmetric but does not satisfy
the triangle inequality, and is not a metric. Let ρ denote an approximation ratio
for the (edge-weighted) Steiner tree problem, and let STEINER(n) denote the
running time of such an approximation algorithm on an n-vertex graph. We de-
note by OPT the weight of a min-weight PST or PNWST. Lastly, for n ∈ Z

+,
we denote by [n] the set {1, 2, . . . , n}.

1.1 Related work

The Steiner tree problem in graphs has been studied in a wide variety of contexts;
see the compendium [16]. The (edge-weighted) Steiner tree problem admits a

folklore 2
(

1− 1
|T |

)

–approximation, and is approximable with ratio ρ = ln 4 +

ε ≈ 1.387 [5], but NP-hard to approximate with ratio 96
95 ≈ 1.01 [8]. As stated

previously, NWST cannot be approximated with ratio (1 − o(1)) ln |T | unless
P = NP [12, 13, 19], but algorithms with logarithmic approximation ratio exist.
Klein and Ravi [19] give a 2 ln |T |–approximation for NWST, which was improved
to 1.61 ln |T | and a less practical (1.35 + ε) ln |T | by Guha and Khuller [15].
Demaine et al. [11] give an O(1)–approximation for NWST when the input graph
G is H–minor free, and a 6-approximation when G is planar. Naor et al. [23] give
a randomized O(log n log2 |T |)-approximation algorithm for the online version.

The (edge-weighted) Priority Steiner tree problem and variants thereof
have been studied under various other names including Hierarchical Network
Design [10], Multi-Level (or k-Level) Network Design [4], Multi-Tier Tree [22],
Grade of Service Steiner Tree [27], Quality of Service Multicast Tree [6,18], and
Multi-Level Steiner Tree [1,2]. Earlier results on this problem typically consider

4 F. Darabi Sahneh et al.

a small number of priorities or restricted definition of weight [4, 10]. In the spe-
cial case where edge weights are proportional to rate, Charikar et al. [6] give the
first O(1)–approximations with approximation ratios 4ρ and eρ ≈ 4.214 (with
ρ ≈ 1.55 [25]) independent of the number of priorities k. Karpinski et al. [18] give
a slightly stronger variant of the eρ–approximation [6] which achieves approxima-
tion ratio 3.802. Ahmed et al. [1] give an approximation ratio of 2.351ρ ≈ 3.268
for k ≤ 100. Xue et al. [27] consider this problem where the terminals are embed-

ded in the Euclidean plane, and give 4
3ρ (resp. 5+4

√
2

7 ρ ≈ 1.522ρ)–approximations
for two (resp. three) different priorities. Integer programming formulations have
been proposed and evaluated over realistic problem instances [1, 24].

If edge weights are not necessarily proportional to rate, Charikar et al. [6]
gave a simple min{2 ln |T |+2, kρ}-approximation (see Section 2), which remains
the best known to date. Recently, Ahmed et al. [2] proposed an approximation
based on Kruskal’s MST algorithm which achieves the same approximation ratio,
and provided an experimental study comparing the two methods. Chuzhoy et
al. [9] showed that Priority Steiner tree cannot be approximated with ratio
c log logn for some constant c unless NP ⊆ DTIME(nO(log log logn)). Angelopou-
los [3] showed that every deterministic online algorithm for online Priority

Steiner tree has ratio Ω(min{k log |T |
k
, |T |}). Interestingly, no node-weighted

variant of Priority Steiner tree has been studied in existing literature. How-
ever, a related problem is the (single-source) node-weighted buy-at-bulk prob-
lem (NSS-BB) studied by Chekuri et al. [7], who show a 3H|T | = O(log |T |)–
approximation for NSS-BB by giving a randomized algorithm then derandomiz-
ing it using an LP relaxation, where Hn = 1

1 + 1
2 + . . .+ 1

n
is the nth harmonic

number.

1.2 Our results

In Section 2, we strengthen the analysis of the simple (2 ln |T |+2)-approximation
(Algorithm 1) by Charikar et al. [6] to show that it is a ⌈log2 |T |⌉ + 1 ≤
(1.443 ln |T |+ 2)-approximation. We then give a parallelizable algorithm (Algo-
rithm 2) with the same approximation ratio that does not require that terminals
be connected sequentially or in a particular order. This contrasts with the inher-
ently serial Algorithm 1 [6], where the shortest path for each terminal depends
on the partial PST computed at the previous iteration.

Theorem 1. Algorithm 1 [6] is a (⌈log2 |T |⌉+1)-approximation for Priority

Steiner tree with running time O(nm+n2 logn), and there is a parallelizable
algorithm for Priority Steiner tree with the same approximation ratio.

Moreover, the approximation ratio is tight up to a factor of 2, as there exists an
input graph in which Algorithms 1–2 may output a PST with weight 1

2 log2 |T |+1
times the optimum [17]. In Section 3, we show the following result for Priority
NWST:

Theorem 2. There exists a 2 ln(|T |+1)–approximation algorithm for Priority

NWST with running time O(n4k logn).

Approximation Algorithms for Priority Steiner Tree Problems 5

To the best of our knowledge, this is the first approximation algorithm for Pri-
ority NWST, and is the main technical contribution of this paper. The analysis
extends the spider decomposition of Klein and Ravi [19] in their greedy (2 ln |T |)–
approximation for the NWST problem, to accommodate priority constraints in
the Priority NWST problem. Note the additional +1 arises as we do not
consider the source s a terminal. Moreover, the approximation ratio is tight.

2 Priority Steiner Tree: Two logarithmic approximations

We first review the greedy min{2 ln |T | + 2, kρ} approximation for Priority

Steiner tree given by Charikar et al. [6]. This returns the better solution of
two sub-algorithms; we focus primarily on the (2 ln |T |+ 2)-approximation (Al-
gorithm 1). This algorithm sorts the terminals T from highest to lowest priority.
Then for i = 1, . . . , |T |, the ith terminal vi in the sorted list is connected to
the existing tree (containing the source s) using a minimum weight path of rate
P (vi). The weight of this path is the connection cost of vi. Cycles can be removed
in the end by removing an edge from each cycle with the lowest rate.

Algorithm 1 R(·) = QoSMT(graph G, priorities P, edge weights w, source s)
[6]

1: Sort terminals T by decreasing priority P (·)
2: Initialize V ′ = {s}, R(e) = 0 for e ∈ E
3: for i = 1, 2, . . . , |T | do
4: Connect ith terminal vi to V ′ using minimum weight path pi of rate P (vi)
5: R(e) = P (vi) for e ∈ pi
6: V ′ = V ′ ∪ V (pi)

7: Remove lowest-rate edge from each cycle
8: return edge rates R(·)

Algorithm 1 is based on a (log2 |T |)-approximation for an online Steiner tree
problem analyzed by Imase and Waxman [17]; however, Charikar et al. [6] give a
simpler analysis which proves a weaker approximation ratio of 2 ln |T |+2, based
on the following lemma:

Lemma 1 ([6]). For 1 ≤ x ≤ |T |, the xth most expensive connection cost in-
curred by Algorithm 1 is at most 2OPT

x
.

Lemma 1 implies the weight of the PST is at most 2OPT
(

1
1 + 1

2 + . . .+ 1
|T |

)

=

2OPTH|T | ≤ (2 ln |T | + 2)OPT. Line 4 can be executed by running Dijkstra’s
algorithm from vi with edge weights w(·, P (vi)) until reaching a vertex in V ′;
hence Algorithm 1 runs in O(nm+ n2 logn) time.

We strengthen the analysis by Charikar et al. [6] to prove an approxima-
tion ratio of ⌈log2 |T |⌉+ 1, thus matching the result for the online Steiner tree

6 F. Darabi Sahneh et al.

problem [17]. Instead of an upper bound on the xth most expensive connection

cost, we establish a bound on the |T |
2 least expensive connection costs; a simi-

lar technique was used in [20] for a bicriteria diameter-constrained Steiner tree
problem. For simplicity, we assume w.l.o.g. |T | is a power of 2; this can be done
by adding up to one dummy terminal of priority 1 to each terminal, connected
with a zero-weight edge.

Lemma 2. The sum of the |T |
2 least expensive connection costs incurred by Al-

gorithm 1 is at most OPT.

Proof. Let T ∗ be a minimum weight PST rooted at s with weight OPT and
edge rates R∗(·). Consider a depth-first traversal of T ∗ starting and ending at s
(Fig. 1).

t1

t2

t3

t4

t5

t6

t7

t8

s

Fig. 1: Depth-first traversal of T ∗, with terminals t1, . . . , t8 indicated. Terminals
t1, t3, t4, t6, t8 have priority 2; the rest have priority 1.

As each edge in T ∗ is included twice in the traversal, the total weight of the
edges visited in the traversal is 2OPT. Consider pairs of consecutive terminals
visited for the first time along the traversal, including the pair consisting of the
last and the first terminals visited. There are |T | such terminal pairs; suppose
these pairs are (t1, t2), (t2, t3), . . . , (t|T |−1, t|T |), (t|T |, t1).

For i ∈ [|T |], let p∗i denote the ti–ti+1 path in T ∗ using edges at their respec-
tive rates in T ∗, where t|T |+1 := t1. Note that every edge in p∗i necessarily has
rate at least min{P (ti), P (ti+1)}. Hence, if ci :=

∑

e∈p∗
i
w(e,R∗(e)) denotes the

weight of the edges along path pi in T ∗, we have σ(ti, ti+1) ≤ ci. Further, the sum
of the weights of these |T | paths equals the weight of the edges in the traversal;

that is,
∑|T |

i=1 ci = 2OPT. These observations imply
∑|T |

i=1 σ(ti, ti+1) ≤ 2OPT.

Partition the |T | terminal pairs into two disjoint sets S1, S2 of size |T |
2 as

follows:

S1 = {(t1, t2), (t3, t4), . . . , (t|T |−1, t|T |)}

S2 = {(t2, t3), (t4, t5), . . . , (t|T |, t1)}.

Consider a pair (ti, ti+1) ∈ S1. As Algorithm 1 connects terminals in decreasing
order of priority, a candidate choice is to connect the lower-priority terminal

Approximation Algorithms for Priority Steiner Tree Problems 7

to the higher-priority terminal, which implies that the connection cost of the
lower-priority terminal is at most σ(ti, ti+1). Let C1 := σ(t1, t2) + σ(t3, t4) +
. . . + σ(t|T |−1, t|T |); define C2 similarly with respect to S2. By considering all

pairs in S1, there necessarily exist |T |
2 terminals whose sum of connection costs

is at most C1. Similarly, there exist |T |
2 terminals whose sum of connection costs

is at most C2. As C1 + C2 =
∑|T |

i=1 σ(ti, ti+1) ≤ 2OPT, either C1 ≤ OPT or

C2 ≤ OPT, so there exist |T |
2 terminals whose sum of connection costs is at

most OPT. ⊓⊔

Theorem 3. Algorithm 1 is a (⌈log2 |T |⌉ + 1)-approximation for Priority

Steiner tree.

Proof. By Lemma 2, the sum of the |T |
2 cheapest connection costs is at most

OPT. Consider the remaining |T |
2 terminals with the most expensive connection

costs, as well as the minimum subtree of T ∗ spanning these terminals. Applying

Lemma 2 again, the sum of the next |T |
4 cheapest connection costs (out of these

remaining terminals) is at most OPT. We can apply Lemma 2 ⌈log2 |T |⌉ + 1
times to obtain the result. ⊓⊔

In the following, we give a simpler, parallelizable algorithm for Priority Steiner

tree which achieves the same approximation ratio of ⌈log2 |T |⌉ + 1. For sim-
plicity we assume P (s) = ∞ and every (non-source) terminal has a different
priority; ties between terminals of the same priority can be broken arbitrarily.
The idea is to connect each terminal v to the “closest” terminal or source with
a greater priority than v. Specifically, for v ∈ T , find a vertex u ∈ T ∪ {s} with
P (u) > P (v) which minimizes σ(u, v), and connect v to u with edges of rate
P (v). This can be done by executing Dijkstra’s algorithm from v using edge
weights w(·, P (v)) and stopping once we find a vertex with a greater priority
than v. Moreover, this algorithm is parallelizable as the corresponding path for
each terminal can be found in parallel. The weight of connecting v to its parent
u is the connection cost of v. As before, cycles can be removed in the end by
removing an edge from each cycle with the lowest rate.

Algorithm 2 R(·) = PST(graph G, priorities P, edge weights w, source s)

1: Initialize R(e) = 0 for e ∈ E
2: for v ∈ T do

3: Find u ∈ T ∪ {s} with P (u) > P (v) such that σ(u, v) is minimized
4: R(e) = max{R(e), P (v)} for e ∈ pvu

5: Remove lowest-rate edge from each cycle
6: return edge rates R(·)

Algorithm 2 produces a valid PST which spans all terminals, since there is
a path from each terminal v to the source using edges of rate P (v) or higher.
Moreover, Lemma 1 and Theorem 3 extend easily:

8 F. Darabi Sahneh et al.

Lemma 3. The sum of the |T |
2 least expensive connection costs incurred by Al-

gorithm 2 is at most OPT.

This is proved in the same way as Lemma 1.

Theorem 4. Algorithm 2 is a (⌈log2 |T |⌉ + 1)-approximation for Priority

Steiner tree.

One main difference compared to Algorithm 1 [6] is that Algorithm 2 is not re-
quired to connect the terminals sequentially, or even by order of priority. Further,
unlike Algorithm 1, Algorithm 2 is not dependent on the solution computed at
the previous iteration. If k ≪ |T |, a simple kρ-approximation given by Charikar
et al. [6] is to compute a ρ-approximate Steiner tree over the terminals of each
priority separately, taking O(k ·STEINER(n)) time. Executing both approxima-
tions and taking the better of the two solutions yields a min{⌈log2 |T |⌉+1, kρ}-
approximation as desired. The approximation ratios given in Theorem 3–4 are
tight up to a factor of 2, even if k = 1. Imase and Waxman [17] provide a se-
quence (Gi) of graphs for which Algorithms 1-2 may return a PST with weight
1
2 log2 |T |+ 1 times the optimum; this was also analyzed recently in [2].

3 An O(log |T |)-approximation for Priority NWST

We remark that the analysis of Algorithms 1-2 does not extend to Priority

NWST; one can construct an example input graph in which Algorithm 1 or 2
(considering minimum weight node-weighted paths) returns a poor NWST with
weight Ω(|T |)OPT. In this section, we extend the (2 ln |T |)-approximation by
Klein and Ravi [19] which maintains a collection of trees, and greedily merges
a subset of these trees at each iteration to minimize a cost-to-connectivity ratio
(Algorithm 3). For Priority NWST, we need to ensure that the priority con-
straint is always maintained throughout the construction process. To this end,
we first define a rate tree:

Definition 3 (Rate tree). Let G = (V,E), and let Tr be a subtree of G (not
necessarily a Steiner or spanning tree of G) which includes vertex r. Let R :
V → R≥0 be a function which assigns rates to the vertices in G. We say that Tr
is a rate tree rooted at r if, for all v ∈ V (Tr) \ {r}, the path from r to v in Tr
consists of vertices of non-increasing rate.

The main idea of Algorithm 3 is to maintain a set (not necessarily a forest)
of rate trees. By simply connecting the roots of the rate trees with paths of
appropriate vertex rates, we can satisfy the priority constraints.

Another challenge to tackle involves properly devising a definition of weight
when greedily merging rate trees at each iteration. The greedy NWST algorithm
by Klein and Ravi [19] simply sums the weights from a root vertex to each
terminal. In our algorithm, we cannot simply connect the root of a rate tree to
other roots of other rate trees of lower or equal priority and compute the weight
similarly. This is due to a technical challenge needed for the analysis of the

Approximation Algorithms for Priority Steiner Tree Problems 9

algorithm (see Section 3.2) that it is not possible, in general, to perform a spider
decomposition (similar to [19]) on a rate tree such that paths from the center to
leaves have non-increasing rates. To overcome this challenge, we introduce the
notion of rate spiders and prove the existence of a rate spider decomposition,
which further guides us to properly define weight computations at each iterative
step.

3.1 Algorithm description

In the following, let p1 < p2 < . . . < pk denote the k vertex priorities. Initialize a
set F (not necessarily a forest) of |T |+1 rate trees so that each terminal v ∈ T ,
including the source s, is a singleton rate tree whose root is itself. Initialize vertex
rates R(v) = P (v) for v ∈ T , R(s) = pk, and R(v) = 0 for v 6∈ T ∪ {s}. While
|F| > 1, the construction proceeds iteratively as follows. Each iteration consists
of greedily selecting the following:

– a rate tree Tr ∈ F rooted at r, called the root tree
– a special vertex v ∈ V called the center (note v could equal r)
– a real number b ≤ P (r) representing the rate which v is “upgraded” to
– a nonempty subset S = {Tr1 , . . . , Tr|S|

} ⊂ F of rate trees where Tr 6∈ S, and
P (rj) ≤ b for all roots rj associated with the rate trees in S

By connecting r to the center v using vertices of rate b, upgrading R(v) to b,
then connecting v to the root of each rate tree Trj ∈ S using vertices of rate
P (rj), we can replace the |S|+1 rate trees in F with a new rate tree T new

r rooted
at r (see Figure 2).

Tr r
v

(b = 2)

r1

r2

r3

S

Tr1

Tr2

Tr3

Fig. 2: Illustration of an iteration step in Algorithm 3 with P (r) = 2, b = 2,
P (r1) = P (r2) = 2, and P (r3) = 1. Vertices with larger circles (not necessarily
terminals) have rate 2; vertices with smaller circles have rate 1.

The root tree, center, b, and S are greedily chosen to minimize a cost-to-
connectivity ratio γ, defined as follows:

γ :=
1

|S|+ 1

σb(r, v) + w(v, b) +

|S|
∑

j=1

σP (rj)(v, rj)

 (1)

10 F. Darabi Sahneh et al.

where rj denotes the root of the jth rate tree Trj in S. The second expression

σb(r, v) + w(v, b) +
∑|S|

j=1 σP (rj)(v, rj) gives an upper bound on the weight of
connecting r to v, upgrading R(v) to b, then connecting v to |S| roots, and the
denominator |S| + 1 represents the “connectivity”, or the number of connected
rate trees. Lemma 6 shows how to execute this iteration step in polynomial time.

Once Tr, v, b, and S are chosen, we “upgrade” the vertex rates R(·) along a
shortest r–v path to b, then upgrade the vertex rates along each shortest v–rj
path to P (rj). In the case that some vertex u is on multiple v–rj paths, then
R(u) is upgraded to the maximum over all root priorities P (rj) for which u
appears on the corresponding path. Pseudocode is shown in Algorithm 3.

Algorithm 3 R(·) = PNWST(G, terminals T, priorities P, vertex weights w)

1: Initialize F , R(v) = P (v) if v ∈ T ∪ {s} and R(v) = 0 if v 6∈ T ∪ {s}
2: while |F| > 1 do

3: Find Tr, v, b, S which minimize γ (Lemma 6)
4: R(u) = max{R(u), b} for u on r–v path
5: R(v) = max{R(v), b}
6: for j = 1, . . . , |S| do
7: R(u) = max{R(u), P (rj)} for u on v–rj path

8: F = F \ ({Tr} ∪ S)
9: F = F ∪ {T new

r }

10: return vertex rates R(·)

3.2 Analysis of Algorithm 3

We show Theorem 2 by asserting that Algorithm 3 is a 2 ln(|T |+1)–approximation
for Priority NWST. Proofs omitted due to space are in the arXiv versioncite

We extend the spider decomposition given by Klein and Ravi [19] to account
for the priority constraints in the Priority NWST problem.

Definition 4 (Spider). A spider is a tree where at most one vertex has degree
greater than 2. A nontrivial spider is a spider with at least 2 leaves.

A spider is identified by its center, a vertex from which all paths from the center
to the leaves of the spider are vertex-disjoint. A foot of a spider is a leaf; if the
spider has at least three leaves, then its center is unique and is also a foot. Klein
and Ravi [19] show that given a graph G and subset M ⊆ V of vertices, G can
be decomposed into vertex-disjoint nontrivial spiders such that the union of the
feet of the nontrivial spiders contains M . We extend the notions of spider and
spider decomposition to the Priority NWST problem.

Definition 5 (Rate spider). A rate spider is a rate tree X which is also a
nontrivial spider. It is identified by a root r as well as a center v such that:

Approximation Algorithms for Priority Steiner Tree Problems 11

– The root r is either the center or a leaf of X , and the path from r to every
vertex in X uses vertices of non-increasing rate R(·)

– The paths from the center v to each non-root leaf of X are vertex-disjoint
and use vertices of non-increasing rate R(·).

In Figure 3, right, rate spiders X2 and X3 have centers distinct from their roots
r2, r3 while X1 has center v = r1. In Definition 6, we supply a notion of a
“minimal” weight tree with respect to a subset M of vertices.

Definition 6 (M–optimized rate tree). Let Tr be a rate tree rooted at r with
vertex rates R. Let M ⊆ V (Tr) with r ∈ M . Then Tr is M–optimized if every leaf
of Tr is in M , and if for every vertex v ∈ V (Tr) \M , we have R(v) = maxR(w)
over all vertices w ∈ M in the subtree of Tr rooted at v.

We show any M–optimized rate tree has a rate spider decomposition.

Lemma 4 (Rate spider decomposition). Let M ⊆ V (Tr) with |M | ≥ 2, and
let Tr be an M–optimized rate tree where r ∈ M . Then Tr can be decomposed
into vertex-disjoint rate spiders X1, . . . , Xd rooted at r1, . . . , rd such that:

– the leaves and roots of the rate spiders are contained in M
– every vertex in M is a either a leaf, root, or center of some rate spider

Figure 3, right, shows an example of an M–optimized rate tree Tr for |M | = 10
and a rate spider decomposition X1, X2, X3 over M .

3
r

2 3

2 2 2 3 3

1 2 2 2 3 1

1 2 1 1 1

3
r32 2

1 2 2 2

1 2
r1

2
r2

1 1

1 2 1 1
X1

X2

X3

Fig. 3: Left: A rate tree rooted at r with rates R(·) indicated and vertices in M
shown in black. Right: An M–optimized rate tree Tr and a rate spider decom-
position X1, X2, X3 with roots r1, r2, r3.

Proof. We use induction on |M |. For base case |M | = 2, the decomposition
consists of a single rate spider X1 with root r1 = r, namely the r–u path in Tr
where u is the other vertex in M . Suppose that for some q ∈ {2, . . . , |V (Tr)|−1},
there exists a rate spider decomposition over any subset M ′ ⊂ V (Tr) with 2 ≤
|M ′| ≤ q, so that we wish to show that there exists a decomposition of Tr over
any subset M with |M | = q + 1.

Given Tr rooted at r and M , find a vertex u ∈ V (Tr) furthest from r (by
number of edges) with the property that the subtree Tu rooted at u contains at
least two vertices in M . If u = r, then we claim that Tr is already a rate spider

12 F. Darabi Sahneh et al.

with root and center r, in which a decomposition of Tr over M is itself. To show
this claim, we show that every w ∈ V (Tr) with w 6= r has degree at most 2 in Tr.
Suppose otherwise there exists some w 6= r with degree at least 3 in Tr. Then
the subtree Tw rooted at w contains at least two leaves which are contained in
M (by Def. 6), contradicting the choice of u = r since w is further from r.

If u 6= r, then the subtree Tu rooted at u is a rate spider X with center u.
If u ∈ M , set u as the root of X . If u 6∈ M , find a vertex u′ ∈ V (Tu) with rate
R(u); such a vertex u′ exists by Def. 6. Set u′ to be the root of X ; remove X
from Tr as well as the edge from u to its parent to produce a smaller rate tree
T ′
r .
Let M ′ = M ∩ V (T ′

r) be the set of vertices in M which remain in Tr after
removing Tu. If |M

′| = 0, then we have found a rate spider decomposition of Tr
over M . If |M ′| = 1, then connecting r to X yields a single rate spider rooted
at r with center u, which also gives a rate spider decomposition. If |M ′| ≥ 2,
then prune the r–u path so that T ′

r is M ′–optimized. By induction hypothesis,
T ′
r contains a rate spider decomposition over M ′. ⊓⊔

Corollary 1. Let Tr be an M–optimized rate tree. Consider a rate spider decom-
position of Tr over M containing d rate spiders X1, . . . , Xd generated using the
method in the proof of Lemma 4. Let Sj = (M ∩V (Xj))\{rj} denote the vertices

in M contained in Xj , not including its root rj. Then
∑d

j=1(1 + |Sj |) = |M |.

Proof. This immediately follows as the jth rate spider Xj contains 1+|Sj| vertices
inM . Since the rate spiders are vertex-disjoint and every vertex inM is contained
in some rate spider, it follows that

∑d
j=1(1 + |Sj |) = |M |. ⊓⊔

For the following lemmas, we define the following notation. For i ≥ 1, let Fi

denote the set of rate trees at the beginning of iteration i in Algorithm 3, and let
Mi denote the set of roots of the rate trees in Fi. Hence |F1| = |M1| = |T |+1. Let
T ∗ be a minimum weight PNWST for the instance with weight OPT and vertex
rates R∗ : V (T ∗) → {p1, . . . , pk} where p1, . . . , pk are the k vertex priorities.

On iteration i, let T ∗
i be an Mi–optimized rate tree by optimizing T ∗ with

respect to Mi. By Lemma 4, T ∗
i contains a rate spider decomposition over Mi

containing d rate spiders X1, . . . , Xd. For j ∈ [d], consider the jth rate spider
Xj with root rj , center vj , and leaves Sj ⊂ Mi not including rj . Let w(Xj)
denote the weight of the vertices in Xj within the optimum solution T ∗, given
by w(Xj) =

∑

v∈V (Xj)
w(v,R∗(v)). On iteration i, a candidate choice which

Algorithm 3 could select is according to the jth rate spider Xj : specifically,
select root tree Trj rooted at rj , center v = vj , b = R∗(vj), and S ⊆ Fi the
set of rate trees whose root is in Sj . Let cj be the weight that Algorithm 3
computes for this candidate choice (i.e., the second expression in Eq. (1)). We
observe that for all rate spiders Xj in a rate spider decomposition of T ∗

i , we
have cj ≤ w(Xj); this follows as the computed weight cj considers the minimum
weight vertex-weighted paths between rj and vj , as well as from vj to each leaf
in Sj .

Let hi ≥ 2 denote the number of rate trees in Fi which are selected on it-
eration i of Algorithm 3 (i.e., hi = |S| + 1). Let ∆Ci denote the actual weight

Approximation Algorithms for Priority Steiner Tree Problems 13

incurred on iteration i by upgrading vertex rates in line 7. Let γi denote the min-
imum cost-to-connectivity ratio (Eq. (1)) computed by Algorithm 3 on iteration
i.

Lemma 5. For each iteration i of Algorithm 3, we have
∆Ci

hi

≤
OPT

|Fi|
.

Proof. Consider the Mi–optimized rate tree obtained from T ∗. By Lemma 4,
there exists a rate spider decomposition over Mi containing d ≥ 1 rate spiders
X1, . . . , Xd.

For each j ∈ [d], as Algorithm 3 seeks to minimize γ, we have by the above
observation that cj ≤ w(Xj):

γi ≤
cj

1 + |Sj |
≤

w(Xj)

1 + |Sj |
. (2)

We note that ∆Ci

hi
≤ γi; this follows as the computed weight in Algorithm 3

may overcount vertex weights appearing on multiple center-to-root paths. This

observation, combined with inequality (2), implies ∆Ci

hi
≤

w(Xj)
1+|Sj | for all rate

spiders Xj in the decomposition.
We use the simple algebraic fact that for non-negative numbers a, x1, . . . ,

xd, y1, . . . , yd where the yj ’s are nonzero, if a ≤
xj

yj
for all j ∈ [d], then

a ≤ (
∑d

j=1 xj)/(
∑d

j=1 yj). This fact is easily verified by writing ayj ≤ xj , then
summing from j = 1 to j = d. Applying this fact, we obtain

∆Ci

hi

≤ γi ≤

∑d

j=1 w(Xj)
∑d

j=1 1 + |Sj |
≤

OPT

|Fi|
(3)

where the last inequality follows from the fact that
∑d

j=1 w(Xj) ≤ OPT (as the
vertices in a rate spider decomposition of T ∗ are a subset of V (T ∗)), as well as
Corollary 1. ⊓⊔

Using Lemma 5, we can prove Theorem 2, by asserting that Algorithm 3 is a
2 ln(|T |+ 1)–approximation for Priority NWST. The remainder of the proof
can be completed by following the analysis by Klein and Ravi [19]. We use a
simpler analysis to show a marginally weaker approximation ratio.

Proof (Theorem 2). Lemma 5 can equivalently be written as ∆Ci ≤
hi

|Fi|OPT.

Recall that hi ≥ 2 and |Fi| denote the number of rate trees merged on iteration
i and the number of rate trees in F at the beginning of iteration i, respectively.
Suppose Algorithm 3 runs for I iterations. Thus we have |F1| = |T | + 1 and
|FI | = 1, as well as the relation |Fi+1| = |Fi| − (hi − 1) = |Fi| − hi + 1.

We use the simple algebraic fact that for positive integers x < y, we have
x
y
≤ 1

y
+ 1

y−1 + . . . + 1
y−x+1 = Hy −Hy−x, where Hx = 1

1 + 1
2 + . . . + 1

x
is the

xth harmonic number with H0 := 0. Applying this fact, we have

hi

|Fi|
≤ H|Fi| −H|Fi|−hi

= H|Fi| −H|Fi+1|−1.

14 F. Darabi Sahneh et al.

Multiplying the above inequality by OPT and applying Lemma 5 yields

∆Ci ≤ (H|Fi| −H|Fi+1|−1)OPT. (4)

Summing inequality (4) from i = 1 to i = I, we obtain an upper bound on

the PNWST weight
∑I

i=1 ∆Ci in terms of OPT which approximately telescopes
to 2 ln(|T | + 1)OPT. Specifically, let F = {|F2|, . . . , |FI |} be a subset of [|T |]
where 1 ∈ F and |T |+ 1 6∈ F . Then summing inequality (4) equivalently yields

w(T) =

I
∑

i=1

∆Ci ≤ H|T |+1OPT+
∑

x∈F

(Hx −Hx−1)OPT

≤ (H|T |+1 +H|T |)OPT

≤ (2 ln(|T |+ 1) + 2)OPT

completing the proof. As stated previously, following the same analysis as in [19]
proves a marginally better approximation ratio of 2 ln(|T |+ 1). ⊓⊔

It is worth noting that the extension of the (2 ln |T |)-approximation by Klein
and Ravi [19] to the Priority NWST problem is not immediately obvious,
as we must be careful when merging multiple rate trees while simultaneously
satisfying the priority and rate requirements.

Lemma 6. On iteration i of Algorithm 3, a choice of Tr, v, b, and S which
minimizes γ can be found in O(n3k logn) time.

Proof. For a fixed root tree Tr, center v, and b ∈ {p1, p2, . . . , P (r)}, consider the
set F ′ of all rate trees in F \ {Tr} whose root has priority at most b. Sort F ′ in
nondecreasing order by the weight of a minimum weight path from v to its root,
namely σP (r′)(v, r

′) for rate tree Tr′ , taking O(n log n) time. Then for fixed Tr,
center v, b, we can determine S which minimizes γ by only considering S to be
the first 1, 2, 3, . . . , |F ′| trees in the sorted list.

There are |F| = O(n) possible root trees, n possible centers, and O(k) possi-
ble choices for b. Using the above analysis, we can determine S which minimizes
γ over all possible choices in O(n3k logn) time. ⊓⊔

Algorithm 3 runs for I ≤ |T | iterations, as the size of |F| decreases by at least
1 at each iteration. By Lemma 6, the running time of Algorithm 3 is O(n4k logn).
The approximation ratio for Algorithm 3 is tight as is the case for the Ravi-Klein
algorithm [19]; see Figure 4.

4 Conclusions and future work

First, by strengthening the analysis of [6], we showed that Priority Steiner

tree is approximable with ratio min{⌈log2 |T |⌉ + 1, kρ} ≤ min{1.443 ln |T | +
2, kρ}, and then provided a simple, parallelizable algorithm which achieves the
same approximation guarantee. Second, we showed that a natural node-weighted

Approximation Algorithms for Priority Steiner Tree Problems 15

1

2

|T |+1

2

|T |
2

3 1

· · ·

· · ·

s
· · ·

· · ·

s

Fig. 4: Left: Tightness example for the Ravi-Klein NWST algorithm [19] and Al-
gorithm 3, with vertex weights indicated and OPT = 1. Right: Example solution
returned by Algorithm 3, with weight 2(H|T |+1 − 1) ≤ 2 ln(|T |+ 1).

generalization of Priority Steiner tree admits a O(log |T |)-approximation
using a generalization of the Ravi-Klein algorithm [19] and spider decomposition.
It remains open whether the approximability gap between c log logn [9] and
O(log n) for Priority Steiner tree can be tightened, or whether a more
efficient approximation algorithm for Priority NWST can be formed. As both
problems are a special case of the Steiner tree in directed graphs, this suggests
a hierarchy in terms of hardness of approximation.

Acknowledgments The authors wish to thank Alon Efrat and Spencer Krieger
for their discussions related to the priority NWST problem.

References

1. Ahmed, R., Angelini, P., Sahneh, F.D., Efrat, A., Glickenstein, D., Gronemann,
M., Heinsohn, N., Kobourov, S., Spence, R., Watkins, J., Wolff, A.: Multi-level
Steiner trees. Proceedings of the 17th International Symposium on Experimental
Algorithms (2018)

2. Ahmed, R., Sahneh, F.D., Kobourov, S., Spence, R.: Kruskal-based approximation
algorithm for the multi-level Steiner tree problem. Proceedings of the 28th Annual
European Symposium on Algorithms (2020)

3. Angelopoulos, S.: Online priority Steiner tree problems. In: WADS (2009)
4. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: Modeling and heuristic worst-

case performance analysis of the two-level network design problem. Management
Sci. 40(7), 846–867 (1994)

5. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via
iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)

6. Charikar, M., Naor, J.S., Schieber, B.: Resource optimization in QoS multicast
routing of real-time multimedia. IEEE/ACM Trans. Networking 12(2), 340–348
(2004)

7. Chekuri, C., Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R.: Approximation
algorithms for nonuniform buy-at-bulk network design. SIAM Journal on Comput-
ing 39(5), 1772–1798 (2010)

8. Chleb́ık, M., Chleb́ıková, J.: The Steiner tree problem on graphs: Inapproximability
results. Theoret. Comput. Sci. 406(3), 207–214 (2008)

16 F. Darabi Sahneh et al.

9. Chuzhoy, J., Gupta, A., Naor, J.S., Sinha, A.: On the approximability of some
network design problems. ACM Trans. Algorithms 4(2), 23:1–23:17 (2008)

10. Current, J.R., ReVelle, C.S., Cohon, J.L.: The hierarchical network design problem.
European Journal of Operational Research 27(1), 57 – 66 (1986)

11. Demaine, E.D., Hajiaghayi, M., Klein, P.N.: Node-weighted Steiner tree and group
Steiner tree in planar graphs. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) Automata, Languages and Programming.
pp. 328–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

12. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. Proceed-
ings of the Annual ACM Symposium on Theory of Computing (05 2013).
https://doi.org/10.1145/2591796.2591884

13. Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652
(1998)

14. Grandoni, F., Laekhanukit, B., Li, S.: O(log2 k/ log log k)-approximation algorithm
for directed Steiner tree: A tight quasi-polynomial-time algorithm. In: Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. p.
253–264. STOC 2019, Association for Computing Machinery, New York, NY, USA
(2019), https://doi.org/10.1145/3313276.3316349

15. Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner
trees and connected dominating sets. J. Inform. Comput. 150(1), 57–74 (1999)

16. Hauptmann, M., Karpinski, M.: A compendium on Steiner tree problems (2015),
http://theory.cs.uni-bonn.de/info5/steinerkompendium/

17. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM Journal on Dis-
crete Mathematics 4(3), 369–384 (1991)

18. Karpinski, M., Măndoiu, I.I., Olshevsky, A., Zelikovsky, A.: Improved approxi-
mation algorithms for the quality of service multicast tree problem. Algorithmica
42(2), 109–120 (2005)

19. Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-
weighted Steiner trees. J. Algorithms 19(1), 104–115 (1995)

20. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S., Rosenkrantz, D.J.,
Hunt, H.B.: Bicriteria network design problems. Journal of Algorithms
28(1), 142–171 (1998). https://doi.org/https://doi.org/10.1006/jagm.1998.0930,
https://www.sciencedirect.com/science/article/pii/S0196677498909300

21. Maxemchuk, N.F.: Video distribution on multicast networks. IEEE Journal on
Selected Areas in Communications 15(3), 357–372 (1997)

22. Mirchandani, P.: The multi-tier tree problem. INFORMS J. Comput. 8(3), 202–218
(1996)

23. Naor, J.S., Panigrahi, D., Singh, M.: Online node-weighted Steiner tree and related
problems. In: 52nd Annual IEEE Symposium on Foundations of Computer Science
FOCS 2011. pp. 210–219. IEEE (January 2011)

24. Risso, C., Robledo, F., Nesmachnow, S.: Mixed Integer Programming Formulations
for Steiner Tree and Quality of Service Multicast Tree Problems. Programming and
Computer Software 46(8), 661–678 (2020)

25. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms. p. 770–779. SODA ’00, Society for Industrial and Applied Mathematics,
USA (2000)

26. Turletti, T., chrysostome Bolot, J.: Issues with multicast video distribution in het-
erogeneous packet networks. In: In Proceedings of the Sixth International Work-
shop on Packet Video (1994)

https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/3313276.3316349
http://theory.cs.uni-bonn.de/info5/steinerkompendium/
https://doi.org/https://doi.org/10.1006/jagm.1998.0930
https://www.sciencedirect.com/science/article/pii/S0196677498909300

Approximation Algorithms for Priority Steiner Tree Problems 17

27. Xue, G., Lin, G.H., Du, D.Z.: Grade of service Steiner minimum trees in the Eu-
clidean plane. Algorithmica (New York) 31(4), 479–500 (Jan 2001)

	Approximation Algorithms for Priority Steiner Tree Problems

