Skip to main content

Constrained Hitting Set Problem with Intervals

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13025))

Included in the following conference series:

  • 1062 Accesses

Abstract

We study a constrained version of the Geometric Hitting Set problem where we are given a set of points, partitioned into disjoint subsets, and a set of intervals. The objective is to hit all the intervals with a minimum number of points such that if we select a point from a subset then we must select all the points from that subset. In general, when the intervals are disjoint, we prove that the problem is in FPT, when parameterized by the size of the solution. We also complement this result by giving a lower bound in the size of the kernel for disjoint intervals, and we also provide a polynomial kernel when the size of all subsets is bounded by a constant.

Next, we consider two special cases of the problem where each subset can have at most 2 and 3 points. If each subset contains at most 2 points and the intervals are disjoint, we show that the problem admits a polynomial-time algorithm. However, when each subset contains at most 3 points and intervals are disjoint, we prove that the problem is \(\mathsf {NP\text {-}Hard}\) and we provide two constant factor approximations for the problem.

A. Acharyya and V. Keikha—The author is supported by the Czech Science Foundation, grant number GJ19-06792Y, and by institutional support RVO: 67985807.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The edge cover problem defined on a graph finds the set of edges of a minimum size such that every vertex of the graph is incident to at least one edge of the set.

References

  1. Abu-Khzam, F.N.: A kernelization algorithm for \(d\)-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)

    Article  MathSciNet  Google Scholar 

  2. Agrawal, A., Jain, P., Kanesh, L., Saurabh, S.: Parameterized complexity of conflict-free matchings and paths. Algorithmica 82(7), 1939–1965 (2020). https://doi.org/10.1007/s00453-020-00681-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974)

    MATH  Google Scholar 

  4. Aronov, B., Ezra, E., Sharir, M.: Small-size \(\epsilon \)-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39(7), 3248–3282 (2010)

    Article  MathSciNet  Google Scholar 

  5. Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex optimization problems. J. Comput. Syst. Sci. 21(1), 136–153 (1980)

    Article  MathSciNet  Google Scholar 

  6. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995). https://doi.org/10.1007/BF02570718

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37(1), 43–58 (2007). https://doi.org/10.1007/s00454-006-1273-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Cornet, A., Laforest, C.: Total domination, connected vertex cover and Steiner tree with conflicts. Discrete Math. Theoret. Comput. Sci. 19(3) (2017)

    Google Scholar 

  9. Cornet, A., Laforest, C.: Graph problems with obligations. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp. 183–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04651-4_13

    Chapter  Google Scholar 

  10. Cygan, M., et al.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1-41:24 (2016)

    Article  MathSciNet  Google Scholar 

  11. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  12. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and ids. ACM Trans. Algorithms 11(2), 13:1-13:20 (2014)

    Article  MathSciNet  Google Scholar 

  13. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  Google Scholar 

  14. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES, Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29953-X

    Book  MATH  Google Scholar 

  15. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-Complete. Inf. Process. Lett. 12(3), 133–137 (1981)

    Article  MathSciNet  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  17. Goldschmidt, O., Hochbaum, D.S., Yu, G.: A modified greedy heuristic for the set covering problem with improved worst case bound. Inf. Process. Lett. 48(6), 305–310 (1993)

    Article  MathSciNet  Google Scholar 

  18. Jacob, A., Majumdar, D., Raman, V.: Parameterized complexity of conflict free set cover. Theory Comput. Syst. 65(3), 515–540 (2021). https://doi.org/10.1007/s00224-020-10022-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Jain, P., Kanesh, L., Misra, P.: Conflict free version of covering problems on graphs: classical and parameterized. Theory Comput. Syst. 64(6), 1067–1093 (2020). https://doi.org/10.1007/s00224-019-09964-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2006)

    Google Scholar 

  21. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Corporation, Chelmsford (2001)

    MATH  Google Scholar 

  22. Mustafa, N.H., Raman, R., Ray, S.: Quasi-polynomial time approximation scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM J. Comput. 44(6), 1650–1669 (2015)

    Article  MathSciNet  Google Scholar 

  23. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM (1978)

    Google Scholar 

  24. Van Bevern, R.: Towards optimal and expressive kernelization for \(d\)-hitting set. Algorithmica 70(1), 129–147 (2014). https://doi.org/10.1007/s00453-013-9774-3

    Article  MathSciNet  MATH  Google Scholar 

  25. van Bevern, R., Smirnov, P.V.: Optimal-size problem kernels for \(d\)-hitting set in linear time and space. Inf. Process. Lett. 163, 105998 (2020)

    Article  MathSciNet  Google Scholar 

  26. van Bevern, R., Tsidulko, O.Y., Zschoche, P.: Representative families for matroid intersections, with applications to location, packing, and covering problems. Discrete Appl. Math. 298, 110–128 (2021)

    Article  MathSciNet  Google Scholar 

  27. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  28. Yinnone, H.: On paths avoiding forbidden pairs of vertices in a graph. Discrete Appl. Math. 74(1), 85–92 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acharyya, A., Keikha, V., Majumdar, D., Pandit, S. (2021). Constrained Hitting Set Problem with Intervals. In: Chen, CY., Hon, WK., Hung, LJ., Lee, CW. (eds) Computing and Combinatorics. COCOON 2021. Lecture Notes in Computer Science(), vol 13025. Springer, Cham. https://doi.org/10.1007/978-3-030-89543-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89543-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89542-6

  • Online ISBN: 978-3-030-89543-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics