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Abstract

The unordered tree edit distance is a natural metric to compute distances between

trees without intrinsic child order, such as representations of chemical molecules. While

the unordered tree edit distance is MAX SNP-hard in principle, it is feasible for small
cases, e.g. via an A* algorithm. Unfortunately, current heuristics for the A* algorithm

assume unit costs for deletions, insertions, and replacements, which limits our ability to
inject domain knowledge. In this paper, we present three novel heuristics for the A*

algorithm that work with custom cost functions. In experiments on two chemical data

sets, we show that custom costs make the A* computation faster and improve the error
of a 5-nearest neighbor regressor, predicting chemical properties. We also show that, on

these data, polynomial edit distances can achieve similar results as the unordered tree

edit distance.
Keywords: Unordered Tree Edit Distance; A* algorithm; Tree Edit Distance; Chem-

istry

1 Introduction

Tree structures occur whenever data follows a hierarchy or a branching pattern, like in chemi-
cal molecules (Gallicchio and Micheli, 2013; Rarey and Dixon, 1998), in RNA secondary struc-
tures (Shapiro and Zhang, 1990), or in computer programs (Paaßen et al., 2018). To perform
similarity search on such data, we require a measure of distance over trees. A popular choice
is the tree edit distance, which is defined as the cost of the cheapest sequence of deletions,
insertions, and relabelings that transforms one tree to another (Bille, 2005; Zhang, 1996;
Zhang and Shasha, 1989). Unfortunately, the edit distance becomes MAX SNP-hard for un-
ordered trees, like tree representations of chemical molecules (Zhang and Jiang, 1994). Still,
for smaller trees, we can compute the unordered tree edit distance (UTED) exactly using
strategies like A* algorithms (Horesh et al., 2006; Yoshino et al., 2013). Roughly speaking,
an A* algorithm starts with an empty edit sequence and then successively extends the edit
distance such that a heuristic lower bound for the cost of the edit sequence remains as low as
possible. The tighter our lower bound h, the more we can prune the search and the faster the
A* algorithm becomes. Horesh et al. (2006) have proposed a heuristic based on the histogram
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of node degrees and Yoshino et al. (2013) have improved upon this heuristic by also consider-
ing label histograms and by re-using intermediate values via dynamic programming. However,
both approaches assume unit costs, i.e. that deletions, insertions, and relabelings all have a
cost of 1, irrespective of the content that gets deleted, inserted, or relabeled. This is unfortu-
nate because, in many domains, we have prior knowledge that suggests different costs or we
may wish to learn costs from data (Paaßen et al., 2018). Accordingly, most tree edit distance
algorithms are general enough to support custom deletion, insertion, and replacement costs,
as long as they conform to metric constraints (Bille, 2005; Zhang, 1996; Zhang and Shasha,
1989).

In this paper, we develop three novel heuristics for the A* algorithm which all support
custom costs. The three heuristics have linear, quadratic, and cubic complexity, respectively,
where the slower heuristics provide tighter lower bounds. Based on these novel heuristics, we
investigate three research questions:

RQ1: Which of the novel heuristic is the fastest? And how do they compare against the
state-of-the-art by Yoshino et al. (2013)?

RQ2: Do custom edit costs actually contribute to similarity search?

RQ3: How does UTED compare to polynomial edit distances in similarity search?

We investigate these research questions on two example data sets of chemical molecules,
both represented as unordered trees. To answer RQ2 and RQ3, we consider a regression task
where we try to predict the chemical properties of a molecule (boiling point and stability,
respectively) via a nearest-neighbor regression. We begin our paper with more background
and related work before we describe our proposed A* algorithm, present our experiments, and
conclude.

2 Background and Related Work

Let Σ be an arbitrary set which we call alphabet. Then, we define a tree over Σ as an expression
of the form x̂ = x(ŷ1, . . . , ŷK), where x ∈ Σ and where ŷ1, . . . , ŷK is a list of trees over Σ,
which we call the children of x̂. If K = 0, we call x() a leaf. We denote the set of all trees
over Σ as T (Σ).

In this paper, we are concerned with similarity search on trees. In the literature, there
are three general strategies to compute similarities on trees. First, we can construct a fea-
ture mapping φ : T (Σ) → R

n, which maps an input tree to a feature vector, and then
compute a (dis-)similarity between features, e.g. via d(x̂, ŷ) = ‖φ(x̂) − φ(ŷ)‖. For exam-
ple, we can represent trees by pq-grams (Augsten et al., 2008), by counts of typical tree
patterns (Collins and Duffy, 2002), or by training a neural network (Gallicchio and Micheli,
2013; Kusner et al., 2017). The second strategy are tree kernels k, i.e. functions that directly
compute inner products k(x̂, ŷ) = φ(x̂)T · φ(ŷ) without the need to explicitly compute φ
(Aiolli et al., 2015; Collins and Duffy, 2002).

In this paper, we focus on a third option, namely tree edit distances (Bille, 2005). Let
Σ be an alphabet with − /∈ Σ. Roughly speaking, a tree edit distance d(x̂, ŷ) between two
trees x̂ and ŷ from T (Σ) is the cost of the cheapest sequence of deletions, insertions, and
relabelings of nodes in x̂ such that we obtain ŷ (Bille, 2005; Zhang, 1996; Zhang and Shasha,
1989). More precisely, let x1, . . . , xm be the nodes of x̂1 and y1, . . . , yn be the nodes of ŷ

1Note that we use ’node’ and ’label’ interchangeably in this paper. To disambiguate between two nodes
with the same label, we use the index i.
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M1 = {(1, 1), (2, 0), (3, 4), (4, 3), (5, 2)}

M2 = {(1, 1), (2, 0), (3, 4), (4, 3), (5, 0), (0, 2)}

M3 = {(1, 1), (2, 0), (3, 2), (4, 3), (5, 4)}

dUTED
1

(x̂, ŷ) = 1

dCUTED
1

(x̂, ŷ) = 3

dTED
1

(x̂, ŷ) = 3

Figure 1: An illustration of mappings according to the unordered tree edit distance
(Zhang and Jiang, 1994) (top), the constrained unordered tree edit distance (Zhang, 1996)
(center), and the ordered tree edit distance (Zhang and Shasha, 1989) (bottom) between the
same two trees. The distances assume unit costs. Numbers in superscript show the depth
first order.

in depth-first-search order. Then, we define a mapping between x̂ and ŷ as a set of tuples
M ⊂ {0, 1, . . . ,m}×{0, 1, . . . , n} such that each i ∈ {1, . . . ,m} occurs exactly once on the left
and each j ∈ {1, . . . , n} occurs exactly once on the right. Figure 1 illustrates three example
mappings between the trees a(b(c, d), e) (left) and a(e, d, c) (right), namely M1, M2, and M3

(center left). Each mapping M can be translated into a sequence of edits by deleting all nodes
xi where (i, 0) ∈ M , by replacing nodes xi with yj where (i, j) ∈ M and xi 6= yj, and by
inserting all nodes yj where (0, j) ∈ M . We denote the set of all mappings between x̂ and
ŷ as M(x̂, ŷ). Next, we define a cost function as a metric c : (Σ ∪ {−}) × (Σ ∪ {−}) → R,
and we define the cost of a mapping M as c(M) =

∑

(i,j)∈M c(xi, yj) where x0 = y0 = −. A
typical cost function is c1(x, y) = 1 if x 6= y and c1(x, y) = 0 if x = y, which we call unit costs.
Finally, we define the tree edit distance dc : T (Σ) × T (Σ) → R according to cost function c
as the minimum dc(x̂, ŷ) = minM∈M(x̂,ŷ) c(M).

We obtain different edit distances depending on the additional restrictions we apply on the
set of mappings M(x̂, ŷ). The unordered tree edit distance (UTED) requires that mappings
respect the ancestral ordering, i.e. if (i, j) ∈ M , then descendants of i can only be mapped
to descendants of j (Bille, 2005). A cheapest example mapping according to unit costs M1

(Figure 1, top). The constrained unordered tree edit distance (CUTED) (Zhang, 1996) addi-
tionally requires that a deletion/insertion of a node implies either deleting/inserting all of its
siblings or all of its children but one. This forbids M1 and M3, where b is deleted but both
its sibling and more than one child are maintained. M2 is a cheapest mapping according to
CUTED with unit costs. The ordered tree edit distance (TED) (Zhang and Shasha, 1989)
requires that the ancestral ordering and the depth-first ordering is maintained. Accordingly,
neither M1 nor M2 are permitted because they swap the order of c and d around. M3is a
cheapest mapping according to TED with unit costs. Note that UTED is MAX-SNP hard.
However, CUTED and TED are both polynomial (Zhang, 1996; Zhang and Shasha, 1989) via
dynamic programming and we consider them as baselines in our experiments.

3 Method

In this section, we explain our proposed A* algorithm for the unordered tree edit distance
(UTED). We begin with the general scheme, which we adapt from Yoshino et al. (2013), and
then introduce three heuristics to plug into the A* algorithm.

A* algorithm: We first introduce a few auxiliary concepts that we require for the A*
algorithm. First, let M be some subset of {0, . . . ,m} × {0, . . . , n}. Then, we denote with IM
the set {i > 0|∃j : (i, j) ∈M} and with JM the set {j > 0|∃i : (i, j) ∈M}, i.e. the set of left-
hand-side and right-hand-side indices of M . Next, let x̂ and ŷ be trees with nodes x1, . . . , xm
and y1, . . . , yn, respectively. Then, we define Xi and Yj as the index sets of all descendants
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Algorithm 1 The A* algorithm to compute the unordered tree edit distance dUTED
c (x̂, ŷ)

between two trees x̂ and ŷ, depending on a cost function c and a heuristic h.

1: function astar_uted(trees x̂ and ŷ, cost function c, heuristic h)
2: Initialize a priority queue Q with the partial mapping M = {(1, 1)}
3: and value c(x1, y1) + h({2, . . . ,m}, {2, . . . , n}).
4: while Q is not empty do

5: Poll partial mapping M with lowest value f from Q.
6: i← min{1, . . . ,m+ 1} \ IM .
7: if i = m+ 1 then

8: return c(M ∪ {(0, j)|1 ≤ j ≤ n, j /∈ JM}).
9: end if

10: Retrieve (k, l) ∈M with largest k such that xk is ancestor of xi and l > 0.
11: hp ← h

(

{1, . . . ,m} \ (Xk ∪ IM ), {1, . . . ,m} \ (Yl ∪ JM )
)

.
12: M0 ←M ∪ {(i, 0)}
13: h0 ← h

(

Xk \ IM0
,Yl \ JM0

)

+ hp.
14: for j ∈ Yl \ JM do

15: Let y′0, . . . , y
′
t be the path from yl to yj in ŷ with y′0 = yl and y′t = yj .

16: Mj ←M ∪ {(i, j), (0, y′1), . . . , (0, y
′
t−1)}.

17: hj ← h
(

Xi \ IMj
,Yj \ JMj

)

+ h
(

Xk \ (Xi ∪ IMj
),Yl \ (Yj ∪ JMj

)
)

+ hp.
18: end for

19: Put Mj with value c(Mj) + hj onto Q for all j ∈ {0} ∪ (Yl \ JM ).
20: end while

21: end function

of xi and yj, respectively. Finally, let c be a cost function. Then, we define a heuristic as
a function h : P({1, . . . ,m}) × P({1, . . . , n}) → R, such that for any I ⊆ {1, . . . ,m} and
J ⊆ {1, . . . , n} it holds

h(I, J) ≤ min
M∈MUTED(x̂,ŷ)

∑

(i,j)∈M :i∈I,j∈J

c(xi, yj). (1)

Algorithm 1 shows the pseudocode for the A* algorithm. We initialize a partial mapping
M = {(1, 1)} which maps the root of x̂ to the root of ŷ. If this is undesired, input trees must
first be augmented with a placeholder root node. Next, we initialize a priority queue Q with
M and its lower bound. Now, we enter the main loop. In each step, we consider the current
partial mapping M with the lowest lower bound f (line 5). If IM already covers all nodes in
x̂, we complete M by inserting all remaining nodes of ŷ and return the cost of the resulting
mapping (lines 7-9)2. Otherwise, we extend M by mapping the smallest non-mapped index
i either to zero (lines 12-13), or to j for some available node yj from ŷ (lines 14-18). In the
latter case, we need to maintain the ancestral ordering of the tree ŷ. Accordingly, we first
retrieve the lowest ancestor xk of xi such that (k, l) ∈M and only permit i to be mapped to
descendants Yl. Note that (k, l) must exist because we initialized M with {(1, 1)}. Further,
if we map i to a non-direct descendant of yl, we make sure to insert all nodes on the ancestral
path y′0, . . . , y

′
t, first. We generate lower bounds hj for all extensions Mj and put them back

onto the priority queue.
Note that the space complexity of this algorithm can be polynomially limited by repre-

senting the partial mappings in a tree structure. However, the worst-case time complexity

2Strictly speaking, this is only valid if the lower bound f is exact for insertions. This is the case for all
heuristics considered in this paper.
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remains exponential because the algorithm may need to explore combinatorially many possi-
ble mappings. Generally, though, the tighter the lower bound provided by h, the fewer partial
mappings need to be explored before we find a complete mapping. To further cut down the
time complexity, we tabulate the lower bounds hp for the ancestor mappings (k, l) (line 11),
as recommended by Yoshino et al. (2013).

Heuristics: The final ingredient we need is the actual heuristic h. We define three heuristics
in increasing relaxation and decreasing time complexity. First,

h3(I, J) = min
M⊆M(I,J)

∑

(i,j)∈M

c(xi, yj), (2)

where M(I, J) denotes the set of all mappings between I and J , irrespective of ancestral
ordering. Accordingly, Inequality 1 is trivially fulfilled because any mapping that respects
ancestral ordering is also inM(I, J). Importantly, this relaxation can be solved in O((m+n)3)
via the Hungarian algorithm (Bougleux et al., 2017). While polynomial, this appears rather
expensive for a heuristic. Therefore, we also consider further relaxations. Without loss of
generality, let |I| ≥ |J |, otherwise exchange the roles of x̂, ŷ, I and J . Then, we define

h2(I, J) = min
I′⊆I:|I′|=|I|−|J |

(

∑

i∈I′

c(xi,−)
)

+
(

∑

i∈I\I′

min
j∈J

c(xi, yj)
)

. (3)

Note that this is a lower bound for h3(I, J) because we expand the class of permitted M to
one-to-many mappings, which is a proper superset of M(I, J). Further, h2 can be solved in
O(m · n) because we can evaluate ci := minj∈J c(xi, xj) for all i in |I| · |J | steps and we can
solve the outer minimization by finding the |I| − |J | smallest terms according to c(xi,−)− ci
and using those as I ′, which is possible in O(|I|). In case even O(m · n) is too expensive, we
relax further to

h1(I, J) = min
I′⊆I:|I′|=|I|−|J |

∑

i∈I′

c(xi,−). (4)

This is obviously a lower bound for h2 and can be solved in O(max{m,n}).

4 Experiments

We evaluate our three research questions on two data sets from Chemistry, namely the Alkanes
data set of 150 alkane molecules by Gallicchio and Micheli (2013) and the hundred smallest
molecules from the ZINC molecule data set of Kusner et al. (2017). In the former case,
the molecules are directly represented as trees (with 8.87 nodes on average) with hydrogen
counts as node labels. In the latter case, we use the syntax tree of the molecule’s SMILES
representation (with 13.82 nodes on average) (Weininger, 1988), where nodes are labeled with
syntactic blocks. Note that this is a lossy representation because we cut aromatic rings to
obtain trees.

Regarding RQ1, we compute all pairwise UTED values using the three heuristics h1, h2,
and h3, both with unit costs and with custom costs. As custom cost function c, we use the dif-
ference in hydrogen count between two carbon for the alkanes data set. For the ZINC data set,
we use the difference in electron count. For further reference, we also compare to the heuristic
of Yoshino et al. (2013) for unit costs. We execute all computations in Python on a consumer
desktop PC with Intel core i9-10900 CPU and 32 GB RAM and measure time using Python’s
time function. All experimental code is available at https://gitlab.com/bpaassen/uted.

https://gitlab.com/bpaassen/uted
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Table 1: The average runtime in milliseconds (top) and the number of partial mappings
searched (bottom) per distance computation for each heuristic.

unit custom
data set h1 h2 h3 hyoshino h1 h2 h3

runtime
alkanes 8.70 12.15 10.72 9.52 7.34 8.21 9.92
ZINC 549.38 277.15 192.97 266.66 130.62 75.53 68.12

search size
alkanes 376 348 260 279 318 302 246

ZINC 24586 9164 4158 6781 6643 2655 1379
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m · n

ti
m

e
[s

]

alkanes

102 102.2 102.4
10−3

10−2
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m · n

ZINC

h1, unit
h2, unit
h3, unit
hyoshino, unit
h1, custom
h2, custom
h3, custom

Figure 2: A log-log regression of the runtime needed for computing UTED for all four heuristics
(indicated by color) on the alkanes data (left) and the ZINC data (right). Shading indicates
distance between 25th and 75th percentile of the runtimes for hyoshino (orange, solid), and h3
with custom costs (purple, crosshatch), respectively.

Table 1 shows the average runtime in milliseconds (top) for each heuristic on both data
sets. On alkanes, h1 is fastest and on ZINC, h3 is fastest. All heuristics get faster for custom
costs. Surprisingly, hyoshino is not the fastest for unit costs, even though it is optimized for
this setting. This may just be due to an unfavourable constant factor, though: hyoshino is
successful in reducing the size of the search space almost to the same level as h3 (see Table 1,
bottom). Further, Figure 2 displays a linear regression for the runtime versus tree size in a
log-log plot, indicating that hyoshino and h3 have the lowest slopes/best scaling behavior for
large trees.

Regarding RQ2 and RQ3, we perform a 5-nearest neighbor regression3 to predict the
boiling point of alkanes and the chemical stability measure of Kusner et al. (2017) for ZINC
molecules, respectively. Table 2 shows the prediction error for both data sets in 15-fold cross-

3We also tested lower K, which achieved worse results for all methods.

Table 2: Average RMSE (± std.) of a 5-NN regressor across 15 crossvalidation folds for
UTED, CUTED, and TED with unit and custom costs.

unit custom
data set UTED CUTED TED UTED CUTED TED

alkanes 0.27 ± 0.24 0.27 ± 0.24 0.27 ± 0.24 0.25± 0.24 0.25± 0.24 0.25± 0.24

ZINC 1.33 ± 0.85 1.31 ± 0.86 1.36 ± 0.84 1.24± 0.87 1.26± 0.87 1.29± 0.86
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validation. For reference, we do not only evaluate UTED with unit and custom costs, but also
CUTED and TED. We observe that all methods perform better with custom costs compared
to unit costs. For alkanes, there is no measurable difference between UTED, CUTED, and
TED. For ZINC, TED performs worst and CUTED performs better than UTED for unit costs
and UTED performs better than CUTED for custom costs.

5 Conclusion

We proposed three novel heuristics to compute the unordered tree edit distance via an A*
algorithm. In contrast to prior work, our heuristics can accommodate custom costs, not
only unit costs. Our three heuristics provide different trade-offs of time complexity (linear,
quadratic, cubic) versus how much they prune the A* search.

In our experiments on two chemical experiments, we observed that this trade-off works in
favor of the linear heuristic for small trees but that the cubic heuristic takes over for larger
trees. Interestingly, the cubic heuristic compared favorably even to the current state-of-the-
art heuristic. When applying custom costs, all our heuristics became faster thanks to the
disambiguation provided by the custom cost function.

Regarding similarity search, we investigated the performance of a 5-nearest neighbor re-
gressor, predicting chemical properties. We observed that custom costs lowered the regression
error. However, we also saw that a similar performance can be achieved with a polynomial,
restricted edit distance. Future work might investigate further tree data set to check whether
these results generalize beyond chemistry.
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