Skip to main content

A Machine Learning Based Approach for Estimation of the Lung Affectation Degree in CXR Images of COVID-19 Patients

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13055))

Abstract

The effectiveness of the treatments applied to patients with COVID-19 in serious and critical condition admitted to intensive care units is a necessary element to draw up the strategies and protocols to follow in each particular case. An automatic index that allows to quantify the degree of affectation produced by the disease in the lungs from X-ray images of the thorax has not been investigated so far.

The work presents a method for estimation of a lung affectation index in chest X-ray images in patients diagnosed with COVID-19 in an advanced stage of the disease. The index is obtained from a method that combines image quality evaluation, digital image processing and deep learning for lung region segmentation. This method is capable of facing the problem of very diffuse borders due to the notable effects that COVID-19 patients in serious or critical condition have. The subsequent step of our proposal consist in the classification of the previously segmented image into two classes (healthy region, affected region) establishing the relationship between the number of pixels of each class. The results achieved in the experiments on images of healthy and affected by COVID-19 patients showed high values of sensitivity and specificity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ng, M.-Y., Lee, Y.P., et al.: Imaging profile of the COVID-19 infection: radiologic findings and literature review. Radiol. Cardiothogracic Imaging 2(1) (2020)

    Google Scholar 

  2. Huang, C., et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395(10223), 497–506 (2020)

    Google Scholar 

  3. Borghesi, A., et al.: Radiographic severity index in COVID-19 pneumonia: relationship to age and sex in 783 Italian patients. Radiol. Med. (Torino) 125(5), 461–464 (2020). https://doi.org/10.1007/s11547-020-01202-1

    Article  Google Scholar 

  4. Monaco, C.G., et al.: Chest x-ray severity score in COVID-19 patients on emergency department admission: a two-centre study. Eur. Radiol. Exp. 4(1), 1–7 (2020). https://doi.org/10.1186/s41747-020-00195-w

    Article  Google Scholar 

  5. Schalekamp, S., Huisman, M., van Dijk R.A., et al.: Model-based prediction of critical illness in hospitalized patients with COVID-19 [published online ahead of print, 2020 Aug 13]. Radiology 202723 (2020)

    Google Scholar 

  6. Sprawls, P.: image characteristics and quality. In: Physical Principles of Medical Imaging Online, Resources for Learning and Teaching. http://www.sprawls.org/resources

  7. Samajdar, T., Quraishi, M.I.: Analysis and evaluation of image quality metrics. In: Mandal, J.K., Satapathy, S.C., Sanyal, M.K., Sarkar, P.P., Mukhopadhyay, A. (eds.) Information Systems Design and Intelligent Applications. AISC, vol. 340, pp. 369–378. Springer, New Delhi (2015). https://doi.org/10.1007/978-81-322-2247-7_38

    Chapter  Google Scholar 

  8. Chen, F., Pan, J., Han, Y.: An effective image quality evaluation method of x-ray imaging system. J. Comput. Inf. Syst. 7(4), 1278–1285 (2011)

    Google Scholar 

  9. Garea-Llano, E., García-Vázquez, M., Colores-Vargas, J.M., Zamudio-Fuentes, L.M., Ramírez-Acosta, A.A.: Optimized robust multi-sensor scheme for simultaneous video and image iris recognition. Pattern Recogn. Lett. 101, 44–45 (2018)

    Google Scholar 

  10. Gonzalez, R.C., Woods, R.E.: Image compression and watermarking. In: Digital Image Processing, 4th edn, vol. 8 (2018)

    Google Scholar 

  11. Toriwaki, J.-I., Suenaga, Y., Negoro, T., Fukumura, T.: Pattern recognition of chest x-ray images. Comput. Vis. Graph 2(3), 252–271 (1973)

    Google Scholar 

  12. Zhu, Y., Prummer, S., Wang, P., Chen, T., Comaniciu, D., Ostermeier, M.: Dynamic layer separation for coronary DSA and enhancement in fluoroscopic sequences. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 877–884. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_106

    Chapter  Google Scholar 

  13. Gómez, O., Mesejo, P., Ibáñez, O., Valsecchi, A., Cordón, O.: Deep architectures for high-resolution multi-organ chest x-ray image segmentation. Neural Comput. Appl. 32(20), 15949–15963 (2019). https://doi.org/10.1007/s00521-019-04532-y

    Article  Google Scholar 

  14. Kanne, J.P., Little, B.P., Chung, J.H., Elicker, B.M., Ketai, L.H.: Essentials for radiologists on COVID-19: an update-radiology scientific expert panel. Radiology 296(2), E113–E114 (2020)

    Google Scholar 

  15. López-Cabrera, J.D., Portal Díaz, J.A., Orozco Morales, R., Pérez Díaz, M.: Revisión crítica sobre la identificación de COVID-19 a partir de imágenes de rayos x de tórax usando técnicas de inteligencia artificial. Rev. Cub. Transf. Digit. 1(3), 67–99 (2020)

    Google Scholar 

  16. Laghi, A.: Cautions about radiologic diagnosis of COVID-19 infection driven by artificial intelligence. The Lancet Digit. Health 2(5), e225 (2020)

    Google Scholar 

  17. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV, pp. 474–485. Academic Press Professional, Inc., San Diego (1994)

    Google Scholar 

  18. Koonsanit, K., Thongvigitmanee, S., Pongnapang, N., Thajchayapong, P.: Image enhancement on digital x-ray images using N-CLAHE. In: 2017 10th (BMEiCON), Hokkaido, Japan, pp. 1–4 (2017)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Candemir, S., Jaeger, S., Musco, J., Xue, Z., et al.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med, Imaging 33(2), 577 (2014)

    Article  Google Scholar 

  21. Jaeger, S., et al.: Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2), 233–245 (2014). https://doi.org/10.1109/TMI.2013.2284099. PMID: 24108713

    Article  Google Scholar 

  22. Gordienko, Y., et al.: Deep learning with lung segmentation and bone shadow exclusion techniques for chest x-ray analysis of lung cancer. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2018. AISC, vol. 754, pp. 638–647. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91008-6_63

    Chapter  Google Scholar 

  23. Gelbowitz, A.: Decision trees and random forests guide: an overview of decision trees and random forests: machine learning design patterns. Independently Published (2021)

    Google Scholar 

Download references

Acknowledgment

We appreciate the collaboration of the Cuban Society of Imaging and the Hospitals “Luis Díaz Soto” (Naval), Institute of Tropical Medicine “Pedro Kouri” and “Salvador Allende” for providing us with the images that allowed us to develop this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Garea-Llano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garea-Llano, E., Castellanos-Loaces, H.A., Martinez-Montes, E., Gonzalez-Dalmau, E. (2021). A Machine Learning Based Approach for Estimation of the Lung Affectation Degree in CXR Images of COVID-19 Patients. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89691-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89690-4

  • Online ISBN: 978-3-030-89691-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics