Skip to main content

Interpretable Diagnosis of ADHD Based on Wavelet Features and Logistic Regression

  • Conference paper
  • First Online:
  • 718 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13055))

Abstract

Despite arising in childhood, attention deficit hyperactivity disorder (ADHD) can persist into adulthood, compromising the individual’s social skills. ADHD diagnosis is a real challenge due to its dependence on the clinical observation of the patient, the information provided by parents and teachers, and the clinicians’ expertise. Therefore, there is great interest in studying objective biomarkers extracted from electroencephalographic (EEG) signals supporting accurate diagnoses. However, the non-stationarity and non-linearity characteristics of the EEG hinders the development of such tools. This paper presents a methodology for supporting the ADHD diagnosis by extracting features from the Discrete Wavelet transform of EEG signals. Due to the failed inhibitory control symptom, we consider EEG signals recorded under the Reward Stop Signal Task paradigm. Then, the logistic regressor learns the linear boundary discriminating between ADHD and healthy control subjects. As a benefit, the weighting vector supporting the classification also provides a straightforward interpretation of features in spatial locations and decomposition levels. The cross-validated classification results prove that the approach reaches an F1 score of \(96\%\) on a dataset of 34 children. Besides, the interpretability results support the hypothesis that the motivational effect leads the poor impulse control in ADHD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Khoshnoud, S., Nazari, M.A., Shamsi, M.: Functional brain dynamic analysis of ADHD and control children using nonlinear dynamical features of EEG signals. J. Integr. Neurosci. 17(1), 17–30 (2018)

    Article  Google Scholar 

  2. American Psychiatric Association, et al.: Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Publishing (2013)

    Google Scholar 

  3. Arns, M., Conners, C.K., Kraemer, H.C.: A decade of EEG theta/beta ratio research in ADHD: a meta-analysis. J. Atten. Disord. 17(5), 374–383 (2013)

    Article  Google Scholar 

  4. Swartwood, J.N., Swartwood, M.O., Lubar, J.F., Timmermann, D.L.: EEG differences in ADHD-combined type during baseline and cognitive tasks. Pediatr. Neurol. 28(3), 199–204 (2003)

    Article  Google Scholar 

  5. Saad, J.F., Kohn, M.R., Clarke, S., Lagopoulos, J., Hermens, D.F.: Is the theta/beta EEG marker for ADHD inherently flawed? J. Atten. Disord. 22(9), 815–826 (2018)

    Article  Google Scholar 

  6. Gabriel, R., Spindola, M.M., Mesquita, A., Neto, A.Z.: Identification of ADHD cognitive pattern disturbances using EEG and wavelets analysis. In: 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 157–162. IEEE (2017)

    Google Scholar 

  7. Joy, R.C., George, S.T., Rajan, A.A., Subathra, M.: Detection of attention deficit hyperactivity disorder from EEG signal using discrete wavelet transform. In: 2019 5th International Conference on Computing, Communication, Control and Automation (ICCUBEA), pp. 1–5. IEEE (2019)

    Google Scholar 

  8. Maya-Piedrahita, M., Cárdenas-Peña, D., Orozco-Gutierrez, A.: Diagnosis of attention deficit and hyperactivity disorder (ADHD) using hidden Markov models. In: 2020 28th European Signal Processing Conference (EUSIPCO), pp. 1205–1209. IEEE (2021)

    Google Scholar 

  9. Herrera, P.M., et al.: Expectation of reward differentially modulates executive inhibition. BMC Psychol. 7(1), 1–10 (2019)

    Article  MathSciNet  Google Scholar 

  10. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. 116(44), 22071–22080 (2019)

    Article  MathSciNet  Google Scholar 

  11. Groen, Y., Wijers, A.A., Mulder, L.J., Waggeveld, B., Minderaa, R.B., Althaus, M.: Error and feedback processing in children with ADHD and children with autistic spectrum disorder: an EEG event-related potential study. Clin. Neurophysiol. 119(11), 2476–2493 (2008)

    Article  Google Scholar 

  12. Ridderinkhof, K.R., Ullsperger, M., Crone, E.A., Nieuwenhuis, S.: The role of the medial frontal cortex in cognitive control. Science 306(5695), 443–447 (2004)

    Article  Google Scholar 

  13. van Meel, C.S., Heslenfeld, D.J., Oosterlaan, J., Sergeant, J.A.: Adaptive control deficits in attention-deficit/hyperactivity disorder (ADHD): the role of error processing. Psychiatry Res. 151(3), 211–220 (2007)

    Article  Google Scholar 

  14. Garavan, H., Ross, T., Murphy, K., Roche, R., Stein, E.: Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. NeuroImage 17(4), 1820–1829 (2002)

    Article  Google Scholar 

  15. Croce, P., Zappasodi, F., Marzetti, L., Merla, A., Pizzella, V., Chiarelli, A.M.: Deep convolutional neural networks for feature-less automatic classification of independent components in multi-channel electrophysiological brain recordings. IEEE Trans. Biomed. Eng. 66(8), 2372–2380 (2019)

    Article  Google Scholar 

  16. Haloi, R., Hazarika, J., Chanda, D.: Selection of appropriate statistical features of EEG signals for detection of Parkinson’s disease. In: 2020 International Conference on Computational Performance Evaluation, ComPE 2020, pp. 761–764 (2020)

    Google Scholar 

  17. Chrapka, P., de Bruin, H., Hasey, G., Reilly, J.: Wavelet-based muscle artefact noise reduction for short latency rTMS evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 27(7), 1449–1457 (2019)

    Article  Google Scholar 

  18. McAuliffe, D., et al.: Increased mirror overflow movements in ADHD are associated with altered EEG alpha/beta band desynchronization. Eur. J. Neurosci. 51(8), 1815–1826 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the research project number 111080763051 and the project number 6-20-10 funded by MinCiencias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián D. Pastrana-Cortes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pastrana-Cortes, J.D., Maya-Piedrahita, M.C., Herrera-Gómez, P.M., Cárdenas-Peña, D., Orozco-Gutierrez, A.A. (2021). Interpretable Diagnosis of ADHD Based on Wavelet Features and Logistic Regression. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89691-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89690-4

  • Online ISBN: 978-3-030-89691-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics