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Abstract. In the general max-min fair allocation, also known as the
Santa Claus problem, there are m players and n indivisible resources, each
player has his/her own utilities for the resources, and the goal is to find an
assignment that maximizes the minimum total utility of resources assigned
to a player. We introduce an over-estimation strategy to help overcome the
challenges of each resource having different utilities for different players.
When all resource utilities are positive, we transform it to the machine
covering problem and find a

(
c

1−ε

)
-approximate allocation in polynomial

running time for any fixed ε ∈ (0, 1), where c is the maximum ratio of the
largest utility to the smallest utility of any resource. When some resource
utilities are zero, we apply the approximation algorithm of Cheng and
Mao [9] for the restricted max-min fair allocation problem. It gives a(
1+3ĉ+O(δĉ2)

)
-approximate allocation in polynomial time for any fixed

δ ∈ (0, 1), where ĉ is the maximum ratio of the largest utility to the
smallest positive utility of any resource. The approximation ratios are
reasonable if c and ĉ are small constants; for example, when the players
rate the resources on a 5-point scale.

Keywords: Max-min allocation, hypergraph matching, approximation
algorithms

1 Introduction

We consider the general max-min fair allocation problem. The input consists of
a set P of m players and a set R of n indivisible resources. Each player p ∈ P
has his/her own non-negative utilities for the n resources, and we denote the
utility of the resource r for p by vp,r. In other words, each resource r has a set
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of non-negative utilities {vp,r : p ∈ P}, one for each player. For every subset
S of resources, define the total utility of S for p to be vp(S) =

∑
r∈S vp,r. An

allocation is a disjoint partition of R into {Sp : p ∈ P} such that Sp ⊆ R for all
p ∈ P , and Sp ∩ Sq = ∅ for any p �= q. That is, p is assigned the resources in
Sp. The max-min fair allocation problem is to find an allocation that maximizes
min{vp(Sp) : p ∈ P}.

The problem has received considerable attention in recent decades. A related
problem is a classic scheduling problem that minimizes the maximum makespan
of scheduling on unrelated parallel machines. The problem has the same input as
the max-min fair allocation problem. The only difference between them is that
the goal of the scheduling problem is to minimize the maximum load over all
machines. Lenstra et al. [16] proposed a 2-approximation algorithm by rounding
the relaxation of the assignment linear programming model (LP). However,
Bezáková and Dani [6] proved that the assignment LP cannot guarantee the same
performance on the general max-min allocation problem.

The machine covering problem is a special case of the general max-min
fair allocation problem where the objective is to assign n jobs to m parallel
identical machines so that the minimum machine load is maximized. Every job
(resource) has the same positive utility for every machine (player), i.e., every
r ∈ R has a positive value vr such that vp,r = vr > 0 for all p ∈ P . Deuermeyer
et al. [13] proved that the heuristic LPT algorithm returns a 4

3 -approximation
allocation. Csirik et al. [11] improved the approximation ratio to 4m−2

3m−1 . Later,
Woeginger [18] presented a polynomial time approximation scheme to develop a
1

1−ε -approximation algorithm, where ε > 0. For another machine covering problem
that considers the machine speed sp and the processing time vp,r = vr/sp, Azar et
al. [4] also proposed a polynomial time approximation scheme. Furthermore, the
online machine covering problem was studied in [14, 15] for identical machines.

Bansal and Sviridenko [5] proposed a stronger LP relaxation, the configuration
LP, for the general max-min fair allocation problem. They showed that the
integrality gap of the configuration LP is Ω(

√
m), where m is the number of

players. Based on the configuration LP, Asadpour and Saberi [3] developed an
approximation algorithm that achieves an approximation ratio of O(

√
m log3 m)

by rounding. Later, Saha and Srinivasan [17] reduced the approximation ratio to
O(

√
m logm). Chakrabarty et al. [7] developed a method to provide a trade-off

between the approximation ratio and the running time: for all δ ∈ (0, 1), an
approximation ratio of O(mδ) can be obtained in O(m1/δ) time.

Bansal and Sviridenko [5] also introduced an interesting restricted max-min
fair allocation. In the restricted case, each resource has the same utility vr for all
players who are interested in it, that is, vp,r ∈ {0, vr} for all p ∈ P . They proposed

an O
(

log logm
log log logm

)
-approximation algorithm by rounding the configuration LP.

Later, Asadpour et al. [2] used the bipartite hypergraph matching technique to
attack the restricted max-min fair allocation problem. They used local search to
show that the integrality gap of the configuration LP is at most 4. However, it is
not known whether the local search in [2] runs in polynomial time. Inspired by [2],
Annamalai et al. [1] designed an approximation algorithm that enhances the local



search with a greedy player strategy and a lazy update strategy. Their algorithm
runs in polynomial time and achieves an approximation ratio of 12.325+δ. Cheng
and Mao [8] adjusted the greedy strategy in a more flexible and aggressive way,
and they successfully lowered the approximation ratio to 6 + δ. Very recently,
they introduced the limited blocking idea and improved the ratio to 4 + δ [9, 10].
This ratio was also obtained by Davies et al. [12]. Table 1 lists the related results.

Table 1. Results on the max-min allocation problem

Problem Approximation ratio Running time Ref.

Restricted O
(

log logm
log log logm

)
poly(m,n) [5]

General O
(√

m log3 m
)

poly(m,n) [3]

General O
(√

m logm
)

poly(m,n) [17]

General O
(
mδ

)
nO(1/δ) [7]

Restricted 12.325 + δ poly(m,n) ·mpoly(1/δ) [1]

Restricted 6 + δ poly(m,n) ·mpoly(1/δ) [8]

Restricted 4 + δ poly(m,n) ·mpoly(1/δ) [9, 12]

General c/(1− ε) O(n logm) This paper

(positive utilities)

General 1 + 3ĉ+O(δĉ2) poly(m,n) ·mpoly(1/δ) This paper

The major challenge for the general max-min fair allocation problem is that
a resource may have different utilities for different players. Our key idea is to use
a player-independent value to estimate the value of a particular set: for every
resource r ∈ R, its over-estimated utility is vmax

r = max{vp,r : p ∈ P}. Consider
an instance where every utility in the set {vp,r : p ∈ P, r ∈ R} is positive.
Such a problem setting is closely related to the machine covering problem. The
main difference is that players are not identical and players have their own
preferences for the resources. Using the player-independent over-estimation, we
can transform this case to the machine covering problem. Then, we can apply
the currently best algorithm proposed by [18] to obtain an allocation in which
every player gets at least (1− ε)T ∗

oe worth of resources, where T ∗
oe denotes the

optimal solution for the transformed machine covering problem. Due to the over-
estimation before the transformation, the allocation may be off by an additional
factor of c = max

{
vp,r/vq,r : r ∈ R ∧ p, q ∈ P

}
. This gives our first result which

is summarized in Theorem 1 below. Further discussions are provided in Section 2.

Theorem 1. For all ε ∈ (0, 1), there is a polynomial-time
(

c
1−ε

)
-approximation

algorithm for the case that every resource has a positive utility for every player.

The problem becomes much more complicated when some resource has zero
utility for some players. Our strategy is to apply the algorithm of Cheng and



Mao [9, 10] for the restricted max-min fair allocation. To this end, we use the
over-estimation strategy so that we can discuss active and inactive resources
using maximum resource utilities when applying the technique of limited blocking
as in [9, 10]. Interestingly, we use each player’s own utilities for the resources
when running the algorithm although players may have different utilities for the
same resource. Then, in the analysis, we use the over-estimation strategy again to
reconcile the analysis in [9, 10] for the restricted case with the general case that
we consider. Since the approximation ratio given in [9] is 4 + δ, one may think
that the approximation ratio is 4 times the over-estimation factor plus some
low-order terms. We adapt the analysis in [9, 10] to show a better approximation
ratio of 1 + 3ĉ+O(δĉ2), where ĉ = max

{
vp,r/vq,r : r ∈ R ∧ p, q ∈ P ∧ vq,r > 0

}
.

Theorem 2. For all δ ∈ (0, 1), there is a (1 + 3ĉ + O(δĉ2))-approximation
algorithm that runs in polynomial time for the case that some resources have zero
utility for some players.

The approximation ratios in Theorems 1 and 2 are reasonable if c and ĉ are
small; for example, when the players rate the resources on a 5-point scale.

2 Every resource has a positive utility for every player

In this section, we consider the general max-min fair allocation problem in which
all utilities are positive. This model is similar to the machine covering problem,
but the major difference is that every player has his/her own preferences for the
resources. There is a polynomial time approximation scheme for the machine
covering problem, proposed by Woeginger [18], that achieves an approximation
ratio of 1/(1− ε) in polynomial time.

Fr each resource r ∈ R, we use vmax
r = max{vp,r : p ∈ P} as the player-

independent utility for r. Hence all players become identical. This transformed
problem is exactly the machine covering problem which we denote by H ′. Let H
denote the original problem before the transformation. Let T ∗ be the optimal
target value for H, and let T ∗

oe be the optimal target value for H ′. So T ∗ ≤
T ∗
oe. Using the PTAS algorithm [18], we can find an approximation allocation

{Sp : p ∈ P}, where ∑
r∈Sp

vmax
r ≥ (1 − ε)T ∗

oe for every p ∈ P . When we

consider the actual value vp(Sp), we have to allow for the over-estimation factor
c = max{vp,r/vq,r : r ∈ R ∧ p, q ∈ P}.

The definition of c implies that
∑

r∈Sp
vmax
r ≤ c ·vp(Sp), which further implies

that (1−ε)T ∗
oe ≤

∑
r∈Sp

vmax
r ≤ c ·vp(Sp). That is, we guarantee that every player

receives at least (1− ε)T ∗
oe/c worth of resources. Since T ∗

oe ≥ T ∗, the allocation is
a
(

c
1−ε

)
-approximation for the original problem H . This completes the discussion

of Theorem 1.

3 Some resources have zero utility for some players

As mentioned previously, we will combine the over-estimation and the algorithm
in [9, 10] for the restricted max-min allocation problem. We will guess a target



value T of the general max-min allocation problem and then try to find an
allocation in which the resources assigned to every player have a total utility of
at least λT . Depending on whether we succeed or not, we increase or decrease
T correspondingly in order to zoom into the value T ∗ of the optimal max-min
allocation. The initial range for T for binary search is (0, 1

m

∑
r∈R vmax

r ).
In the rest of this section, we assume that T = 1, which can be enforced by

scaling all resource utilities, and we describe how to find an allocation such that
every player obtains resources with a total utility of at least λ.

3.1 Resources and over-estimation

We call a resource r fat if vp,r ≥ λ for all p ∈ P . Otherwise, there exists a player
p such that vp,r < λ, and we call r thin in this case. The input resources are thus
divided into fat and thin resources.

Furthermore, we modify the resource utilities as follows: for every r ∈ R and
every p ∈ P , if vp,r > λ, we reset vp,r := λ. This modification does not affect our
goal of finding an allocation in which the resources assigned to every player have
a total utility of at least λ. Note that vp,r is left unchanged if it is at most λ.
Therefore, fat resources remain fat, and thin resources remain thin. Note that r
still has zero utility for those players who are not interested in r, and different
players may have different utilities for the same resource.

Since we have reset each vp,r so that it is at most λ, we have vmax
r ≤ λ. For

any subset D of thin resources, let vmax(D) =
∑

r∈D vmax
r . For every player p,

vp(D) still denotes
∑

r∈D vp,r.

3.2 Fat edges and thin edges

For better resource utilization, it suffices to assign a player p either a single fat
resource (whose utilities are all equal to λ after the above modification), or a
subset D of thin resources such that vp(D) ≥ λ. We model the above possible
assignment of resources to players using a bipartite graph G and a bipartite
hypergraph H. The vertices of G are the players and fat resources. For every
player p and every fat resource rf , G includes the edge (p, rf ) which we call a fat
edge. The vertices of H are the players and thin resources. For every subset D of
thin resources and every player p, the hypergraph H includes the edge (p,D) if
vp(D) ≥ λ.

3.3 Overview of the algorithm

We focus on finding an allocation that corresponds to a maximum matching M
in G and a subset E of hyperedges H such that every player is incident to an
edge in M or E , and no two edges in M ∪ E share any resource.

To construct such an allocation, we start with an arbitrary maximum matching
M of G and an empty E , process unmatched players one by one in an arbitrary
order, and update M and E in order to match the next unmatched player. Once



the algorithm matches a player, that player remains matched until the end of
the algorithm. Also, although M may be updated, it is always some maximum
matching of G. We call any intermediate M ∪ E a partial allocation.

Let GM be a directed graph obtained by orienting the edges of G with respect
to M of G as follows. If a fat edge {p, rf} belongs to the matching M , we orient
{p, rf} from rf to p in GM . Conversely, if {p, rf} does not belong to the matching
M , we orient {p, rf} from p to rf in GM .

Let p0 be an arbitrary unmatched player with respect to the current partial
allocation M ∪ E . We find a directed path π from p0 to a player q0 in GM . If
p0 = q0, then π a trivial path. In this case, if q0 is covered by a thin edge a that
does not share any resource with the edges in M ∪ E , then we can update the
partial allocation to be M ∪ (E ∪{a}) to match p0. If p0 �= q0, then π a non-trivial
path. Note that π has an even number of edges because both p0 and q0 are players.
For i ≥ 0, every (2i+1)-th edge in π does not belong to M , but every (2i+2)-th
edge in π does. It is an alternating path in the matching terminology. The last
edge in π is a matching edge (rf , q0) in M for some fat resource rf . Suppose that
q0 is incident to a thin edge a that does not share any resource with any edge in
M ∪ E . Then, we can update M to another maximum matching of G by flipping
the edge in π. That is, delete every (2i+ 2)-th edge in π from M and add every
(2i + 1)-th edge in π to M . Denote this update of M by flipping π as M ⊕ π.
Consequently, p0 is now matched by M . Although q0 is no longer matched by
M , we can regain q0 by including the thin edge a. In all, the updated partial
allocation is (M ⊕ π) ∪ (E ∪ {a}).

However, sometimes we cannot find a thin edge a that is incident to q0 and
shares no resource with the edges in M ∪ E . Let b be an edge in M ∪ E . If a
and b share some resource, then a is blocked by b. That is, if we want to add a
into E , we must release the resources in b first. Thus, a is an addable edge and
b is a blocking edge that forbids the addition of a. We will provide the formal
definitions of addable and blocking edges shortly. To release the resources covered
by b, we need to reconsider how to match the player covered by b. This defines a
similar intermediate subproblem that needs to be solved first, namely, finding a
thin edge that is incident to the player covered by b and shares no resource with
the edges in M ∪ E . In general, the algorithm maintains a stack that consists of
layers of addable and blocking edges; each layer correspond to some intermediate
problems that need to be solved. Eventually, every blocking edge needs to be
released in order that we can match p0 in the end.

Annamalai et al. [1] introduced two ideas to enhance the above local search for
the restricted max-min allocation problem. They are instrumental in obtaining a
polynomial running time. First, when an unblocked addable edge is found, it is
not used immediately to update the partial allocation. Instead, the algorithm
waits until there are enough unblocked addable edges to reduce the number of
blocking edges significantly. This ensures that the algorithm makes a substantial
progress with each update of the partial allocation. This is called the lazy update
strategy. Second, when the algorithm considers an addable edge (p,D), it requires
vp(D) to be a constant factor larger than λ. As a result, (p,D) will induce more



blocking edges, which will result in a geometric growth of the blocking edges in
the layers from the bottom of the stack towards the top of the stack. This is
called the greedy player strategy.

The greedy player strategy causes trouble sometimes, and a blocking edge may
block too many addable edges. To this end, Cheng and Mao [9, 10] introduced
limited blocking which stops the resources in a blocking edge b from being picked
in an addable edge if b shares too many resources with addable edges.

We provide more details of the algorithm in the remaining subsections.

3.4 Layers of addable and blocking edges

For every thin edge e, we use Re to denote the resources covered by e. Given a
set X of thin edges, we use R(X ) to denote the set of resources covered by the
edges in X .

Let Σ = (L0, L1, . . . , L�) denote the current stack maintained by the algo-
rithms, where each Li = (Ai,Bi) is a layer that consists of a set Ai of addable
edges and a set Bi of blocking edges. That is, Bi = {e ∈ E : Re∩R(Ai) �= ∅}. The
layer Li+1 is on top of the layer Li. The layer L0 = (A0,B0) at the stack bottom
is initialized to be (∅, {(p0, ∅)}). It signifies that there is no addable edge initially,
and replacing (p0, ∅) by some edge is equivalent to finding an edge that covers p0
without causing any blocking. In general, when building a new layer L�+1 in Σ,
the algorithm starts with A�+1 = ∅, B�+1 = ∅, and addable and blocking edges
will be added to A�+1 and B�+1.

We use A≤i to denote A0 ∪ . . . ∪ Ai. Similarly, B≤i = B0 ∪ . . . ∪ Bi.
The current configuration of the algorithm can be specified by a tuple

(M, E , Σ, �, I), where M ∪ E is the current partial allocation, Σ is the current
stack of layers, � is the index of the highest layer, and I is a set of thin edges
in H such that they cover the players of some edges in B≤� and each edge in I
does not share any resource with any edge in E . Although the edges in I can be
added to E immediately to release some blocking edges in B≤�, we do not do so
right away in order to accumulate a larger I which will release more blocking
edges in the future.

Definition 1. Let (M, E , Σ, �, I) be the current configuration. A thin resource
r can be active or inactive. It is inactive if at least one of the following three
conditions is satisfied: (a) r ∈ R(A≤�∪B≤�), (b) r ∈ R(A�+1∪I), and (c) r ∈ Rb

for some b ∈ B�+1 and vmax

(
Rb∩R(A�+1)

)
> βλ, where β is a positive parameter

to be specified later. If none is satisfied, then r is active.

Condition (c) is a modification of the limited blocking strategy introduced
in [9, 10] that fits with our over-estimation strategy. The utilities of inactive
resources are disregarded in judging whether a thin edge contributes enough total
utility to be considered an addable edge. Avoiding inactive resources, especially
those in condition (c), helps to improve the approximation ratio.

Let Ai, Bi, and I denote the sets of players covered by the edges in Ai, Bi,
and I, respectively. Let A≤i = A0 ∪ . . . Ai, and let B≤i = B0 ∪ . . . ∪Bi. Given



two subsets of players S and T , we use fM [S, T ] to denote the maximum number
of node-disjoint paths from S to T in GM . The alternating paths in GM from
B≤� to I and other players are relevant. If we flip the alternating paths to I,
we can release some blocking edges in B≤� because they will be matched to fat
resources instead. Also, if there is an alternating path from B≤� to a player p,
then we can look for a thin edge that covers p to release a blocking edge.

Definition 2. Let (M, E , Σ, �, I) be the current configuration. A player p is
addable if fM [B≤�, A� ∪ I ∪ {p}] = fM [B≤�, A� ∪ I] + 1.

Definition 3. Let (M, E , Σ, �, I) be the current configuration. Given an addable
player p, a thin edge (p,D) in H is addable if D is a set of active thin resources
and vp(D) ≥ λ.

As mentioned before, the edges in I can be deployed any time to replace
some blocking edges, but we only do so when we can release a significant number
of blocking edges. When this is possible for a layer in Σ, we call that layer
collapsible as defined below.

Definition 4. Let (M, E , Σ, �, I) be the current configuration. Let μ ∈ (0, 1)be a
parameter to be specified later. The layer L0 in Σ is collapsible if fM [B0, I] = 1
(note that |B0| = 1), and for i ∈ [1, �], the layer Li is collapsible if fM [B≤i, I]−
fM [B≤i−1, I] > μ|Bi|.

3.5 The local search step

We discuss how to match the next unmatched player p0. Let M ∪E be the current
partial allocation. Let Σ =

(
L0

)
be the initial stack. Let I = ∅. We go into

the Build phase to add a new layer to Σ. Afterwards, if some layer becomes
collapsible, we go into the Collapse phase to prune Σ and update the current
partial allocation. Afterwards, we go back into the Build phase to add new layers
to Σ again. The above is repeated until Σ becomes empty, which means that p0
is matched eventually. We describe the Build and Collapse phases below.

Build phase. We start with A�+1 = B�+1 = ∅. We grow A�+1 and B�+1 as long
as we can find some appropriate thin edge (p,D) in H:

– Suppose that there is an unblocked addable thin edge (p,D). That is, R(D)∩
R(E) = ∅. It is natural to add such an edge to I, but for better resource
utilization, there is no need to use the whole D if vp(D) is way larger than
λ. We greedily extract a λ-minimal thin edge (p,D′) from (p,D): (i) D′ is a
subset of D such that vp(D

′) ≥ λ, and (ii) vp(D
′′) < λ for all subset D′′ ⊂ D′.

We add (p,D′) to I.
– Assume that all addable thin edges are blocked. Suppose that there is blocked

addable thin edge (p,D) that is (1+γ)λ-minimal for an appropriate γ ∈ (0, 1)
that will be specified later. That is, vp(D) ≥ (1 + γ)λ and for all D′ ⊂ D,
vp(D

′) < (1 + γ)λ. This is in accordance with the greedy player strategy.
Let E be the subset of thin edges in E that block (p,D), i.e., E = {e ∈ E :
Re ∩R(D) �= ∅}. Add (p,D) to A�+1 and update B�+1 := B�+1 ∪ E.



Our definitions of λ-minimal and (1 + γ)λ-minimal thin edges are player-
dependent, in contrast to their player-independent counterparts in the restricted
max-min case [9, 10].

If no more edge can be added to I, or A�+1 and B�+1, then we push
(A�+1,B�+1) onto Σ and increment �. If some layer becomes collapsible, we
go into the Collapse phase; otherwise, we repeat the Build phase to construct
another new layer.

Collapse phase. Let Lk be the lowest collapsible layer in Σ. We are going to
prune Bk which will make all layers above Lk invalid. Correspondingly, some of
the unblocked addable edges in I also become invalid because they are generated
using blocking edges in Bi for i ∈ [k + 1, �]. So a key step is to decompose I into

a disjoint partition
⋃�

i=0 Ii such that, among the fM [B≤�, I] paths in GM from
B≤� to I, there are exactly |Ii| paths from Bi to Ii for i ∈ [0, �], where Ii denotes
the set of players covered by Ii.

We remove Li for i ≥ k+1 from Σ, and we also forget about Ii for i ≥ k+1.
We change M by flipping the alternating paths from Bk to Ik. The sources of
these paths form a subset of Bk, which are covered by a subset B∗

k ⊆ Bk. The
flipping of the alternating paths from Bk to Ik has the effect of replacing B∗

k by
Ik in E .

If k = 0, it means that the next unmatched player p0 is now matched and
the local search has succeeded. Otherwise, some of the addable edges in Ak may
no longer be blocked due to the removal of B∗

k from E . We reset I := I≤k−1. For
each edge (p,D) ∈ Ak that becomes unblocked, we delete (p,D) from Ak, and if
fM [B≤k−1, I ∪ {p}] = fM [B≤k−1, I] + 1,5 then we extract a λ-minimal thin edge
(p,D′) from (p,D) and add (p,D′) to I. After pruning Ak, we reset � := k.

We repeat the above as long as some layer in Σ is collapsible. When this no
longer the case and p0 is not matched yet, we go back to the Build phase.

3.6 Analysis

For any δ ∈ (0, 1), we show that we can set γ = Θ(δ), β = γ2, and μ = γ3 so that
the local search runs in polynomial time, and if the target value 1 is feasible, the
local search returns an allocation that achieves a value of λ = 1/(1+3ĉ+O(δĉ2)).
Recall that ĉ = max{vp,r/vq,r : r ∈ R ∧ p, q ∈ P ∧ vq,r > 0}.

The key is to show that the stack Σ has logarithmic depth for these choices
of γ, β and μ. The numbers of blocking edges |Bi| for i ∈ [0, �] induce a signature
vector that increases lexicographically as the local search proceeds. Therefore,
if Σ has logarithmic depth, the local search must terminate in polynomial time
before we run out of all possible signature vectors. To show that Σ has logarithmic
depth, we are to prove that the number of blocking edges increases geometrically
from one layer to the next as we go up Σ.

First, we extract Lemmas 1–3 from [9, 10]; either the original proofs still hold
or minor adaptations work for our setting.

5 As proved in [9, 10], this is equivalent to checking the addability of player p.



Lemma 1. For i ∈ [0, �], let zi = |Ai| right after the creation of the layer Li.
Whenever no layer in collapsible, |Ai+1| ≥ zi+1 − μ|B≤i| for i ∈ [0, �− 1].

Lemma 2. For each blocking edge b ∈ Bi, there exists an edge a ∈ Ai such that
vmax

(
Rb ∩R(Ai \ {a})

) ≤ βλ.

Lemma 3. For i ∈ [0, �], |Ai| <
(
1 + β

γ

)|Bi|.

The analogous version of Lemma 4 below in [9, 10] gives the inequality

|B′
i| < (2+γ)

β |Ai| in the restricted max-min case. We prove that a similar bound
with the extra over-estimation factor ĉ holds for the general max-min case.

Lemma 4. Let B′
i be the subset of Bi such that all resources in B′

i are inactive,

i.e., B′
i =

{
b ∈ Bi | vmax

(
Rb ∩R(Ai)

)
> βλ

}
. Then, |B′

i| < (2+γ)ĉ
β |Ai|.

Proof. Summing over the edges in B′
i gives vmax

(
R(B′

i) ∩ R(Ai)
)
> βλ|B′

i|.
Every edge (p,D) ∈ Ai is (1 + γ)λ-minimal by definition, so vp(D) ≤ (2 + γ)λ.
Summing over the edges in Ai gives

∑
(p,D)∈Ai

vp(D) ≤ (2 + γ)λ|Ai|. The

definition of ĉ implies that vmax
r ≤ ĉ vp,r, which implies that vmax(R(Ai)) ≤∑

(p,D)∈Ai
ĉ vp(D) ≤ (2 + γ)λĉ |Ai|. Combining the inequalities above gives

βλ|B′
i| < vmax(R(B′

i) ∩ R(Ai)) ≤ vmax(R(Ai)) ≤ (2 + γ)λĉ |Ai|, which implies

that |B′
i| < (2+γ)ĉ

β |Ai|. ��
Lemma 4 is instrumental to proving Lemma 5 which is the key to showing a

geometric growth in the numbers of blocking edges. The proof of Lemma 5 is
given in the appendix.

Lemma 5. Assume that the target value 1 is feasible for the general max-min
allocation problem. Then, immediately after the construction of a new layer L�+1,
if no layer is collapsible, then |A�+1| > 2μ|B≤�|.

We show how to use Lemma 5 to obtain the geometric growth.

Lemma 6. If no layer is collapsible, then
∣∣Bi+1

∣∣ > γ3

1+γ

∣∣B≤i

∣∣. Hence, ∣∣B≤i+1

∣∣ >(
1 + γ3

1+γ

∣∣B≤i

∣∣).
Proof. Let (L0, L1, . . . , L�) be the current stackΣ. Take any i ∈ [0, �−1]. Since the
most recent construction of Li+1, Li+1 and any layer below it is not collapsible. If
not, Li+1 would be deleted, which means that there would be another construction
of it after the most recent construction, a contradiction. Therefore, Lemma 5
implies that zi+1 > 2μ|B≤i|, where zi+1 is the value of |Ai+1| right after the
construction of Li+1. By Lemma 1, |Ai+1| ≥ zi+1 − μ|B≤i|. Substituting zi+1 >
2μ|B≤i| into this inequality gives |Ai+1| > 2μ|B≤i| − μ|B≤i| = μ|B≤i|. Lemma 3
implies that |Bi+1| > γ

γ+β |Ai+1| > γμ
γ+β |B≤i|. Plugging in β = γ2 and μ = γ3

gives |Bi+1| > γ3|B≤i|/(1 + γ). ��
The next result shows that a polynomial running time follows from Lemma 6.



Lemma 7. Suppose that the target value 1 is feasible for the general max-min al-
location problem. Then, the local search matches a player in poly(m,n)·mpoly(1/δ).

Proof. The proof follows the argument in [1]. Let h = γ3/(1+γ). Define the signa-
ture vector (s1, s2, ..., s�,∞), where si =

⌊
log1/(1−μ)

(|Bi|h−i−1
)⌋
. By Lemma 6,

|B�| ≥ h|B≤�−1| ≥ h|B�−1|. So ∞ > s� ≥ s�−1, which means that the coordinates
of the signature vector are non-decreasing. When a (lowest) layer Lt is collapsed
in the Collapse phase, we update Bt to B′

t where (1−μ)|Bt| > |B′
t|. The signature

vector is updated to (s1, s2, ..., s
′
t) where s′t ≤ st − 1. So the signature vector

decreases lexicographically. By Lemma 6, the number of layers in Σ is at most
log1+h m, where m is the number of players. One can verify that the sum of
coordinates in every signature vector is at most U2 where U = logm ·O( 1

μh log 1
h ).

Every signature vector corresponds to a distinct partition of an integer that is
no more than U2. By summing up the number of distinct partitions of integers

that are no more than U2, we get that the upper bound of mO( 1
μh log 1

h ) on the
number of signature vectors. Since γ = Θ(δ), μ = γ3, and h = γ3/(1 + γ), this
upper bound is mpoly(1/δ). This also bounds the number of calls on Build and
Collapse. It is not difficult to make the construction of a layer and the collapse
of a layer run in polynomial time. ��

We have not discussed how to handle the case that the target value 1 is
infeasible for the general max-min allocation problem. In this case, the local
search must fail at some point. From the previous proofs, we know that as long
as the conclusion of Lemma 5 holds immediately after the construction of a
new layer L�+1, that is, if no layer is collapsible, then |A�+1| > 2μ|B≤�|, the
local search must succeed and finish in polynomial time. As a result, we must
encounter a situation that no layer is collapsible and yet |A�+1| ≤ 2μ|B≤� for the
first time during the local search. This situation can be checked explicitly and
we can abort and guess the next target value. Since the conclusion of Lemma 5
has held so far, the running time up to the point of abortion is polynomial.

4 Conclusion

We provide two solutions for the general max-min fair allocation problem. If every
resource has a positive utility for every player, the problem can be transformed
to the machine covering problem using our over-estimation strategy. By using an
existing polynomial time approximation scheme for the machine covering problem,
we obtain a

(
c

1−ε

)
-approximation algorithm which runs in polynomial time, where

ε is any constant in the range (0, 1), and c = max{vp,r/vq,r : r ∈ R ∧ p, q ∈ P}.
If some resource has zero utility for some players, we show how to combine the
over-estimation strategy with the approximation algorithm in [9] for the restricted
max-min allocation problem to obtain an approximation ratio of 1 + 3ĉ+O(δĉ2)
for any δ ∈ (0, 1) in polynomial time, where ĉ = max{vp,r/vq,r : r ∈ R ∧ p, q ∈
P ∧ vq,r > 0}. We conclude with two research questions. The first question
is whether the approximation ratios presented here can be improved further.
Despite its theoretical guarantee, the local search step is still quite challenging to



implement. So the second question is whether there is a simpler algorithm that
can also achieve a good approximation ratio in polynomial time.
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A Proof of Lemma 5

We prove Lemma 5 by contradiction. Suppose that z�+1 = |A�+1| < 2μ|B≤�|.
For every p ∈ P , a configuration C for p is a subset of resources (fat or thin)

such that p is interested in the resources in C and vp(C) ≥ 1. Let Cp(1) denote
the set of all configurations for p. The LP relaxation below is the configuration
LP is for the general max-min allocation problem.

Primal

Min 0

s.t.
∑

C∈Cp(1)

xp,C ≥ 1, ∀p ∈ P

∑
p∈P

∑
r∈C

xp,C ≤ 1, ∀r ∈ R

xp,C ≥ 0, ∀p ∈ P, ∀C ∈ Cp(1)

Dual

Max
∑
p∈P

yp −
∑
r∈R

zr

s.t. yp ≤
∑
r∈C

zr, ∀p ∈ P, ∀C ∈ Cp(1)

yp ≥ 0, ∀p ∈ P
zr ≥ 0, ∀r ∈ R

We will define a solution for the dual of configuration LP and show that it is
feasible and gives a positive objective function value. We can scale up this feasible
dual solution arbitrarily, which gives an arbitrarily large objective function value.
Therefore, the dual of the configuration LP is unbounded, which implies the
contradiction that the configuration LP is infeasible. Our proof is largely the
same as the counterpart of Lemma 5 in [9, 10], but adaptions to our setting is
needed in defining the dual solution and in proving that the objective function
value is positive.

To define the dual solution, we need classify certain subsets of players and
resources. Consider the moment right after the completion of the construction of
the layer L�+1.

Let Π be the set of fM [B≤�, A�+1 ∪ I] node-disjoint paths in GM from B≤�

to A�+1 ∪ I. Let src(Π) denote the set of sources of the paths in Π. Let Π+ be
the set of non-trivial paths in Π, i.e., paths with at least one edge. Let src(Π+)
denote the set of sources of the paths in Π+. The non-trivial paths in Π are
alternating, that is, for i ≥ 0, every (2i + 2)-th edge belongs to M and every
(2i+ 1)-th edge does not.



If we flip the alternating paths in Π, M is updated to another maximum
matching of G. Let M ⊕Π denote the resulting maximum matching. Note that
flipping a trivial path in Π does not change anything. The players in src(Π+)
are not matched in M , but they are now matched in M ⊕Π, which means that
there are directed edges in GM⊕Π from fat resources to the players in src(Π+).
So players in src(Π+) has in-degree exactly one in GM⊕Π .

Let P+ be the set of players that can be reached in GM⊕Π from B≤� \ src(Π).
Let R+

f be the set of fat resources that can be reached in GM⊕Π from B≤�\src(Π).

Let R+
t be the set of inactive thin resources. We can now define the desired dual

solution ({y∗p}p∈P , {z∗r}r∈R) as follows:

y∗p =

{
1− (1 + γ)λ if p ∈ P+,

0 otherwise.

z∗r =

⎧⎪⎨
⎪⎩

1− (1 + γ)λ if r ∈ R+
f ,

vmax
r if r ∈ R+

t ,

0 otherwise.

We will need the following properties of GM⊕Π .

Proposition 1. In GM⊕Π , the players in B≤� \ src(Π) have zero in-degrees,
and the fat resources in R+

f have out-degrees exactly one.

Proof. The players in B≤� are matched by thin edges in E , so they are not
matched by M to fat resources. Hence, players in B≤� have in-degree zero in GM .
After flipping the paths in Π, only the player in src(Π) may now be matched to
fat resources in M⊕Π , and therefore, players in B≤� \src(Π) are still unmatched
in M ⊕Π. So players in B≤� \ src(Π) have zero in-degrees.

By the definition of R+
f , for every resource r ∈ R+

f , there is a path to r from
a player that is not matched in M ⊕Π. If r is not matched in M ⊕Π, we can
flip this path to increase the matching size, contradicting the fact that M ⊕Π is
a maximum matching. So r is matched in M ⊕Π, implying that its out-degree
in GM⊕Π is exactly one. ��

Note that the rest of the proof considers the moment right after completing
the construction of L�+1, and there is no more (1 + γ)λ-minimal addable edge
that can be discovered.

A.1 Feasibility

We first prove that the dual solution is feasible, which requires us to show that
y∗p ≤ ∑

r∈C z∗r , ∀p ∈ P , ∀C ∈ Ci(1). The feasibility constraint is trivially satisfied
if p /∈ P+ because y∗p = 0 in this case and z∗r ≥ 0 for all r ∈ R. Take any p ∈ P+.
So y∗p = 1− (1 + γ)λ by definition. We prove that

∑
r∈C z∗r ≥ 1− (1 + γ)λ for all

C ∈ Cp(1).



Case 1: C contains a fat resource rf . As p ∈ P+, there is a path π from
B≤� \ src(Π) to p in GM⊕Π . Since rf belongs to a configuration for p, p desires
r, which means that GM⊕Π contains either the directed edge (p, rf ) or the
directed edge (rf , p). We show that rf ∈ R+

f below. It immediately follows that
z∗rf = 1− (1 + γ)λ, so

∑
r∈C z∗r ≥ z∗rf = 1− (1 + γ)λ.

If GM⊕Π contains the edge (p, rf ), then rf ∈ R+
f because we can follow the

path π to p and then the edge (p, rf ) to rf . Suppose that GM⊕Π contains the
edge (rf , p). By the property of matching, p has in-degree at most one in GM⊕Π ,
so (rf , p) is the only edge entering p. It follows that the path π reaches rf first
before p, so the prefix of π up to rf certifies that rf ∈ R+

f .

Case 2: C contains only thin resources. We consider the moment after
completing the construction of L�+1. The existence of the path π to p cer-
tifies that p is an addable player. However, we cannot find any (1 + γ)λ-
minimal addable edge for p. Since C ∈ Cp(1), we have vp(C) ≥ 1. Therefore,
the total utility of active resources in C for p must be less than (1 + γ)λ,
which means that the total utility of inactive resources in C for p is greater
than 1 − (1 + γ)λ. Since R+

t is the set of inactive thin resources, we have∑
r∈C z∗r ≥ ∑

r∈C∩R+
t
z∗r =

∑
r∈C∩R+

t
vmax
r ≥ ∑

r∩C∩R+
t
vp,r > 1− (1 + γ)λ.

A.2 Positive objective function value

By definition, y∗p = 0 if p /∈ P+, and z∗r = 0 if r /∈ R+
f ∪R+

t . So we only need to
prove that

∑
p∈P+ y∗p −∑

r∈R+
f
z∗r −∑

r∈R+
t
z∗r > 0.

First we consider the value of
∑

p∈P+ y∗p − ∑
r∈R+

f
z∗r . By definition, y∗p =

z∗r = 1− (1 + γ)λ for all p ∈ P+ and r ∈ R+
f . Then∑

p∈P+

y∗p −
∑
r∈R+

f

z∗r =
(
1− (1 + γ)λ

)(
|P+| − |R+

f

)
.

Take any r ∈ R+
f . By Proposition 1, there is an edge (rf , p) in GM⊕Π for some

player p, i..e, p is matched to rf in M ⊕Π. There is a path from B≤� \ src(Π)
to rf by the definition of R+

f , which implies that there is path from B≤� \ src(Π)

to p. Hence, p ∈ P+. We can thus charge every rf ∈ R+
f to a player in P+

such that, by the property of matching, no player in P+ is charged more than
once. As discussed previously, every player in B≤� \ src(Π) is not matched in
M ⊕Π, so players in B≤� \ src(Π) are not charged. Moreover, every player in
B≤� \ src(Π) belongs to P+ because there is a trivial path from every such player
to himself/herself. As a result,

|P+| − |R+
f | ≥ |B≤� \ src(Π)|.

Since Π is the maximum set of node-disjoint paths in GM from B≤� to A�+1 ∪ I,
we have |src(Π)| = |Π| ≤ |A�+1|+ |I|. Therefore,

|P+| − |R+
f | ≥ |B≤� \ src(Π)| ≥ |B≤�| − |A�+1| − |I|.



We conclude that∑
pi∈P+

y∗i −
∑

rj∈R+
f

z∗j =
(
1− (1 + γ)λ

)(
|P+| − |R+

f |
)

≥
(
1− (1 + γ)λ

)(
|B≤�| − |A�+1| − |I|

)
. (1)

It remains to analyze
∑

r∈R+
t
z∗r . Every resource r ∈ R∗

t is inactive. By

definition, the inactive resources appear in three different kinds of thin edges:
(i) A≤� ∪ B≤�, (ii) A�+1 ∪ I, and (iii) B′

�+1 =
{
b ∈ B�+1 : vmax

(
Rb ∩R(A�+1)

)
>

βλ
}
. It follows that∑
r∈R+

t

z∗r =
∑
r∈R+

t

vmax
r

= vmax

(
R(A≤� ∪ B≤�)

)
+ vmax

(
R(A�+1 ∪ I))+ vmax

(
R(B′

�+1)
)
.

We first consider vmax

(
R(A≤� ∪B≤�)

)
. Every edge (p,D) in A≤� is a blocked

addable edge. So vp
(
D \R(B≤�)

)
< λ. Every edge in B≤� is λ-minimal. Thus, we

can use the over-estimate strategy to bound vmax

(
R(A≤� ∪ B≤�)

)
:

vmax(R(A≤� ∪ B≤�)) ≤
∑

(p,D)∈A≤�∪B≤�

ĉ · vp(D)

≤ ĉ · λ|A≤�|+ ĉ · 2λ|B≤�|
Lemma 3

<

(
3 +

β

γ

)
ĉ · λ|B≤�|. (2)

We analyze vmax

(
R(A�+1 ∪ I)) next. Every edge in A�+1 is (1 + γ)λ-minimal,

and every edge in I is λ-minimal. Therefore,

vmax

(
R(A�+1 ∪ I)) ≤ ∑

(p,D)∈A�+1∪I
ĉ · vp(D)

≤ (2 + γ)ĉ · λ|A�+1|+ 2ĉ · λ|I|. (3)

Lastly, consider vmax

(
R(B′

�+1)
)
. Edges in B′

�+1 are λ-minimal. Therefore,

vmax

(
R(B′

�+1)
) ≤

∑
(p,D)∈B′

�+1

ĉ · vp(D)

≤ 2ĉ · λ|B′
�+1|

Lemma 4
<

(
4 + 2γ

β

)
ĉ2 · λ|A�+1|. (4)

Summing (2), (3)) and (4) gives

∑
r∈R+

t

z∗r <

(
3 +

β

γ

)
ĉλ|B≤�|+

(
(2 + γ)ĉ+

(
4 + 2γ

β

)
ĉ2
)
λ|A�+1|+2ĉλ|I|. (5)



Combining (1) and (5) gives∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r −
∑
r∈R+

t

z∗r

>

(
1− (1 + γ)λ−

(
3 +

β

γ

)
ĉλ

)
|B≤�|

−
(
1− (1 + γ)λ+ (2 + γ)ĉλ+

(
4 + 2γ

β

)
ĉ2λ

)
|A�+1|

−(
1− (1 + γ)λ+ 2ĉλ

)|I|. (6)

We claim that |I| ≤ μ|B≤�| because no layer is collapsible. If |I| > μ|B≤�|,
there would be some Ii in the disjoint partition

⋃�
i=1 Ii of I such that |Ii| > μ|Bi|.

But then by definition fM [B≤i, I]− fM [B≤i−1, I] = |Ii| > μ|Bi|, which implies
that the layer Li is collapsible, a contradiction to the assumption that no layer
is collapsible. This proves our claim.

We have assumed to the contrary of Lemma 5 that |A�+1| ≤ 2μ|B≤�|.
Plugging β = γ2, μ = γ3, and the two inequalities above into (6) gives∑
p∈P+

y∗i −
∑
r∈R+

f

z∗r −
∑
r∈R+

t

z∗r

>
(
1− 3γ3

)|B≤�| −
(
1 + γ − 3γ3 − 3γ4

)
λ|B≤�| −

(
3 + γ + 6γ3 + 2γ4)ĉλ|B≤�|

−(
8γ + 4γ2)ĉ2λ|B≤�|.

One can set γ = Θ(δ) so that

1− 3γ3

(1 + γ − 3γ3 − 3γ4) + (3 + γ + 6γ3 + 2γ4)ĉ+ (8γ + 4γ2)ĉ2

>
1

1 + 3c+O(δĉ2)

= λ,

which implies that the objective function value is positive.


