
ar
X

iv
:2

10
7.

01
67

3v
1

 [
cs

.D
S]

 4
 J

ul
 2

02
1

Sublinear-Space Approximation Algorithms for

Max r-SAT

Arindam Biswas and Venkatesh Raman

The Institute of Mathematical Sciences, HBNI, Chennai, India
{barindam,vraman}@imsc.res.in

Abstract. In the Max r-SAT problem, the input is a CNF formula
with n variables where each clause is a disjunction of at most r literals.
The objective is to compute an assignment which satisfies as many of the
clauses as possible. While there are a large number of polynomial-time
approximation algorithms for this problem, we take the viewpoint of
space complexity following [Biswas et al., Algorithmica 2021] and design
sublinear-space approximation algorithms for the problem.

We show that the classical algorithm of [Lieberherr and Specker, JACM
1981] can be implemented to run in nO(1) time while using O(log n)
bits of space. The more advanced algorithms use linear or semi-definite
programming, and seem harder to carry out in sublinear space. We
show that a more recent algorithm with approximation ratio

√
2/2

[Chou et al., FOCS 2020], designed for the streaming model, can be
implemented to run in time nO(r) using O(r log n) bits of space. While
known streaming algorithms for the problem approximate optimum
values and use randomization, our algorithms are deterministic and can
output the approximately optimal assignments in sublinear space.
For instances of Max r-SAT with planar incidence graphs, we devise a
factor-(1−ǫ) approximation scheme which computes assignments in time
nO(r/ǫ) and uses max

{√
n log n, (r/ǫ) log2 n

}

bits of space.

Keywords: Max SAT · approximation · sublinear space · space-efficient
· memory-efficient · planar incidence graph

1 Introduction, Motivation and Our Results

Starting in the 70’s, there has been a long line of work on the approximation
properties of NP-hard problems. The classical approach has been to obtain better-
than-trivial approximations for such problems with polynomial-time algorithms.
Later on, a number of such problems were also studied in the streaming model
of computation, where an algorithm must read the input in a fixed (possibly
adversarial) sequence. The goal is typically to compute an approximation by
making a constant number of passes over the input using space sublinear in the
input size. Recently, there has been some interest in studying approximation
problems in the sublinear-space RAM model, a model halfway between the
RAM and streaming models of computation. In this paper, we continue the

http://arxiv.org/abs/2107.01673v1

2 A. Biswas and V. Raman

work initiated in [5] and devise sublinear-space approximation algorithms for
Max r-SAT.

An instance of Max r-SAT is a CNF formula F = C1∧· · ·∧Cm, where each
of the clauses C1, . . . , Cm is a disjunction of at most r literals over a variable set
{x1, ..., xn}. The objective is to compute an assignment which satisfies as many
of the clauses as possible. Viewing the variables and clauses as an incidence
structure yields an incidence graph where clauses and variables are vertices, and
there is an edge between a variable x and a clause C whenever x appears in C.
We call the restriction of Max r-SAT to instances with planar incidence graphs
Planar Max r-SAT.

The classical approximation algorithm [15] for Max r-SAT achieves an
approximation ratio of 1/2 (shown to be 2/3 in [7]). Later on, the ratio
was improved to (

√
5 − 1)/2 in [17]. Our first observation is that these ra-

tios can be achieved using logarithmic space. Algorithms computing (3/4)-
approximations are known [13], but they use linear or semi-definite program-
ming. Under logarithmic-space reductions, it is P-complete to approximate
Linear Programming to any constant factor [24]. In Section 3, we show that
the previously mentioned factor-((

√
5−1)/2) and a more recent factor-(

√
2/2) ap-

proximation algorithm [8], devised for the streaming model, can be implemented
to use O(logn) bits of space. .

For Planar Max r-SAT, it is possible to compute factor-(1 − ǫ) approxi-
mations in polynomial time for any constant ǫ > 0 [16]. In Section 4, we give a
sublinear-space implementation of this scheme using recent results about com-
puting tree decompositions [9] and BFS traversal sequences [2].

The Model. We use the standard RAM model and additionally constrain the
amount of space available to be sublinear in the input size. The input to an
algorithm is provided using some canonical representation, which it can read
but not modify, i.e. it has read-only access to the input. It also has read-write
access to a certain amount of auxiliary space. Output is written to a stream:
once something is output, the algorithm cannot read it back at a later point as
it executes. We count the amount of auxiliary space in single-bit units, and the
objective is to use as little auxiliary space as possible.

Related Work. In the RAM model, earlier works with an emphasis on space
efficiency include reachability [23,4,21], sorting and selection [18,11,19] and
graph recognition [20,1,10]. In recent years, new results on the computability
of separators for planar graphs in sublinear space have been used to devise
sublinear-space algorithms for BFS [2] and DFS [14] with better running times
than algorithms for general graphs.

Results. We study the question of what approximations may be achieved when
the amount of space available to an algorithm is sublinear in the input size. Our
model being more relaxed than the streaming model, we are able to compute

Sublinear-Space Max r-SAT Approximation 3

approximately optimal assignments for Max r-SAT instead of approximating
optimum values. On the other hand, our model is more restrictive than the RAM
model of classical approximation algorithms where the amount of space used by
an algorithm can potentially be polynomially large in the input size.

– For general Max r-SAT (Section 3), we convert a classical algorithm
of Lieberherr and Specker [17] to our model, obtaining a ((

√
5 − 1)/2)-

approximation algorithm which uses O(logn) bits of space. We also convert
a more recent algorithm of Chou et al. [8] to obtain a (

√
2/2)-approximation

algorithm which uses O(r logn) bits of space.

– For Planar Max r-SAT (Section 4), we show how a (1− ǫ)-approximation
scheme of Khanna and Motwani [16] can be implemented to use
max{√n, (r/ǫ) log n} bits of space.

2 Preliminaries

In this paper, we use the following standard notation and concepts. The set
{0, 1, . . .} of natural numbers is denoted by N and the set {1, 2, . . .} of positive
integers is denoted by Z

+. For n ∈ Z
+, [n] denotes the set {1, 2, . . . , n}.

An r-CNF formula is a conjunction (OR) of disjunctions (AND) of at most
r literals (variables or their negations). The individual disjunctions are called
clauses of the formula. A clause that consists of a single literal is called a unit
clause. For k ∈ [n], a k-clause is a clause which contains exactly k literals.

Let F be a CNF formula with variables x1, . . . , xn. An assignment for F is
a function φ : [n] → {0, 1}n. The assignment is said to satisfy a clause in F if
setting xi = φ1 (i ∈ [n]) makes some literal in the clause evaluate to 1. If φ
satisfies all clauses in F , it is said to satisfy F .

2.1 Time and Space Overheads

In proofs, we measure resource costs in terms of overheads for individual steps.
Since the space available to an algorithm is limited, objects created by processing
the input are not stored, but recomputed on the fly. For example, consider a
procedure (call it A) that reads an input formula F and produces a subformula
F ′ consisting of the unit clauses of F . The procedure outputs F ′ as a stream SF ′ .
Later on, when another procedure (call it B) reads a portion of SF ′ , A recomputes
the entire stream SF ′ . Suppose the resource costs of A are tA time and sA space,
and assuming O(1)-time read costs, suppose the resource costs of A are tB time
and sB space.

In this scenario, we call tB and sB the resource overhead of B. Combining this
overhead with resource costs of A, we obtain the actual resource costs of B: tB · tA
time and sB + sA space.

4 A. Biswas and V. Raman

2.2 Universal Hash Families

Algorithms appearing later on use the trick of randomized sampling to show
that certain good assignments exist and then derandomize the procedure by
using a k-universal family of functions. A k-universal hash family is a family H
of functions from [n] to [b], for positive integers n, k, b with n ≥ b, k, such that for
random variables Xi (i ∈ [n]) defined as Xi = f(i) with f sampled uniformly at
random from H (denoted f ∼ H), the probability—for any S ⊆ [n] with |S| = k
and any ai ∈ [l] (i ∈ S)—of the event (

∧

i∈S Xi = ai) is 1/bk. This condition
implies in particular that X1, . . . , Xn are k-wise independent and the probability
of the event (Xi = ai) is 1/b.

Let a ≤ b be a positive integer, and consider the function φ : [b] → {0, 1}
defined by φ(x) = 1 if x ≤ a and φ(x) = 0 otherwise. With f ∼ H and Y1, . . . , Yn
defined as Yi = φ(f(i)), it is easy to see that Pf∼H(Yi = 1) = a/b, and by the
k-universality of H, the variables Y1, . . . , Yn are k-wise independent. Note that
{φ ◦ f | f ∈ H} is in fact a k-universal hash family. With access to f ∈ H, the
composition φ ◦ f can be computed using O(logn) bits of extra space.

It is known that k-universal hash families such as H exist [12] and can be
computed in time nO(k) using O(k logn) bits of space. The following proposition
is a combination of those results and the preceding discussion.

Proposition 1 (Fredman et al. [12]). Let n, k, a, b ∈ Z
+ with n ≥ b ≥ a

and n ≥ k. One can enumerate a k-universal hash family Univ(n, k, a, b) for
[[n]→ {0, 1}] in time nO(k) using O(k logn) bits of space.

3 Max r-SAT

In this section, we devise sublinear-space (
√
5−1)/2)- and (

√
2/2)-approximation

algorithms for Max r-SAT, with the former’s time and space costs being
independent of r. The following folklore result gives a straightforward linear-
time, logarithmic-space (1/2)-approximation.

Proposition 2 (Folklore). For any r-CNF formula, either the all-1’s or the
all-0’s assignment satisfies at least half the clauses.

3.1 Factor-((
√

5 − 1)/2) Approximation Algorithm

In what follows, we give a logarithmic-space implementation of the following
result.

Proposition 3 (Lieberherr and Specker [17], Theorem 1). Let F be an
r-CNF formula with m clauses. There is an assignment for F which satisfies at
least (

√
5− 1)m/2 clauses.

Definition 1 (2-Satisfiability). An r-CNF formula F is called 2-satisfiable if
any two of its clauses can be simultaneously satisfied, i.e. F does not contain a
pair (l,¬l) of literals as clauses.

Sublinear-Space Max r-SAT Approximation 5

The following proposition is based on arguments in [17] (see also [25]).

Proposition 4. Let F be a 2-satisfiable r-CNF formula with m clauses in
which all unit clauses are positive literals. For the pairwise-independent random
assignment where each variable of F is set to 1 with probability p = 0.618 ≈
(
√
5− 1)/2, the expected number of satisfied clauses is 0.618m.

We now show how the above proposition can be used to compute 0.618-
approximate optimal Max r-SAT assignments for general r-CNF formulas in
logarithmic space.

Theorem 1. For any instance of Max r-SAT with n variables, one can com-
pute a 0.618-approximate optimal assignment in time nO(1) using O(logn) bits
of space.

Proof. Let F be an r-CNF formula with variables x1, . . . , xn. In what follows,
we describe an algorithm which proves the claim.

Computing an equivalent 2-satisfiable formula F ′. For each clause C
in F with at least two literals, check if any variables x appearing in C also appear
as a negated clauses ¬x in F . If they do, flip the x-literals (replace x with ¬x
or ¬x with x) in C and output the resulting clause. Otherwise, output C. The
clauses not output yet are unit clauses, i.e. they have exactly 1 literal. For each
variable xi, check if xi appears as a unit clause in F . If it does, output xi. Then
output the special flag #NEG, to indicate that clauses to follow appear negated in
F . For each variable xi, check if it appears as a unit clause ¬xi in F . If it does,
check if the unit clause xi also appears in F . If both ¬xi and xi are clauses in F ,
output nothing. Otherwise, output xi. Observe that the only clauses of F not
output are unit clauses that appear in pairs (l,¬l).

Let F ′ be the conjunction of the clauses output and SF ′ be the stream
output. With random access to F , SF is produced in time nO(1) using O(log n)
bits of space. Clearly, F ′ is 2-satisfiable. Let φ be an assignment for F ′. Define
φ′(xi) = 1 − φ(xi) for every xi appearing after the #NEG flag in SF ′ and define
φ′(xi) = φ(xi) otherwise. It is easy to see that φ satisfies the same number of
clauses in F ′ as φ′ does in F , and that given access to SF ′ and φ, the overhead
for computing φ′ is nO(1) time and O(logn) space. We use this transformation
later on to compute an assignment for F from an assignment for F ′.

Computing an assignment for F ′. Using the procedure of Proposition 1,
compute a 2-universal hash family H = Univ(n, 2, 618, 1000) and denote the
stream of functions by SH . Note that with Xi ∼ Hi for i ∈ [n], the random
variables X1, . . . , Xn form a pairwise-independent random assignment. Thus,
one of the assignments in SH achieves (for the 2-satisfiable formula F ′) the
expectation value in Proposition 4.

Let m′ be the number of clauses in F ′. For each assignment φ in SH , scan
S′
F to determine the number c of clauses φ satisfies. If c > 0.618m′, output φ

and skip to the next step. By Proposition 1, Hash(n, 2, 618, 1000) is computed
in time nO(1) and O(logn) bits of space, since k = 2 is constant. The overhead
of this step is therefore nO(1) time and O(logn) bits of space. Denote the output
stream of this step by Sφ.

6 A. Biswas and V. Raman

Computing an assignment for F . Now convert the assignment φ from
the previous step to an assignment φ′ (according to the transformation described
earlier) as follows. For each xi, scan Sφ to determine the value v = φ(xi),
and scan SF ′ to determine if xi appears after the #NEG (it was flipped). If it
does, output the assignment φ′(xi) = 1 − v. Otherwise, output the assignment
φ′(xi) = v. Since φ satisfies c ≥ 0.618m′ clauses in F ′, φ′ satisfies the same
number of clauses in F . In particular, it satisfies at least a 0.618-fraction of the
non-unit clauses, and unit clauses that do not appear in (l,¬l) pairs.

Of the pairs (l,¬l) of unit clauses appearing in F , exactly half are satisfied
by any assignment for the variables appearing in them. Now for each xi, scan
Sφ, to determine if φ assigns it a value. If it does not, output the assignment
φ′(xi) = 1. Clearly, φ′ now also satisfies exactly half of the unit clauses in F
appearing in pairs (l,¬l), i.e. it is an optimal assignment for those clauses. Thus,
φ′ is 0.618-optimal assignment for all of F . The overhead of this conversion step
is also nO(1) time and O(logn) bits of space.

Since the overheads for all steps are nO(1) time and O(logn) space, the overall

running time is (nO(1))
3
= nO(1) and the space used is 3 ·O(logn) = O(logn).

⊓⊔

3.2 Factor-(
√

2/2) Approximation Algorithm

In the following, we adapt arguments in [8] to devise a (
√
2/2)-approximation

algorithm which runs in time nO(r) and uses O(r logn) bits of space. Consider
the following definitions.

Definition 2 (Bias). Let F be an r-CNF formula with variables x1, . . . , xn.
For i ∈ [n], the bias of xi is bias(xi) =

∑

j∈[r](#(j-clauses containing xi) −
#(j-clauses containing ¬xi))/2j.

The bias of the entire formula is bias(F) =
∑

i∈[n]|bias(xi)| and the formula

F is called positively biased if bias(xi) ≥ 0 for each i ∈ [n].

The next proposition shows that depending on whether the bias of a formula
is smaller than a certain value, one can satisfy a good proportion (in expectation)
of the clauses in it by setting each variable to 1 with fixed (bias-dependent)
probability.

Proposition 5 (Chou et al. [8]). Let F be a positively-biased r-CNF formula
with m clauses. For i ∈ [r], let mi be the number of i-clauses in F . The following
statements are true.

– The all-1’s assignment satisfies at least bias(F)
2 +

∑

i∈[r]
imi

2i clauses in F .

– When bias(F) ≤ b∗ = 4
∑

i∈[r]

(

1− i+1
2i

)

mi, an r-wise independent random

assignment where variables are set to 1 with probability m−bias(F)
2m−4 bias(F) ≤ 1

satisfies, in expectation, at least
∑

i∈[r]

(

1− 1
2i

)

mi +
bias(F)2

4b∗ clauses in F .

– The best of the two assignments above satisfies at least a (
√
2/2)-fraction of

the maximum number of simultaneously-satisfiable clauses in F .

Sublinear-Space Max r-SAT Approximation 7

We now show how the above proposition can be used to compute good ap-
proximations in sublinear space. For any r-CNF formula F , we first compute an
equivalent positively-biased formula F ′ and then using Proposition 1, compute
an assignment for F ′ which is a (

√
2/2)-approximation. We then convert this to

an assignment for F satisfying the same number of clauses.

Theorem 2. For any instance of Max r-SAT with n variables, one can com-
pute a (

√
2/2)-approximate optimal assignment in time nO(r) using O(r log n)

bits of space.

Proof. Let F be an r-CNF formula with variables x1, . . . , xn and for i ∈ [n], let
mi be the number of i-clauses in F . In what follows, we describe an algorithm
which proves the claim.

Computing bias(F) and b∗. Set bF , b
∗ ← 0. For each i ∈ [n], compute

bi = bias(xi) and mi. It is easy to see that with random access to F , this can
be done in logarithmic space. Set bF ← bF + |bi|, b∗ ← b∗ + (1 − (i + 1)/2i)mi,
and if bi < 0, output xi to indicate that xi has negative bias in F . Then discard
(bi,mi) and move to the next iteration. Finally, store bF and b∗ ← 4b∗ for later
steps using O(logn) bits of space. The entire loop takes time nO(1) and uses
O(logn) bits of space. Let SB be the stream output.

Computing an equivalent positively-biased formula F ′. For each
clause C in F , check if any variables x appearing in C also appear in the stream
SB. If they do, flip the x-literals (replace x with ¬x or ¬x with x) in C and
output the resulting clause. Otherwise, output C. Observe that the variables x
flipped are precisely those for which bias(x) < 0 in the previous step. Thus, the
clauses output form a positively-biased formula. Denote the output stream by
SF ′ . The overhead of this step is nO(1) time and O(logn) space.

Computing an assignment for F ′. If bF > b∗, then output
the all-1’s assignment and skip to the next step. Otherwise, using the
procedure of Proposition 1, compute an r-universal hash family H =
Univ(n, r, ⌈m− bF ⌉, ⌈2m− 4bF ⌉) and denote the stream of functions by SH . Sim-
ilarly as in the proof of Theorem 1, one of the assignments in SH achieves the
expectation value in Proposition 5.

For each assignment φ in SH , scan S′
F to determine the number c of clauses

φ satisfies. If c ≥ bF 2/(16
∑k

i=2(1− (i+1)/2i)mi), output φ and skip to the next
step. The family of assignments is computed in time nO(r) and O(r logn) bits
of space, so the overhead of this step is nO(r) time and O(r logn) bits of space.
Denote the output stream of this step by Sφ.

Computing an assignment for F . Convert the assignment φ from the
previous step to an assignment φ′ for F as follows. For each xi, scan Sφ to
determine the value v = φ(xi), and scan SB to check if xi appears in it (it was
flipped). If it does, output the assignment φ′(xi) = 1− v. Otherwise, output the
assignment φ′(xi) = v. Clearly, φ satisfies the same number of clauses in F ′ as
φ′ does in F . By Proposition 5, this number is at least a (

√
2/2)-fraction of the

maximum number of simultaneously-satisfiable clauses in F . With access to Sφ

and SB , the overhead of this step is nO(1) time and O(logn) space.

8 A. Biswas and V. Raman

Thus, the algorithm outputs a (
√
2/2)-approximate optimal assignment as

required. Observe that the maximum overhead of any of the steps is nO(r) time
and O(r logn) space. Combining the (constantly many) overheads, the overall
running time is nO(r)·O(1) = nO(r) and the space used is O(r logn) · O(1) =
O(r log n). ⊓⊔

4 Planar Max r-SAT

In this section, we devise a sublinear-space PTAS for Planar Max r-SAT
along the lines of [16] using the partitioning approach in [3] for planar graph
problems. We use the following result to perform a BFS traversal of (the
incidence graphs of) the input instances in sublinear space.

Proposition 6 (Chakraborty and Tewari [6], Theorem 1). There is an
algorithm which takes as input a planar graph on n vertices and computes a BFS
sequence for G in time nO(1) using O(

√
n logn) bits of space.

The next result shows how to use the BFS traversal procedure to partition—
in sublinear space—the input formulas into subformulas of bounded diameter.

Lemma 1. Let F be an r-CNF formula with n variables and m clauses that has
a planar incidence graph and let k ∈ N. One can compute a sequence F1, . . . , Fl

of subformulas of F such that

1. the diameter of the incidence graph of each Fi (i ∈ [l]) is at most k,
2. Fi and Fj have no variables in common for all i, j ∈ [l] with i 6= j, and
3. F1, . . . , Fl together contain at least (1 − 1/k)m clauses of F .

The procedure runs in time nO(1) and uses O(
√
n logn) bits of space.

Proof. Let x1, . . . , xn be the set of variables in F , {C1, . . . , Cm} be the set of
clauses in F , GF be the incidence graph of F , and VF (resp. CF) be the vertices
of GF corresponding to the variables (resp. clauses) of F . In what follows, we
describe a procedure which proves the claim.

Adding a dummy vertex. This step ensures that GF is connected.
Determine the connected components of GF using the connectivity algorithm of
Asano et al. [2]: for any two vertices, it runs in time nO(1) and uses O(

√
n log n)

bits of space to check if the two vertices are connected. Then add a dummy
variable vertex xn+1 which has an edge to an arbitrary clause vertex in each
connected component, makingGF connected. Additionally, add the clause ¬xn+1

(with an edge to xn+1) to ensure that assignments for the formula F ′ determined
by the resulting graph GF ′ are in 1-1 correspondence with assignments for F .
Now output F ′ and GF ′ , and denote this output stream by SF ′ . With random
access to GF , it is not hard to see that this transformation runs in time nO(1)

and uses O(
√
n logn) bits of space.

Determining the BFS levels of GF ′ . Consider a BFS traversal of GF ′

starting at (the variable vertex corresponding to) xn+1. Suppose the depth of

Sublinear-Space Max r-SAT Approximation 9

the traversal is d0. Let d = d0 if d0 is even and d = d0 + 1 otherwise. For i ∈ [d],
set Li = {v ∈ V (GF ′) | dist(u, v) = i− 1}. Observe that L1, . . . , Ld are precisely
the levels of the BFS tree, with Li ⊆ VF for odd i and Li ⊆ CF for even i.

Splitting GF . Consider the following subsets of V(GF ′).

– For i ∈ [d/2− 1], let Ui = L2i ∪ L2i+1 ∪ L2i+2. Observe that Ui ∩ Uj 6= ∅ iff
|i− j| ≤ 1 and for i ∈ [d/2− 1], Ui ∩ Ui+1 = L2i+2.

– For i ∈ {0, . . . , k − 1}, let Wi =
⋃

j≡i (mod k) Uj . Observe that Wi ∩Wj 6= ∅
iff i− j ≡ ±1 (mod k) and for i ∈ [d/2−1],Wi∩Wi+1 =

⋃

j≡i (mod k) L2j+2.

– For any A ⊆ VF ∪ CF , let C(A) be the clause vertices that appear in A, i.e.
C(A) = A ∩CF .

Clearly, for i ∈ [d/2 − 1], C(Wi) =
⋃

j≡i (mod k) L2j ∪ L2j+2 and CF =
⋃

i∈0,...,k−1 C(Wi). By the inclusion-exclusion principle, we have

|C(W0)|+ · · ·+ |C(Wk−1)| = |CF |+ |C(W0) ∩C(W1)|+ · · ·+ |C(Wk−1) ∩ C(W0)|
= |CF |+

∑

i∈{0,...k−1}

|L2j+1| ≤ |CF |+ |CF | = 2|CF |.

Thus, for some i ∈ {0, . . . , k − 1}, we have |C(Wi)| ≤ 2|CF |/k, i.e. Wi

contains at most a (2/k)-fraction of the clauses in F ′ (and F). Consider the
graph GF ′ −Wi. Observe that Wi comprises groups of 3 consecutive layers of
the BFS traversal, and consecutive groups are k−2 layers apart. Thus, removing
Wi from GF ′ disconnects GF ′ into connected components which contain at most
k − 2 layers of the BFS traversal each, i.e. their diameters are at most k − 2. It
follows that the formula F+ corresponding to GF ′ −Wi satisfies the conditions
of the claim.

To compute F+, perform the following steps. Using the procedure of Propo-
sition 6, perform a BFS traversal of the GF ′ portion of S′

F , starting at xn+1. Let
SB be the stream produced by this procedure. The overhead of the procedure is
nO(1) time and O(

√
n logn) bits of space. For each i ∈ [k], scan SB to determine

the number |C(Wi)| of clauses in Wi. For i achieving the smallest |C(Wi)| in the
loop, scan SB and output only the levels (and edges between them) which do
not appear in Wi. Let SF+ be this output stream. Now scan SF+, and for each
sequence of consecutive (connected) levels, output the subformula of F induced
by those levels. Observe that SF+ is produced by scanning SF ′ and the final
output is produced by scanning SF+ . Each scan only involves counting elements
in the stream and truncating parts of the stream to produce the output stream.
Thus, the overhead of this entire step is nO(1) time and O(

√
n logn) space.

For the various steps, the maximum overhead is nO(1) time and O(
√
n log n)

bits of space. Thus, combining the overheads for the various steps, the resource
costs of the entire algorithm are nO(1) time and

√
n logn bits of space. ⊓⊔

The next two results allow use to compute tree decompositions for incidence
graphs of bounded diameter in sublinear space.

Proposition 7 (Robertson and Seymour [22], Theorem 2.7). The
treewidth of any planar graph with diameter d is at most 3d+ 1.

10 A. Biswas and V. Raman

Proposition 8 (Elberfeld et al.[9], Lemma III.1). Let G be a graph on n
vertices with treewidth k ∈ N. One can compute a tree decomposition of width
4k + 1 for G such that the decomposition tree is rooted, binary and has depth
O(logn). The procedure runs in time nO(k) and uses O(k logn) bits of space.

Procedure 1, BdTWMaxSAT: find an optimal assignment

Input: (T, v,B,Pψ)
1 max← 0, φmax ← ∅;
2 if v has no children in T then

3 store Vv, the set of variables in Bv that extend ψ let Av be the set of
assignments for variables ;

4 foreach φ ∈ Av do

5 determine val, the number of clauses appearing in Bv that φ satisfies;
6 if val > max then

7 max← val, φmax ← φ

8 return (max,φmax)

9 else

10 determine the left child vl and the right child vr of v in T if they exist;
11 store Vv, the set of variables in Bv, and those in Bvl and Bvr adjacent to

clause variables in Bv;
12 let Av be the set of assignments for Vv that extend ψ;
13 foreach φ ∈ Av do

14 (vall, φl)← BdTWMaxSAT(T, vl,B, φ);
15 (valr, φr)← BdTWMaxSAT(T, vr,B, φ);
16 if vall + valr > max then

17 max← vall + valr, φmax ← φl ∪ φr

18 return (max,φmax)

We now show how one can solve Planar Max r-SAT exactly on formulas
with incidence graphs of bounded diameter.

Lemma 2. Let F be an r-CNF formula with n variables that has a planar
incidence graph with diameter k ∈ N. One can compute an assignment for F
satisfying the maximum number of clauses in time nO(rk) using O

(

rk log2 n
)

bits of space.

Proof. Let G be the incidence graph of F . Since the diameter of G is k, its
treewidth is at most 3k + 1 (Proposition 7). Consider a tree decomposition
(T,B) for G computed by the procedure of Proposition 8. T is the underlying
tree (rooted at a vertex vr ∈ V(T)) and B = {Bv | v ∈ V(T)} is the set of bags
in the decomposition. By the proposition, the depth of T is O(logn) and its
width is at most 4 · (3k + 1) + 1 = O(k), i.e. |Bv| = O(k) for all v ∈ V(T).

For each v ∈ V(T), let Fv be the subformula of F consisting of all clauses
appearing in bags of the subtree of T rooted at v. Let Vv be the set of variables

Sublinear-Space Max r-SAT Approximation 11

in Bv, and those in the bags of v’s children (if they exist) that are adjacent to
variables in Bv.

In what follows, we prove that BdTWMaxSAT(T, vr,B, ∅) (∅ denotes the empty
assignment) computes an assignment for F satisfying the maximum number of
clauses. We momentarily assume constant-time access to G and (T,B).

Assume for induction that for any v ∈ V T , any assignment φ for Vv and
any child vc of v, that BdTWMaxSAT(T, vc,B, φ) returns an assignment for Fvc

which extends φ and satisfies the maximum number of clauses in Fvc among all
such assignments. Now consider a procedure call BdTWMaxSAT(T, v,B, ψ). The
procedure first determines if v has any children. If it does not, then it iterates
over all assignments for variables in Bv that extend φ, finds one that satisfies the
maximum number of clauses in Fv and returns it. Thus, the procedure is correct
in the base case. Since |Vv| ≤ |Bv| = O(k), the number of such assignments is
2O(k). The call stack stores ψ and Vv, so the assignments can be enumerated in
time 2O(k) · nO(1) using O(rk logn) bits of extra space. Thus, this section of the
procedure runs in time 2O(k) · nO(1) and uses O(k logn) bits of space.

In the other case, i.e. v has children, the procedure determines the left and
right children of v by scanning (T,B). It then stores Vv, which is polynomial-
time and uses O(rk log n) bits of space, since each clause in Bv has at most r
literals and thus |Vv| ≤ r · |Bv| = O(rk logn). The loop iterates over the set Av

of assignments for Vv that extend ψ. The assignments can be enumerated (since
ψ and Vv are stored on the call stack) in time 2O(rk) · nO(1) using O(rk log n)
bits of extra space. Next, the procedure calls itself recursively and stores the
tuples returned. Because of the inductive assumption, φl (resp. φr) extends φ
and satisfies the maximum number of clauses in Fvl (resp. Fvr) among all such
assignments.

Observe that because (T,B) is a tree decomposition, the variables outside of
Vv that φl sets are distinct from the variables outside of Vv that φr sets. Thus,
φl and φr do not conflict with each other. In the loop, the procedure finds an
extension φ of ψ such that its extensions φmax

l and φmax
r , respectively, satisfy

the maximum number of clauses in Fl and Fr. Overall, φ is an extension of ψ
which satisfies the maximum possible number of clauses in Fv. This proves the
inductive claim, and thus the procedure is correct.

We now prove the resource bounds of the procedure (assuming constant-time
access to G and (T,B)). Observe that in each recursive call, the the individual
steps O(rk logn) bits of space and the loops also use O(rk logn) bits of space.
Since T has depth O(logn), the depth of the recursion tree is also O(logn), and
therefore the call BdTWMaxSAT(T, r,B, ∅) uses a total of O

(

rk log2 n
)

bits of space.

Outside of the recursive calls, the individual steps of the procedure are
polynomial-time and the total running time for the other operations in the loops
is 2O(rk) ·nO(1). Thus, if the recursive calls take time T , the overall running time
of the procedure is 2O(rk) · 2T + 2O(rk) · nO(1). Since the depth of the recursion
tree is O(logn), this expression solves to nO(rk).

Now consider the overheads for computing G and (T,B). G is clearly
computable in polynomial time and logarithmic space and by Proposition 8,

12 A. Biswas and V. Raman

(T,B) is computable in time nO(k) using O(k logn) bits of space. The real
resource costs of BdTWMaxSAT(T, vr,B, ∅) are therefore nO(rk) · nO(k) = nO(rk)

time and O
(

rk log2 n
)

+O(k logn) = O
(

rk log2 n
)

bits of space. ⊓⊔

The next theorem combines the previous results to devise a sublinear-space
PTAS for Planar Max r-SAT.

Theorem 3. For any 0 < ǫ < 1, one can compute (1 − ǫ)-approximate
optimal assignments for Planar Max r-SAT in time nO(r/ǫ) using
max

{√
n logn, (r/ǫ) log2 n

}

bits of space.

Proof. Consider the following algorithm. Using the procedure of Lemma 1 with
k = ⌈1/ǫ⌉, partition F into subformulas F1, . . . , Fl. Then for each i ∈ [l],
use the procedure of Lemma 2, compute an exact solution for Fi and output
an assignment. In the end, output assignments x = 0 for all variables x not
appearing in F1, . . . , Fl.

Observe that since the partitioning procedure outputs the subformulas as
a stream SF = F1, . . . , Fl, each access to Fi costs a single pass over SF , which
adds only an nO(1)-time, O(logn)-space overhead. By Lemma 1, the partitioning
procedure runs in time nO(1) and uses O(

√
n logn) bits of space. Combining

the overhead for access to Fi and the resource bounds from Lemma 2, solving
Fi exactly takes time nO(1) · nO(rk) = nO(r/ǫ) (since k = ⌈1/ǫ⌉) and uses
O(logn)+O(

√
n logn)+O

(

rk log2 n
)

= max
{√

n logn, (r/ǫ) log2 n
}

bits of space.
Finally, each x = 0 assignment for a variable not appearing in F1, . . . , Fl costs a
single pass over SF . It follows that the total resource costs are nO(r/ǫ) time and
max

{√
n logn, (r/ǫ) log2 n

}

bits of space.
We now prove the approximation bound. Let m be the number of clauses in

F . Observe that Lemma 1 guarantees any two subformulas Fi and Fj (i, j ∈ l
with i 6= j) have no variables in common, and the subformulas together contain
at least (1 − 1/k)m ≥ (1 − ǫ)m clauses of F . Thus, the assignment produced
is valid and satisfies at least (1 − ǫ)m clauses, i.e. it is a (1 − ǫ) approximate
optimal Planar Max r-SAT assignment for F . ⊓⊔

References

1. Allender, E., Mahajan, M.: The complexity of planarity testing. Information and
Computation 189(1), 117–134 (Feb 2004)

2. Asano, T., Kirkpatrick, D., Nakagawa, K., Watanabe, O.: O(
√
n)-Space and

Polynomial-Time Algorithm for Planar Directed Graph Reachability. In: Math-
ematical Foundations of Computer Science. pp. 45–56 (Aug 2014)

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. Journal of the ACM 41(1), 153–180 (Jan 1994)

4. Barnes, G., Buss, J.F., Ruzzo, W.L., Schieber, B.: A Sublinear Space, Polynomial
Time Algorithm for Directed s-t Connectivity. SIAM Journal on Computing 27(5),
1273–1282 (May 1998)

5. Biswas, A., Raman, V., Saurabh, S.: Approximation in (Poly-) Logarithmic Space.
Algorithmica 83(7), 2303–2331 (Apr 2021)

Sublinear-Space Max r-SAT Approximation 13

6. Chakraborty, D., Tewari, R.: Simultaneous Time-Space Upper Bounds for Certain
Problems in Planar Graphs. arXiv Preprint 1502.02135v1 (Feb 2015)

7. Chen, J., Friesen, D.K., Zheng, H.: Tight Bound on Johnson’s Algorithm for
Maximum Satisfiability. Journal of Computer and System Sciences 58(3), 622–640
(Jun 1999)

8. Chou, C.N., Golovnev, A., Velusamy, S.: Optimal Streaming Approximations for all
Boolean Max-2CSPs and Max-kSAT. In: 61st Annual Symposium on Foundations
of Computer Science. pp. 330–341 (Nov 2020)

9. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace Versions of the Theorems of Bod-
laender and Courcelle. In: 51st Annual Symposium on Foundations of Computer
Science. pp. 143–152 (Oct 2010)

10. Elberfeld, M., Kawarabayashi, K.i.: Embedding and canonizing graphs of bounded
genus in logspace. In: 46th Annual Symposium on Theory of Computing. pp. 383–
392 (May 2014)

11. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
Journal of Computer and System Sciences 34(1), 19–26 (Feb 1987)

12. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a Sparse Table with O(1) Worst
Case Access Time. Journal of the ACM 31(3), 538–544 (Jul 1984)

13. Goemans, M.X., Williamson, D.P.: New (3/4)-Approximation Algorithms for the
Maximum Satisfiability Problem. SIAM Journal on Discrete Mathematics 7(4),
656–666 (Nov 1994)

14. Izumi, T., Otachi, Y.: Sublinear-Space Lexicographic Depth-First Search for
Bounded Treewidth Graphs and Planar Graphs. In: 47th International Colloquium
on Automata, Languages, and Programming. pp. 67:1 – 67:17 (2020)

15. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9(3), 256–278 (Dec 1974)

16. Khanna, S., Motwani, R.: Towards a syntactic characterization of PTAS. In: 28th
Annual Symposium on Theory of Computing. pp. 329–337 (May 1996)

17. Lieberherr, K.J., Specker, E.: Complexity of Partial Satisfaction. Journal of the
ACM 28(2), 411–421 (Apr 1981)

18. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical
Computer Science 12(3), 315–323 (Nov 1980)

19. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with
minimum data movement. Theoretical Computer Science 165(2), 311–323 (Oct
1996)

20. Reif, J.H.: Symmetric Complementation. Journal of the ACM 31(2), 401–421 (Mar
1984)

21. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55(4),
1–24 (Sep 2008)

22. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B 36(1), 49–64 (Feb 1984)

23. Savitch, W.J.: Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences 4(2), 177–192 (Apr 1970)

24. Serna, M.: Approximating linear programming is log-space complete for P. Infor-
mation Processing Letters 37(4), 233–236 (Feb 1991)

25. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms (2011)

	Sublinear-Space Approximation Algorithms for Max r-SAT

