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Abstract. Let d-claw (or d-star) stand for K1,d, the complete bipartite graph
with 1 and d ≥ 1 vertices on each part. The d-claw vertex deletion problem, d-
claw-vd, asks for a given graph G and an integer k if one can delete at most k ver-
tices from G such that the resulting graph has no d-claw as an induced subgraph.
Thus, 1-claw-vd and 2-claw-vd are just the famous vertex cover problem
and the cluster vertex deletion problem, respectively.

In this paper, we strengthen a hardness result in [M. Yannakakis, Node-Deletion
Problems on Bipartite Graphs, SIAM J. Comput. (1981)], by showing that clus-
ter vertex deletion remains NP-complete when restricted to bipartite graphs
of maximum degree 3. Moreover, for every d ≥ 3, we show that d-claw-vd is
NP-complete even when restricted to bipartite graphs of maximum degree d.
These hardness results are optimal with respect to degree constraint. By ex-
tending the hardness result in [F. Bonomo-Braberman et al., Linear-Time Al-
gorithms for Eliminating Claws in Graphs, COCOON 2020], we show that, for
every d ≥ 3, d-claw-vd is NP-complete even when restricted to split graphs
without (d + 1)-claws, and split graphs of diameter 2. On the positive side, we
prove that d-claw-vd is polynomially solvable on what we call d-block graphs, a
class properly contains all block graphs. This result extends the polynomial-time
algorithm in [Y. Cao et al., Vertex deletion problems on chordal graphs, Theor.
Comput. Sci. (2018)] for 2-claw-vd on block graphs to d-claw-vd for all d ≥ 2
and improves the polynomial-time algorithm proposed by F. Bonomo-Brabeman
et al. for (unweighted) 3-claw-vd on block graphs to 3-block graphs.
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1 Introduction

Graph modification problems are a very extensively studied topic in graph algorithm. One
important class of graph modification problems is as follows. Let H be a fixed graph.
The H vertex deletion (H-vd for short) problem takes as input a graph G and an
integer k. The question is whether it is possible to delete a vertex set S of at most k
vertices from G such that the resulting graph is H-free, i.e., G− S contains no induced
subgraphs isomorphic to H . The optimization version asks for such a vertex set S of
minimum size, and is denoted by min H vertex deletion (min H-vd for short).

The case that H is a 2-vertex path, i.e., an edge, is the famous vertex cover problem,
one of the basic NP-complete problems. The case that H is a 3-vertex path is well known
under the name cluster vertex deletion (cluster-vd for short). Very recently,
the COCOON 2020 paper [2] addresses the case that H is the claw K1,3, the complete
bipartite graph with 1 and 3 vertices in each part, thus the claw-vd problem.

For any integer d > 0, let d-claw (or d-star) stand for K1,d, the complete bipartite graph
with 1 and d vertices on each part. In this paper, we go on with the claw-vd problem
by considering the d-claw-vd problem for any given integer d > 0:

d-claw-vd

Instance: A graph G = (V,E) and an integer k < |V |.
Question: Is there a subset S ⊂ V of size at most k such that G− S is d-claw free ?

Thus, 1-claw-vd and 2-claw-vd are just the well-known NP-complete problems ver-
tex cover and cluster-vd, respectively, and 3-claw-vd is the claw-vd problem
addressed in the recent paper [2] mentioned above.

While 1-claw-vd is polynomially solvable when restricted to perfect graphs (including
chordal and bipartite graphs) [9], d-claw-vd is NP-complete for any d ≥ 2 even when
restricted to bipartite graphs [20]. When restricted to chordal graphs, it is shown in [2]
that 3-claw-vd remains NP-complete even on split graphs. The computational com-
plexity of 2-claw-vd on chordal graphs is still unknown [4,5]. Both 2-claw-vd and
3-claw-vd can be solved in polynomial time on block graphs [2,5], a proper subclass of
chordal graphs containing all trees.

It is well known that the classical NP-complete problem vertex cover remains hard
when restricted to planar graphs of maximum degree 3 and arbitrary large girth. It is
also known that, assuming ETH (Exponential Time Hypothesis), vertex cover admits
no subexponential-time algorithm in the vertex number [15] and, while min vertex

cover can be approximated within factor 2 by a simple ‘textbook’ greedy algorithm,
no polynomial-time approximation with a factor better than 2 exists assuming UGC
(Unique Games Conjecture) [13]. Very recently, it is shown in [1] that min cluster-vd

can be approximated within factor 2, and this is optimal assuming UGC.

As for min vertex cover, min d-claw-vd can be approximated within a factor d+ 1
but there is no polynomial-time approximation scheme [16]. From the results in [14] it
is known that, for any d ≥ 2, min d-claw-vd admits a d-approximation algorithm on
bipartite graphs. This result was improved later by a result in [10], where the related
problem d-claw-transversal was considered. Given a graph G, this problem asks

2



to find a smallest vertex set S ⊆ V (G) such that G − S does not contain a d-claw
as a (not necessarily induced) subgraph. In [10], it was shown that, in contrast to our
min d-claw-vd problem, d-claw-transversal can be approximated within a factor of
O(log(d+ 1)). Since d-claw-vd and d-claw-transversal coincide when restricted to
bipartite graphs, d-claw-vd admits an O(log(d+1))-approximation on bipartite graphs.
The 2-claw-transversal is also known as P3 vertex cover (see, e.g., [6,18]).

By a standard bounded search tree technique, d-claw-vd admits a parameterized al-
gorithm running in O∗((d + 1)k) time1. The current fastest parameterized algorithm
for vertex cover and cluster-vd has runtime O∗(1.2738k) [7] and O∗(1.811k) [19],
respectively.

For the edge modification versions, there is a comprehensive survey [8].

In this paper, we first derive some hardness results by a simple reduction from vertex

cover to d-claw-vd, stating that d-claw-vd does not admit a subexponential-time
algorithm in the vertex number unless the ETH fails, and that d-claw-vd remains NP-
complete when restricted to planar graphs of maximum degree d+1 and arbitrary large
girth.

We then revisit the case of bipartite input graphs by showing that cluster-vd remains
NP-complete on bipartite graphs of maximum degree 3, and for d ≥ 3, d-claw-vd

remains NP-complete on bipartite graphs of maximum degree d and on bipartite graphs
of diameter 3. These hardness results for d-claw-vd are optimal with respect to degree
and diameter constraints, and improve the corresponding hardness results for d-claw-

vd, d ≥ 2, on bipartite graphs in [20].

Further, we extend the hardness results in [2] for claw-vd to d-claw-vd for every d ≥ 3.
We show that d-claw-vd is NP-complete even when restricted to split graphs without
(d + 1)-claws and, assuming the UGC, it is hard to approximate min d-claw-vd to a
factor better than d − 1. We obtain these hardness results by modifying the reduction
from vertex cover to claw-vd given in [2] to a reduction from hypergraph vertex

cover on to d-claw-vd.

We complement the negative results by showing that d-claw-vd is polynomial-time
solvable on what we call d-block graphs, a class that contains all block graphs. As block
graphs are 2-block graphs, and d-block graphs are (d + 1)-block graphs but not the
converse, our positive result extends the polynomial-time algorithm for 2-claw-vd on
block graphs in [5] to d-claw-vd for all d ≥ 2, and for 3-claw-vd on block graphs in [2]
to 3-block graphs.

The paper is organized as follows. In Section 2, we give some notation and terminologies
used in this paper. Section 3 presents hardness results mentioned above. A polynomial
result on d-block graphs is shown in Section 4. Section 5 concludes the paper with some
remarks.

2 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. The neighborhood of a
vertex v in G, denoted by NG(v), is the set of all vertices in G adjacent to v; if the

1 The O∗ notation hides polynomial factors.
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context is clear, we simply write N(v). Let deg(v) = |N(v)| to denote the degree of the
vertex v. The close neighborhood of v is denoted by N [v] that is N(v) ∪ {v}.

We call a vertex universal if it is adjacent to all other vertices. Vertices of degree 1
are called leaves. The distance between two vertices in G is the length of a shortest
path connecting the two vertices, the diameter is the maximal distance between any two
vertices, and the girth is the length of a shortest cycle in G (if exists).

A center vertex of a d-claw H is a universal vertex of H ; if d ≥ 2, the center of a d-claw
is unique. We say that a d-claw is centered at vertex v if v is the center vertex of that
d-claw. Note that the 2-claw K1,2 and the 3-vertex path P3 coincide, and that the 3-claw
K1,3 is also called claw.

An independent set (respectively, a clique) in a graph G = (V,E) is a vertex subset of
pairwise non-adjacent (respectively, adjacent) vertices in G. Graph G is a split graph if
its vertex set V can be partitioned into an independent set and a clique. A graph is a
cluster graph if it is a vertex disjoint union of cliques. Equivalently, cluster graphs are
exactly those without induced 3-vertex path P3.

For a subset S ⊆ V , G[S] is the subgraph of G induced by S, and G − S stands for
G[V \ S]. For simplicity, for a set S and an element v, we use S + v (respectively, S − v)
to denote S ∪ {v} (respectively, S \ {v}).

Let H be a fixed graph. An H-deletion set is a vertex set S ⊆ V (G) such that G − S
is H-free. A K1,1-deletion set and a K1,2-deletion set are known as vertex cover and
cluster deletion set, respectively. In other words, the cluster vertex deletion problem is
the problem of finding a minimum cluster deletion set S on G such that the resulting
graph G− S is a cluster graph.

A hypergraph G = (V,E) consists of a vertex set V and an edge set E where each edge
e ∈ E is a subset of V . Let r ≥ 2 be an integer. A hypergraph is r-uniform if each of
its edges is an r-element set. Thus, a 2-uniform hypergraph is a graph in usual sense. A
vertex cover in a hypergraph G = (V,E) is a vertex set S ⊆ V such that S ∩ e 6= ∅ for
any edge e ∈ E. The r-hypergraph vertex cover (r-hvc for short) problem asks,
for a given r-uniform hypergraph G = (V,E) and an integer k < |V |, whether G has a
vertex cover S of size at most k. The optimization version asks for such a vertex set S
of minimum size and is denoted by min r-hvc. Note that 2-hvc and min 2-hvc are
the famous vertex cover problem and min vertex cover problem, respectively. It
is known that r-hvc is NP-complete and min r-hvc is UGC-hard to approximate within
a factor better than r [13].

3 Hardness results

Recall that d-claw-vd is NP-complete even on bipartite graphs [20]. We begin with
two simple observations which lead to further hardness results on other restricted graph
classes.

Observation 1 d-claw-vd remains NP-complete on graphs of diameter 2.

Proof. Given an instance (G, k) for d-claw-vd, let G′ be obtained from G by adding
a d-claw with center vertex v and joining v to all vertices in G. Then v is a universal
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vertex in G′ and hence G′ has diameter 2. Moreover, (G, k) ∈ d-claw-vd if and only if
(G′, k + 1) ∈ d-claw-vd. ⊓⊔

We remark that the graph G′ in the proof above is a split graph whenever G is a split
graph, and G′ has only one vertex of unbounded degree whenever G has bounded maxi-
mum degree. The bipartite version of Observation 1 is:

Observation 2 For any d ≥ 2, d-claw-vd remains NP-complete on bipartite graphs of

diameter 3.

Proof. Let (G, k) be an instance for d-claw-vd, where G = (X,Y,E) is a bipartite
graph. Let G′ be the bipartite graph obtained from G by adding two d-claws with center
vertices x and y, respectively, and joining x to all vertices in Y ∪{y} and y to all vertices
in X ∪ {x}. Then G′ has diameter 3. Moreover, (G, k) ∈ d-claw-vd if and only if
(G′, k + 2) ∈ d-claw-vd. ⊓⊔

We remark that the bipartite graph G′ in the proof above has only two vertices of
unbounded degree whenever G has bounded maximum degree.

We now describe a simple reduction from vertex cover to d-claw-vd and some impli-
cations for the hardness of d-claw-vd. Let d ≥ 2. Given a graph G = (V,E), construct
a graph G′ = (V ′, E′) as follows.

– for each v ∈ V let I(v) be an independent set of d− 1 new vertices;

– V ′ = V ∪
⋃

v∈V I(v);

– E′ = E ∪
⋃

v∈V {vx | x ∈ I(v)}.

Thus, G′ is obtained from G by attaching to each vertex v a set I(v) of d− 1 leaves.

Fact 1 If S is a vertex cover in G, then S is a d-claw deletion set in G′.

Proof. This follows immediately from the construction of G′. Indeed, since G − S is
edgeless, every connected component of G′ − S is a single vertex (from I(v) for some
v ∈ S) or a (d − 1)-claw (induced by v and I(v) for some v 6∈ S). Thus, S is a d-claw
deletion set in G′. ⊓⊔

Fact 2 If S′ is a d-claw deletion set in G′, then G has a vertex cover S with |S| ≤ |S′|.

Proof. Let S′ be a d-claw deletion set in G′. We may assume that, for every v ∈ V (G), S′

contains no vertex in I(v). Otherwise, (S′ \ I(v))∪ {v} is also a d-claw deletion set in G′

of size at most |S′|. Thus S′ ⊆ V (G) and S = S′ is a vertex cover in G. For otherwise, if
uv were an edge in G−S then v and {u}∪I(v) would induce a d-claw in G′−S = G′−S′

centered at v. ⊓⊔

We now derive other hardness results for d-claw-vd from the previous reduction.

Theorem 1. Let d ≥ 2 be a fixed integer. Assuming ETH, there is no O∗(2o(n)) time

algorithm for d-claw-vd on n-vertex graphs, even on graphs of diameter 2.

Proof. By Facts 1 and 2, and the known fact that, assuming ETH, there is no O∗(2o(n))
time algorithm for vertex cover on n-vertex graphs [15]. Since the graph G′ in the
construction has |V ′| = |V | + (d − 1)|V | = O(|V |) vertices, we obtain that there is
no O∗(2o(n)) time algorithm for d-claw-vd, too. By (the proof of) Observation 1, the
statement also holds for graphs of diameter 2. ⊓⊔
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Theorem 2. Let d ≥ 2 be a fixed integer.

(i) d-claw-vd is NP-complete, even when restricted to planar graphs of maximum degree

d+ 1 and arbitrary large girth.

(ii) d-claw-vd is NP-complete, even when restricted to diameter-2 graphs with only one

vertex of unbounded degree.

Proof. It is known (and it can be derived, e.g., from [11,17]) that vertex cover remains
NP-complete on planar graphs G of maximum degree 3 and arbitrary large girth, and in
which the neighbors of any vertex of degree 3 in G have degree 2.

Given such a graph G, let G′ be obtained from G by attaching, for every vertex v of
degree 2, d− 1 leaves to v. Then G′ is planar, has maximum degree d+ 1 and arbitrary
large girth. Moreover, similarly to Facts 1 and 2, it can be seen that G has a vertex
cover of size at most k if and only if G′ has a d-claw deletion set of size at most k. This
proves (i). Part (ii) follows from (i) and the reduction in the proof of Observation 1. ⊓⊔

We remark that the hardness result stated in Theorem 2 (ii) is optimal in the sense
that graphs of bounded diameter and bounded vertex degree have bounded size. Hence
d-claw-vd is trivial when restricted to such graphs.

Note that d-claw-vd is trivial on graph of maximum degree less than d (because such
graphs contain no d-claws). Moreover, cluster-vd is easily solvable on graphs of maxi-
mum degree 2. Thus, with Theorem 2 (i), the computational complexity of d-claw-vd,
d ≥ 3, on graphs of maximum degree d remains to discuss. We will show in the next
subsections that the problem is still hard even on bipartite graphs of maximum degree d.

3.1 Bipartite graphs of bounded degree

Recall that vertex cover is polynomially solvable on bipartite graphs, hence previous
results reported above cannot be stated for bipartite graphs.

In this subsection, we first give a polynomial reduction from positive nae 3-sat to
cluster-vd showing that cluster-vd is NP-complete even when restricted to bipartite
graphs of degree 3. Then, we give another polynomial reduction from positive nae 3-

sat to claw-vd showing that claw-vd is NP-complete even when restricted to bipartite
graphs of maximum degree 3. From this, the hardness of d-claw-vd in bipartite graphs
of maximum degree d will be easily derived for any d > 3. Thus, we obtain an interesting
dichotomy for all d ≥ 3: d-claw-vd is polynomial-time solvable on graphs of maximum
degree less than d and NP-complete otherwise.

Recall that an instance for positive nae 3-sat is a 3-cnf formula F = C1∧C2∧· · ·∧Cm

over n variables x1, x2, . . . , xn, in which each clause Cj consists of three distinct variables.
The problem asks whether there is a truth assignment of the variables such that every
clause in F has a true variable and a false variable. Such an assignment is called nae

assignment. It is well known that positive nae 3-sat is NP-complete.

Cluster Vertex Deletion is hard in subcubic bipartite graphs Our reduction is
inspired by a reduction from nae 3-sat to cluster-vd on bipartite graphs in [20].
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Let F = C1 ∧ C2 ∧ · · · ∧ Cm over n variables x1, x2, . . . , xn, in which each clause Cj

consists of three distinct variables. We will construct a subcubic bipartite graph G such
that G has a cluster deletion set of size at most 2mn + 11m if and only if F admits a
nae assignment. The graph G contains a gadget G(vi) for each variable vi and a gadget
G(Cj) for each clause Cj .

Variable gadget. For each variable vi we introduce m pairs of variable vertices vij
and v′ij one pair for each clause Cj , 1 ≤ j ≤ m, as follows. First, take a cycle with 2m
vertices vi1, v

′
i1, vi2, v

′
i2, . . . , vim, v′im and edges vi1v

′
i1, v

′
i1vi2, vi2v

′
i2, . . . , v

′
i(m−1)vim,

vimv′im and v′imvi1. Then subdivide every edge v′ijvi(j+1) with 4 new vertices wij , xij , yij
and zij to obtain a cycle on 6m vertices.

The obtained graph is denoted by G(vi). The case m = 3 is shown in Fig. 1.

vi1

v′i1

vi2

v′i2

vi3
v′i3

wi1

xi1

yi1zi1

wi2

xi2

yi2

zi2

wi3

xi3

yi3

zi3

vi1

v′i1

vi2

v′i2

vi3
v′i3

wi1

xi1

yi1zi1

wi2

xi2

yi2

zi2

wi3

xi3

yi3

zi3

Fig. 1. The variable gadget G(vi) in case m = 3 (left) and an optimal cluster deletion set formed
by the 2m black vertices (right).

The following properties of the variable gadget will be used:

Fact 3 G(vi) admits an optimal cluster deletion set of size 2m. Any optimal cluster

deletion set S of G(vi) has the following properties:

(a) S contains all or none of the variable vertices vij , 1 ≤ j ≤ m. The same holds for

the variable vertices v′ij , 1 ≤ j ≤ m;

(b) For any 1 ≤ j ≤ m, vij and v′ij are not both in S. Moreover, each of vij and v′ij has

a neighbor outside S.

Proof. Observe that G(vi) can be partitioned into m induced P3 : vijv
′
ijwij and m

induced P3 : xijyijzij , 1 ≤ j ≤ m. Therefore, any cluster deletion set in G(vi) must
contain a vertex of each P3, hence has at least 2m vertices. Note also that {vij , xij | 1 ≤
j ≤ m}, {v′ij , yij | 1 ≤ j ≤ m} and {wij , zij | 1 ≤ j ≤ m} are cluster deletion sets of size
2m (see also Fig. 1 on the right hand).

In particular, an optimal cluster deletion set must contain exactly one vertex of each P3,
showing (a) and (b). ⊓⊔
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Clause gadget. For each clause Cj consisting of variables cj1, cj2 and cj3, let G(Cj) be
the graph depicted on left hand side of Fig. 2; we call the six vertices labeled with cjk
and c′jk, 1 ≤ k ≤ 3, the clause vertices.

cj1

c′j1

cj2

c′j2

cj3
c′j3

cj1

c′j1

cj2

c′j2

cj3
c′j3

Fig. 2. The clause gadget G(Cj) (left) and a cluster deletion set (black vertices) of size 11
(right).

Fact 4 G(Cj) admits an optimal cluster deletion set of size 11. No optimal cluster dele-

tion set of G(Cj) contains all cj1, cj2 and cj3, or all c′j1, c
′
j2 and c′j3.

Proof. For k ∈ {1, 2, 3}, write xjk, x
′
jk for the two adjacent degree-3 vertices in G(Cj)

which together with cjk and c′jk belong to a 8-cycle. Let H be the 12-cycle containing
all xjk and x′

jk. Note that G(Cj) minus H consists of three connected components each
of which is a 6-vertex path with midpoints cjk and c′jk, 1 ≤ k ≤ 3. Note also that any
cluster deletion set of the 12-cycle H has at least 4 vertices, and any cluster deletion set
of a 6-vertex path has at least 2 vertices.

Consider a cluster deletion set S in G(Cj). If S contains at least 5 verticies from H then
S has at least 11 vertices. Let us assume that S contains exactly 4 vertices from H . Then
it can be verify that, for some 1 ≤ k ≤ 3, both xjk, x

′
jk are outside S, and therefore,

S contains at least 3 vertices from the 6-path with midpoints cjk, c
′
jk. Thus again, S

contains at least 11 vertices. The first part follows now by noting that G(Cj) admits a
cluster deletion set of size 11 as depicted in Fig. 2.

Moreover, observe that G(Cj) minus cj1, cj2 and cj3 has a partition into 9 disjoint P3.
Hence no optimal cluster deletion set in G(Cj) can contain all cj1, cj2 and cj3, for other-
wise it would contain at least 12 vertices. Similarly for c′j1, c

′
j2 and c′j3. ⊓⊔

Finally, the graph G is obtained by connecting the variable and clause gadgets as follows:
if variable vi appears in clause Cj , i.e., vi = cjk for some k ∈ {1, 2, 3}, then

– connect the variable vertex vij in G(vi) and the clause vertex cjk in G(Cj) by an
edge; vij is the corresponding variable vertex of the clause vertex cjk, and

– connect the variable vertex v′ij in G(vi) and the clause vertex c′jk in G(Cj) by an
edge; v′ij is the corresponding variable vertex of the clause vertex c′jk.

8



Fact 5 G has maximum degree 3 and is bipartite.

Proof. It follows from the construction that G has maximum degree 3. To see that G
is bipartite, note that the bipartite graph forming by all variable gadgets G(vi) has a
bipartition (A,B) such that all vij are in A and all v′ij are in B, and the bipartite graph
forming by all clause gadgets G(Cj) has a bipartition (C,D) such that all cj1, cj2, cj3 are
in C and all c′j1, c

′
j2, c

′
j3 are in D. Hence, by construction, (A∪D,B ∪C) is a bipartition

of G. ⊓⊔

The following fact will be important for later discussion on cluster deletion sets in the
clause gadget.

Fact 6 Let S be a cluster deletion set in G such that S contains exactly 2m vertices from

each G(vi). Then, for any 1 ≤ j ≤ m and 1 ≤ k ≤ 3, cjk ∈ S or c′jk ∈ S. Moreover, if

the clause vertex c ∈ {cjk, c′jk} is not in S then the corresponding variable vertex of c is

in S;

Proof. By Fact 3, the restriction of S on each G(vi) is an optimal cluster deletion set in
G(vi). Hence, by Fact 3 (b), for every 1 ≤ j ≤ m, some of the variable vertices vij , v

′
ij is

not in S. Thus, if both cjk and c′jk are not in S then with their corresponding variable
vertices we have an induced P3 outside S, a contradiction.

Moreover, if some c ∈ {cjk, c′jk} is not in S then the corresponding variable vertex v is
in S. For, otherwise c, v and a neighbor of v outside S (which exists by Fact 3 (b)) would
induce a P3 outside S. ⊓⊔

Now suppose that G has a cluster deletion set S with at most 2nm+11m vertices. Then
by Facts 3 and 4, S has exactly 2nm+11m vertices, and S contains exactly 2m vertices
from each G(vi) and exactly 11 vertices from each G(Cj).

Consider the truth assignment in which a variable vi is true if all its associated variable
vertices vij , 1 ≤ j ≤ m, are in S. Note that by Fact 3 (a), this assignment is well-defined.
For each G(Cj), it follows from Fact 4 that some of cj1, cj2, cj3 is not in S and some of
c′j1, c

′
j2, c

′
j3 is not in S. Let cj1 6∈ S, say. By Fact 6, c′j1 ∈ S. Hence c′j2 6∈ S or c′j3 6∈ S,

and again by Fact 6, cj2 ∈ S or cj3 ∈ S. Let cj2 ∈ S; the case cj3 ∈ S is similar. Let
vrj and vsj be the corresponding variable vertices of cj1 and cj2, respectively. Then by
Fact 6 again, vrj ∈ S and v′sj ∈ S. By Fact 3 (b), vsj /∈ S. That is, the clause Cj contains
a true variable vr and a false variable vs. Thus, if G admits a cluster deletion set S with
at most 2nm+ 11m vertices then F has a nae assignment.

Conversely, suppose that there is a nae assignment for F . Then a cluster deletion set S
of size 2nm+ 11m for G is as follows. For each variable vi, 1 ≤ i ≤ n:

– If variable vi is true, then put all 2m vertices vij , xij , 1 ≤ j ≤ m, into S.

– If variable vi is false, then put all 2m vertices v′ij , yij , 1 ≤ j ≤ m, into S.

For each clause Cj , 1 ≤ j ≤ m, let vrj , vsj and vtj be the corresponding variable vertices
of cj1, cj2 and cj3, respectively. Extend S to 11 vertices of G(Cj) as follows:

– If Cj has one true variable and two false variables, say vr is true, vs and vt are false,
then put the clause vertices c′j1, cj2 and cj3 into S and extend S to another 8 vertices
as indicated in Fig. 3 on the left hand.
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– If Cj has two true variables and one false variable, say vr and vs are true, vt is false,
then put the clause vertices c′j1, c

′
j2 and cj3 into S and extend S to another 8 vertices

as indicated in Fig. 3 on the right hand.

cj1

c′j1

cj2

c′j2

cj3
c′j3

cj1

c′j1

cj2

c′j2

cj3
c′j3

Fig. 3. An optimal cluster deletion set (black vertices) in G(Cj); left hand: one true (cj1) two
false (cj2 and cj3) variables, right hand: two true (cj1 and cj2) one false (cj3) variables.

By construction, S has exactly n×2m+m×11 vertices and, for every i and j, G(vi)−S
and G(Cj)−S are P3-free. Therefore, since a clause vertex is outside S if and only if the
corresponding variable vertex is in S, G − S is P3-free. Thus, if F can be satisfied by a
nae assignment then G has a cluster deletion set of size at most 2nm+ 11m.

In summary, we obtain:

Theorem 3. cluster-vd is NP-complete even when restricted to bipartite graphs of

maximum degree 3.

d-Claw Vertex Deletion is hard in bipartite graphs of maximum degree d We
first give a polynomial-time reduction from positive nae 3-sat to 3-claw-vd. The case
d > 3 will be easily derived from this case.

Let F = C1 ∧ C2 ∧ · · · ∧ Cm over n variables x1, x2, . . . , xn, in which each clause Cj

consists of three distinct variables. We will construct a subcubic bipartite graph G such
that G has a claw deletion set of size at most 2mn + 16m if and only if F admits a
nae assignment. The graph G contains a gadget G(vi) for each variable vi and a gadget
G(Cj) for each clause Cj .

For any 1 ≤ i ≤ n and 1 ≤ j ≤ m, we first consider an auxiliary 8-vertex graph Hij

depicted on the left hand side of Fig. 4 which will be useful in building our variable
gadget.

We need the following property of Hij which can be immediately verified:

Fact 7 Any optimal claw deletion set in Hij contains exactly 2 vertices. Moreover, if S
is an optimal claw deletion set containing vij then S = {vij , b2ij}.

We now are ready to describe the variable gadget.
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vij

v′ij

a1

ij a2

ij a3

ij

b1ij

b2ij
b3ij

vij

v′ij

a1

ij a2

ij a3

ij

b1ij

b2ij
b3ij

Fig. 4. Left: the auxiliary graph Hij . Right: the unique optimal claw deletion set (back vertices)
containing vij .

Variable gadget. For each variable vi, take first m auxiliary graphs Hi1, Hi2, . . . , Him,
one for each clause. Then, for all 1 ≤ j < m, connect the vertex a3ij in Hij with the

vertex vi(j+1) in Hi(j+1) by an edge. Last, connect the vertex a3im in Him with the vertex
vi1 in Hi1 by an edge. The obtained graph is denoted by G(vi). The case m = 3 is shown
in Fig. 5. The 2m vertices vij and v′ij , 1 ≤ j ≤ m, in G(vi) are the variable vertices.

vi1
v′i1

vi2

v′i2

vi3

v′i3

vi1
v′i1

vi2

v′i2

vi3

v′i3

Fig. 5. The variable gadget G(vi) in case m = 3 (left) and an optimal claw deletion set formed
by the 2m black vertices (right).

The following properties of the variable gadget will be used:

Fact 8 G(vi) admits an optimal cluster deletion set of size 2m. Moreover, if S is an

optimal claw deletion set in G(vi) then the restriction of S on Hij is an optimal claw

deletion set in Hij .

Proof. G(vi) consists of m disjoint Hij , hence, by Fact 7, any claw deletion set in G(vi)
must contain at least 2 vertices from each Hij . Observe that the union of all {vij , b2ij},
1 ≤ j ≤ m, is a claw deletion set of G(vi) of size 2m.

The second part follows from the first part and Fact 7. ⊓⊔

11



Fact 9 Let S be an optimal claw deletion in G(vi). Then:

(a) If some vij is contained in S then S =
⋃

1≤j≤m{vij , b2ij}; in particular, all vij are in

S, and all v′ij and their neighbors are outside S.

(b) If some vij is not contained in S then all vij are outside S.

Proof. (a): By Fact 8, the restriction of S on Hij is an optimal claw deletion set in Hij ,
which is {vij , b2ij} by Fact 7. In particular, v′ij 6∈ S, and the P3: a

2
ija

3
ijb

3
ij is outside S as

well, implying vi(j+1) ∈ S. Similarly, by Fact 8 again, the restriction of S on Hi(j+1) is an
optimal claw deletion set in Hi(j+1), which is {vi(j+1), b

2
i(j+1)} by Fact 7. Apply Fact 7

for Hi(j+1) we have v′
i(j+1) 6∈ S, vi(j+2) ∈ S and so on.

(b) follows from part (a). ⊓⊔

Before presenting the clause gadget, we need other auxiliary graphs Ajk, A
′
jk for any

1 ≤ j ≤ m and 1 ≤ k ≤ 3 depicted in Fig. 6.

cjk

xjk

yjk
zjkdjk

c′jk

x′

jk

y′

jk

z′jkd′jk

Fig. 6. The auxiliary graphs Ajk (left) and A′

jk (right).

Observing that any optimal claw deletion set in the complete bipartite graphK2,3 consists
of one degree-2 vertex and that Ajk contains two disjoint K2,3, the following fact follows
immediately:

Fact 10 Any claw deletion set in Ajk has at least 2 vertices; {xjk, zjk} is the only optimal

claw deletion set of size 2.

Note that Fact 10 holds accordingly for A′
jk. From the auxiliary graphs Ajk and A′

jk,
we construct other auxiliary graphs Hj and H ′

j , 1 ≤ j ≤ m, as follows. Hj is obtained
from Aj1, Aj2 and Aj3 by adding three additional edges dj1yj2, dj2yj3 and dj3yj1. H

′
j is

similarly defined; see also Fig. 7.

Fact 11 (a) Any claw deletion set in Hj has at least 8 vertices.

(b) For any non-empty proper subset T ⊂ {cj1, cj2, cj3} there is an optimal claw deletion

set of size 8 in Hj that contains T .

(c) No optimal claw deletion set in Hj contains all cj1, cj2 and cj3, as well as a neighbor

of any cjk.

Proof. (a): Observe that, for each 1 ≤ k ≤ 3, djk and its neighbors induce a claw which
does not contain an x nor a z-vertex. Since a vertex of this claw must belong to any claw
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cj1
yj1

zj1

dj1

cj2

yj2
zj2

dj2

cj3

yj3

zj3

dj3

c′j1
y′

j1

z′j1

d′j1

c′j2

y′

j2

z′j2

d′j2

c′j3

y′

j3

z′j3

d′j3

Fig. 7. The auxiliary graph Hj (left) and H ′

j (right).

deletion set S, we have with Fact 10, that two of the restrictions Sj1, Sj2 and Sj3 of S on
Aj1, Aj2 and Aj3, respectively, have size at least 3. Hence |S| ≥ |Sj1|+ |Sj2|+ |Sj3| ≥ 8.

(b): {cj1, yj1, dj1, xj2, zj2, xj3, yj3, dj3} is an optimal claw deletion set containing cj1;
similar for cj2 and for cj3. {xj1, zj1, cj2, yj2, dj2, cj3, yj3, dj3} is an optimal claw deletion
set containing cj2 and cj3; similar for the pairs cj1, cj2 and cj1, cj3.

(c): If all cj1, cj2 and cj3 are in an optimal claw deletion set S then, by Fact 10, S
has at least 3 vertices in each Ajk, and hence |S| ≥ 9, contradicting (b). For the last
part, let Sj1, Sj2 and Sj3 be the restrictions of S on Aj1, Aj2 and Aj3, respectively. By
(a) and (b), one of these sets is of size 2 and the other have size 3. Let |Sj1| = 2 and
|Sj2| = 3, |Sj3| = 3, say. By Fact 10, Sj1 = {xj1, zj2}. Then yj2 must belong to Sj2 and
it can be checked that Sj2 cannot contain any neighbor of cj2. Suppose Sj3 contains a
neighbor of cj3. It follows that dj3 and its two neighbors in Aj3 are not in Sj3, and thus
dj3 is the center of a claw (containing yj1) outside S, a contradiction. ⊓⊔

Note that Fact 11 holds accordingly for H ′
j . We are now ready to describe the clause

gadget.

Clause gadget. For each clause Cj consisting of variables cj1, cj2 and cj3, let G(Cj) be
the graph consisting of two connected components, Hj and H ′

j . We call the six vertices
cjk and c′jk, 1 ≤ k ≤ 3, the clause vertices.

From Fact 11, we immediately have:

Fact 12 G(Cj) admits an optimal claw deletion set of 16 vertices. No optimal claw

deletion set in G(Cj) contains all cj1, cj2 and cj3, or all c′j1, c
′
j2 and c′j3, or a neighbor

of any cjk or a neighbor of any c′jk.

Finally, the graph G is obtained by connecting the variable and clause gadgets as follows:
if variable vi appears in clause Cj , i.e., vi = cjk for some k ∈ {1, 2, 3}, then

– connect the variable vertex vij in G(vi) and the clause vertex cjk in G(Cj) by an
edge; vij is the corresponding variable vertex of the clause vertex cjk, and
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– connect the variable vertex v′ij in G(vi) and the clause vertex c′jk in G(Cj) by an
edge; v′ij is the corresponding variable vertex of the clause vertex c′jk.

Fact 13 G has maximum degree 3 and is bipartite.

Proof. It follows from the construction that G has maximum degree 3. To see that G is
bipartite, note first that the bipartite graph forming by all variable gadgets G(vi) has a
bipartition (A,B) such that all vij are in A and all v′ij are in B, and the bipartite graph
forming by all clause gadgets G(Cj) has a bipartition (C,D) such that all cj1, cj2, cj3 are
in C and all c′j1, c

′
j2, c

′
j3 are in D. Hence, by construction, (A∪D,B ∪C) is a bipartition

of G. ⊓⊔

Fact 14 Let S be a claw deletion set of G such that S contains exactly 2m vertices from

each G(vi). Suppose that, for some 1 ≤ j ≤ m, S contains none of cj1, cj2 and cj3, or
none of c′j1, c

′
j2 and c′j3. Then S contains at least 17 vertices from G(Cj).

Proof. Consider the case that S contains none of cj1, cj2 and cj3; the other case is similar.
Suppose for the contrary that S contains at most 16 vertices from G(Cj). Then by
Facts 12 and 11, the restrictions of S on Hj and on H ′

j are optimal claw deletion sets in
Hj and H ′

j , respectively.

Let vrj , vsj and vtj be the corresponding variable vertices of cj1, cj2 and cj3, respectively.
By Fact 11 (c), all neighbors of cj1, cj2 and cj3 in Hj are outside S, implying all vrj ,
vsj and vtj are in S. By Fact 9 (a), all v′rj , v

′
sj and v′tj together with their neighbors in

G(vr), G(vs) and G(vt) are outside S, implying all c′j1, c
′
j2 and c′j3 are in S. This is a

contradiction to Fact 11 (c). ⊓⊔

Now suppose that G has a claw deletion set S with at most 2nm+ 16m vertices. Then
by Facts 8 and 11 (a), S has exactly 2nm + 16m vertices, and S contains exactly 2m
vertices from each G(vi) and exactly 16 vertices from each G(Cj).

Consider the truth assignment in which a variable vi is true if all its associated variable
vertices vij , 1 ≤ j ≤ m, are in S. Note that by Fact 9 (a) and (b), this assignment is
well-defined. For each G(Cj), it follows from Facts 12 and 14 that some of cj1, cj2, cj3 is
outside S and some of c′j1, c

′
j2, c

′
j3 is outside S as well. That is, the clause Cj contains a

true variables and a false variable. Thus, if G admits a claw deletion set S with at most
2nm+ 16m then F has a nae assignment.

Conversely, suppose that there is a nae assignment for F . Then a claw deletion set S of
size 2nm+ 16m for G is as follows. For each variable vi, 1 ≤ i ≤ n:

– If variable vi is true, then put all 2m vertices vij , b
2
ij , 1 ≤ j ≤ m, into S.

– If variable vi is false, then put all 2m vertices v′ij , a
2
ij , 1 ≤ j ≤ m, into S.

For each clause Cj , 1 ≤ j ≤ m, let vrj , vsj and vtj be the corresponding variable vertices
of cj1, cj2 and cj3, respectively. Extend S to 16 vertices ofG(Cj) as follows; cf. Fact 11 (b).

– If Cj has one true variable and two false variables, say vr is true, vs and vt are false,
then put xj1, zj1, cj2, yj2, dj2, cj3, yj3, dj3, c

′
j1, y

′
j1, d

′
j1, x

′
j2, z

′
j2, x

′
j3, y

′
j3 and d′j3

into S.

– If Cj has two true variables and one false variable, say vr and vs are true, vt is false,
then put xj1, zj1, xj2, yj2, dj2, cj3, yj3, dj3, c

′
j1, y

′
j1, d

′
j1, c

′
j2, y

′
j2, d

′
j2, x

′
j3 and z′j3

into S.
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By construction, S has exactly n×2m+m×16 vertices and, for every i and j, G(vi)−S
and G(Cj) − S are claw-free. Therefore, since a clause vertex is in S if and only if the
corresponding variable vertex is not in S, G− S is claw-free. Thus, if F can be satisfied
by a nae assignment then G has a claw deletion set of size at most 2nm+ 16m.

In summary, we obtain:

Theorem 4. For any d ≥ 3, d-claw-vd is NP-complete even when restricted to bipartite

graphs of maximum degree d.

Proof. The case d = 3 follows from the previous arguments. For an fixed integer d > 3
and a bipartite graph G of maximum degree 3, let G′ be obtained from G by adding, for
each vertex v in G, d− 3 new vertex v1, . . . , vd−3 all are adjacent to exactly v. Then G′

is bipartite and has maximum degree d. It can be verified immediately that G has a
claw deletion set of size at most k if and only if G′ has a d-claw deletion set of size at
most k. ⊓⊔

Bipartite graphs of bounded diameter From Theorems 3 and 4, and (the proof of)
Observation 2 we conclude:

Theorem 5. For any d ≥ 2, d-claw-vd is NP-complete even when restricted to bipartite

graphs of diameter 3 with only two unbounded vertices.

We remark that min d-claw-vd is polynomially solvable on bipartite graphs of diameter
at most two. This can be seen as follows. Let G = (X,Y,E) be a bipartite of of diameter
≤ 2; such a bipartite graph is complete bipartite. Note first that X and Y are d-claw
deletion sets for G. We will see that any optimal d-claw deletion set is X or Y or is of the
form (X\X ′)∪(Y \Y ′) for some d−1-element setsX ′ ⊆ X and Y ′ ⊆ Y . (In particular, all
optimal d-claw deletion sets can be found in O(nd−1) time.) Indeed, let S be an optimal
d-claw deletion set. If X ⊆ S, then by the optimality of S, S = X . Similarly, if Y ⊆ S,
then S = Y . So, let X ′ = X \ S 6= ∅ and Y ′ = Y \ S 6= ∅. Then |X ′| ≤ d − 1 and
|Y ′| ≤ d− 1: if |X ′| ≥ d, say, then any vertex in Y ′ and d vertices in X ′ together would
induce a d-claw in G− S. Thus, by the optimality of S, |X ′| = |Y ′| = d− 1.

Unfortunately, we have to leave open the complexity of d-claw-vd on bipartite graphs
of diameter 3 with only one vertex of unbounded degree.

3.2 Split graphs

In this subsection, we show that, for any d ≥ 3, d-claw-vd is NP-complete even when
restricted to split graphs. Note that split graphs have diameter 3. By Observation 1,
however, we will see that d-claw-vd is hard even on split graphs of diameter 2. Recall
that 1-claw-vd and 2-claw-vd are solvable in polynomial time on split graphs.

Let d ≥ 3 be a fixed integer. We reduce (d − 1)-hvc to d-claw-vd. Our reduction is
inspired by the reduction from vertex cover to 3-claw-vd in [2]. Let G = (V,E) be
a (d− 1)-uniform hypergraph with n = |V | vertices and m = |E| edges. We may assume
that for any hyperedge e ∈ E there is another hyperedge f ∈ E such that e ∩ f = ∅.
For otherwise, G has a vertex cover of size ≤ |e| = d − 1 and therefore (d − 1)-hvc is
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polynomially solvable on such inputs G. We construct a split graph G′ = (V ′, E′) with
V ′ = Q ∪ I, where Q is a clique and I is an independent set, as follows:

– I = {v′ | v ∈ V };

– for each edge e ∈ E, let Q(e) be a clique of size n;

– all sets I and Q(e), e ∈ E, are pairwise disjoint;

– make
⋃

e∈E Q(e) to clique Q;

– for each v′ ∈ I and e ∈ E, connect v′ to all vertices in Q(e) if and only if v ∈ e.

The description of the split graph G′ is complete. Note that G′ has nm+ n vertices and
O(n2m2) edges, and can be constructed in O(n2m2) time.

For each e ∈ E, write e′ = {v′ ∈ I | v ∈ e}. By construction, every vertex in Q(e) has
exactly d− 1 neighbors in I, namely the vertices in e′. Hence, every induced d-claw in G′

is formed by a center vertex x ∈ Q(e) for some e ∈ E and e′ ∪ {y}, where y is any vertex
in Q(f), f ∈ E, such that f ∩ e = ∅. It follows that G′ contains no induced (d+1)-claws.

Fact 15 If S is a vertex cover in the hypergraph G, then S′ = {v′ | v ∈ S} is a d-claw
deletion set in the split graph G′.

Proof. If C is a d-claw in G′ with center vertex x ∈ Q(e) for some e ∈ E such that
C ∩ S′ = ∅, then e′ ∩ S′ = ∅. This means e ∩ S = ∅, contradicting the fact that S is a
vertex cover of the hypergraph G. ⊓⊔

Fact 16 If S′ is a d-claw deletion set in the split graph G′ of size < n, then S = {v |
v′ ∈ S′} is a vertex cover in the hypergraph G.

Proof. First, for each e ∈ E, S′ ∩ e′ 6= ∅. For otherwise let S′ ∩ e′ = ∅ for some e ∈ E.
Since |S′| < n, there is a vertex x ∈ Q(e) \ S′ and a vertex y ∈ Q(f) \ S′ with f ∩ e = ∅.
Then x, y and e′ induce a d-claw in G′ −S′, a contradiction. We have seen that, for each
e ∈ E, S′ ∩ e′ 6= ∅. Then, with S = {v | v′ ∈ S′}, we have S ∩ e 6= ∅ for all e ∈ E. That
is, S is a vertex cover of the hypergraph G. ⊓⊔

Fact 17 The size of a smallest vertex cover of G, optvc(G), and the size of a smallest

d-claw deletion set in G′, optd-claw-vd(G
′), are equal.

Proof. By Fact 15, optd-claw-vd(G
′) ≤ optvc(G). Let S′ be a smallest d-claw deletion

set in G′. Then |S′| < n because I minus an arbitrary vertex is a d-claw deletion set
in G′ with n − 1 vertices. Hence, by Fact 16, S = {v | v′ ∈ S′} is a vertex cover in the
hypergraph G with |S| ≤ |S′|. Thus, optvc(G) ≤ optd-claw-vd(G

′). ⊓⊔

We now derive hardness results for d-claw-vd and min d-claw-vd from the above
reduction.

Theorem 6. For any fixed integer d ≥ 3, d-claw-vd is NP-complete, even when re-

stricted to

(i) split graphs without induced (d+ 1)-claws, and

(ii) split graphs of diameter 2.

Proof. Part (i) follows from Facts 15 and 16, and the fact that the split graph G′ contains
no induced (d+ 1)-claws. Part (ii) follows from (i) and (the proof of) Observation 1. ⊓⊔
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We remark that both hardness results in Theorem 6 are optimal in the sense that d-claw-

vd is trivial for graphs without induced d-claws, in particular for graphs of diameter 1,
i.e., complete graphs. We also remark that Theorem 6 implies, in particular, that d-claw-

vd is NP-complete on chordal graphs for any d ≥ 3, while the complexity of 2-claw-vd

on chordal graphs is still open (cf. [4,5]).

Since it is UGC-hard to approximate min (d − 1)-hvc to a factor (d − 1) − ǫ for any
ǫ > 0 [13], Fact 17 implies:

Theorem 7. Let d ≥ 3 be a fixed integer. Assuming the UGC, there is no approximation

algorithm for min d-claw-vd within a factor better than d− 1, even when restricted to

split graphs without induced (d+ 1)-claws.

We remark that for triangle-free graphs, in particular bipartite graphs, min d-claw-vd

and d-claw-transversal coincide, hence a result in [10] implies that min d-claw-vd

admits an O(log(d+ 1))-approximation when restricted to bipartite graphs.

4 A polynomially solvable case

In this section, we will show a polynomial-time algorithm solving min d-claw-vd for
what we call d-block graphs. As d-block graphs generalize block graphs, this result extends
the polynomial-time algorithm for 2-claw-vd on block graphs given in [5] to d-claw-

vd for all d ≥ 2 on block graphs, and improves the polynomial-time algorithm for min

3-claw-vd given in [2] on block graphs to 3-block graphs.

Recall that a block in a graph is a maximal biconnected subgraph. Block graphs are those
in which every block is a clique. For each integer d ≥ 2, the d-block graphs defined below
generalize block graphs.

Definition 1. Let d ≥ 2 be an integer. A graph G is d-block graph if, for every block B
of G,

– B is d-claw free,

– for every cut vertex v of G, N(v) ∩B is a clique, and

– the cut vertices of G in B induce a clique.

Note that block graphs are exactly the 2-block graphs and d-block graphs are (d + 1)-
block graphs, but not the converse. Note also that, for d ≥ 3, d-block graphs need not to
be chordal since they may contain arbitrary long induced cycles. An example of a 3-block
graph is shown in Fig. 8.

Let d ≥ 2 and let G be a d-block graph. Recall that a block in G is an endblock if it
contains at most one cut vertex. Vertices that are not cut vertices are called endvertices.
Thus, if u is an endvertex then the block containing u (which may or may not be an
endblock) is unique. We call a cut vertex u a pseudo-endvertex if u belongs to at most
d − 2 endblocks and exactly one non-endblock. Thus, for a pseudo-endvertex u, we say
that B is the unique block containing u, meaning that B is the unique non-endblock that
contains u.

In computing an optimal d-claw deletion set for G, we first observe that there is a solution
that does not contain any endvertex. It is by the fact that each block is d-claw free and
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Fig. 8. A 3-block graph.

if an endvertex u is in a solution S then it must be a leaf of some claw centered at a
cut vertex v. Then S − u + v is a solution that does not contain the endvertex u. The
following lemmas are for pseudo-endvertices.

Lemma 1. Let u be a pseudo-endvertex. Then any d-claw C containing u, if any, is

centered at a cut vertex v 6= u. Moreover,

– if B is the unique block containing u, then C ∩B = {u, v};

– if B′ is an endblock containing u, then C ∩B′ = {u}.

Proof. This is because every block is d-claw-free and the neighbors of any cut vertex in
any block induce a clique. ⊓⊔

An optimal d-claw deletion set for G is also called solution.

Lemma 2. There is a solution that contains no pseudo-endvertices.

Proof. Let S be a solution for G and assume that S contains a pseudo-endvertex u. Let
B be the unique block of G containing u. Since S − u is not a d-claw deletion set, there
is some d-claw C of G outside S \ {u}. Then, of course,

C ∩ S = {u}. (1)

By Lemma 1, the center v of C is a cut vertex of G in B, and C ∩B = {u, v}. Thus, for
every w ∈ N(v) ∩B, C − u+ w is a d-claw, and by (1), w ∈ S. Hence

N(v) ∩B ⊆ S. (2)

We now claim that S′ = S − u + v is a d-claw deletion set (and thus S′ is a solution).
Indeed, let C′ be an arbitrary d-claw. If u 6∈ C′ or v ∈ C′ then C′ ∩ S′ 6= ∅. So let us
consider the case in which u ∈ C′ and v 6∈ C′. Then, by Lemma 1, the center v′ of C′ is
a cut vertex of G in B. Hence v′ and v are adjacent, and by (2), v′ ∈ S′. ⊓⊔

We remark that Lemma 2 is the best possible in the sense that a cut vertex u belonging
to exactly two non-endblocks may be contained in any solution; take the d-block graph
that consists of two d-claws with exactly one common leaf u.

Lemma 3. Let v be a cut vertex and let B be a block containing v. If every vertex in

N(v) ∩B is a cut vertex, then B = N [v] ∩B. In particular, B is a clique.
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Proof. Suppose the contrary that B \N [v] 6= ∅. Then, as B − v is connected, there is an
edge connecting a vertex w ∈ N(v) ∩ B and a vertex w′ ∈ B \N [v]. Now, as w is a cut
vertex, N(w)∩B is a clique, implying that vw′ is an edge. This is a contradiction, hence
B = N [v] ∩B. ⊓⊔

Lemma 4. If G has at most one non-endblock, then a solution for G can be computed

in polynomial time.

Proof. If all blocks of G are endblocks, then G has at most one cut vertex. In this case,
G contains a d-claw if and only if G has at least d blocks. If G has at least d blocks, then
all d-claws in G are centered at the unique cut vertex v and {v} is the solution.

So, let B be the block of G that is not an endblock. Write

– U ′ for the set of endvertices in B,

– U for the set of pseudo-endvertices in B,

– X for the set of vertices in B that belong to ≥ d endblocks,

– Y for the set of vertices v in B that belong to exactly d−1 endblocks andN(v)∩U 6= ∅,

– Z = B \ (U ′ ∪ U ∪X ∪ Y ).

Observe that X ∪ Y ∪Z is a d-claw deletion set for G, hence the size of an solution is at
most |X |+ |Y |+ |Z|.

By Lemma 2, there is a solution not containing any pseudo-endvertex. Such a solution S
must contain X ∪ Y because every vertex in X ∪ Y is the center of a d-claw in which all
leaves are pseudo-endvertices. Thus, if Z = ∅, then S = X ∪ Y .

So, let us assume that Z 6= ∅. Note that, as d ≥ 2, every vertex v ∈ Z is a cut vertex, and
by definition of Z, N(v)∩B contains no pseudo-endvertices. Hence, by Lemma 3, B is a
clique. Thus, by definition of Z again, U = ∅, and therefore Y = ∅. Now, observe that at
most one vertex in Z may not be contained in S: |Z \ S| ≤ 1. Indeed, if z1 and z2 were
two vertices in Z not belonging to S, then z1, z2 and d − 1 endvertices adjacent to z1
would together induce a d-claw outside S. Thus, |S| ≥ |X |+ |Z| − 1 = |B| − 1. On the
other hand, note that, for any v ∈ B, B − v is a d-claw deletion set for G. Thus, for any
v ∈ B, S = B − v is a solution. ⊓⊔

We are now ready to show that min d-claw-vd is polynomially solvable on d-block
graphs. Our proof is inspired by the polynomial result for cluster-vd on block graphs
in [4, Theorem 10]. A block-cut vertex tree T of a (connected) graph G has a node for
each block of G and for each cut vertex of G. There is an edge uv in T if and only
if u corresponds to a block containing the cut vertex v of G. It is well known that the
block-cut vertex tree of a graph can be constructed in linear time.

Theorem 8. min d-claw-vd is polynomially solvable on d-block graphs.

Proof. Let T be the block-cut vertex tree of G. Nodes in T corresponding to blocks in G
are block nodes. For a block node u we use B(u) to denote the corresponding block in G.
Nodes in T corresponding to cut vertices in G are cut nodes and are denoted by the same
labels.
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Choose a node r of T and root T at r. For a node x 6= r of T , let p(x) denote the parent
of x in T . Note that all leaves of T are block nodes, the parent of a block node is a cut
node, and the parent of a cut node is a block node.

Let u be a leaf of T on the lowest level and let v = p(u) be the parent of u. Note that all
children of v correspond to endblocks in G, and if r = p(v), then Lemma 4 is applicable.
So, assume r 6= p(u) and write u′ = p(v), v′ = p(u′). Note that by the choice of u,
B′ = B(u′) is the unique non-endblock containing vertices in B′ − v′.

If v has at most d − 2 children, then v is a pseudo-endvertex in G. By Lemma 2, we
remove v and all children of v from T .

If v has at least d children, or v has exactly d− 1 children and some vertex in NG(v)∩B′

is a pseudo-endvertex, then put v into the solution S and remove v and all children of v
from T . Correctness follows again from Lemma 2.

It remains the case that v have exactly d− 1 children and no vertex in NG(v) ∩ B′ is a
pseudo-endvertex. In particular, every vertex in NG(v) ∩B′ is a cut vertex. Hence B′ is
a clique by Lemma 3. Moreover, every vertex in NG(v) ∩ (B′ − v′) belongs to at least
d− 1 endblocks. Now, note that all d-claws in G containing v contain a vertex in B′ − v,
and every solution for G not containing pseudo-endvertices must contain at least |B′|−1
vertices in B′. Thus, we put B′ − v into solution S and remove the subtree rooted at v′

from T , and for each other child ui 6= u of v′, we solve the problem on the subgraph
induced by B(ui) and its children. Note that, by the choice of u, all these subgraphs
satisfy the condition of Lemma 4. Finally, it is not hard to check that all of these checks
can be done in linear time by working with the block-cut vertex tree T of G. ⊓⊔

5 Conclusion

This paper considers the d-claw vertex deletion problem, d-claw-vd, which generalizes
the famous vertex cover (that is 1-claw-vd) and the cluster-vd (that is 2-claw-

vd) problems and goes on with the recent study [2] on claw vertex deletion problem,
3-claw-vd. It is shown that cluster-vd remains NP-complete on bipartite graphs of
maximum degree 3 and, for each d ≥ 3, d-claw-vd remains NP-complete on bipartite
graphs of degree d, and thus a complexity dichotomy with respect to degree constraint.
It is also shown that d-claw-vd remains NP-complete when restricted to split graphs of
diameter 2 and to bipartite graphs of diameter 3 (with only two vertices of unbounded
degree) and polynomially solvable on bipartite graphs of diameter 2, and thus another
dichotomy with respect to diameter. We also define a new class of graphs called d-block
graphs which generalize the class of block graphs and show that d-claw-vd is solvable in
linear time on d-block graphs, extending the algorithm for cluster-vd on block graphs
in [5] to d-claw-vd, and improving the algorithm for (unweighted) 3-claw-vd on block
graphs in [2] to 3-block graphs.

We note that vertex cover and cluster-vd have been considered by a large number
of papers in the context of approximation, exact and parameterized algorithms. As a
question for further research we may ask: which known results in case d = 1, 2 can
be extended for all d ≥ 3? We believe that the approaches in [3,19] for cluster-vd

could be extensible to obtain a similar parameterized algorithm for d-claw-vd for all
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d ≥ 3. Finally, recall that vertex cover is polynomially solvable on chordal graphs
and cluster-vd is polynomially solvable on split graphs, and that d-claw-vd is NP-
complete on chordal graphs for d ≥ 3. Thus it would be interesting to clear the complexity
of cluster-vd on chordal graphs [4,5].
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