Skip to main content

Evaluation of GOI Detectors in EGG Signals Assuming Different Models for the Pulse Length Variability

  • Conference paper
  • First Online:
Book cover Progress in Artificial Intelligence and Pattern Recognition (IWAIPR 2021)

Abstract

In this paper, three Glottal Opening Instants Detectors are simultaneously evaluated with three glottal measures and two concepts of pulse boundaries. Performance has to be evaluated in the absence of reference locations. The evaluation is made over a subset of 120 pathological voice samples. Results show that, among detectors, the crossing over the 3/7 of the pulses’ amplitude span performs better. Considering ratios of pulse phases’ duration, results support the modeling of the effect of jitter in the glottal pulse as a constant warping between glottal closure instants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fant, G.: Acoustic Theory of Speech Production. Mouton, The Hage (1960)

    Google Scholar 

  2. Veldhuis, R.: A computationally efficient alternative for the Liljencrants-Fant model and its perceptual evaluation. J. Acoust. Soc. Am. 103, 566–571 (1998). https://doi.org/10.1121/1.421103

    Article  Google Scholar 

  3. Ferrer, C., Hernández-Díaz, M.E., González, E.: Using waveform matching techniques in the measurement of shimmer in voiced signals. In: Interspeech 2007: 8th Annual Conference of the International Speech Communication Association, pp. 2436–2439 (2007)

    Google Scholar 

  4. Hanquinet, J., Grenez, F., Schoentgen, J.: Synthesis of disordered voices. In: Faundez-Zanuy, M., Janer, L., Esposito, A., Satue-Villar, A., Roure, J., Espinosa-Duro, V. (eds.) NOLISP 2005. LNCS (LNAI), vol. 3817, pp. 231–241. Springer, Heidelberg (2006). https://doi.org/10.1007/11613107_20

    Chapter  Google Scholar 

  5. Drugman, T., Alku, P., Alwan, A., Yegnanarayana, B.: Glottal source processing: from analysis to applications. Comput. Speech Lang. 28, 1117–1138 (2014). https://doi.org/10.1016/j.csl.2014.03.003

    Article  Google Scholar 

  6. Rosenberg, A.E.: Effect of glottal pulse shape on the quality of natural vowels. J. Acoust. Soc. Am. 49, 583–590 (1971). https://doi.org/10.1121/1.1973515

    Article  Google Scholar 

  7. Kreiman, J., et al.: Variability in the relationships among voice quality, harmonic amplitudes, open quotient, and glottal area waveform shape in sustained phonation. J. Acoust. Soc. Am. 132, 2625–2632 (2012). https://doi.org/10.1121/1.4747007

    Article  Google Scholar 

  8. Lieberman, P.: Some acoustic measures of the fundamental periodicity of normal and pathologic larynges. J. Acoust. Soc. Am. 35, 344–353 (1963). https://doi.org/10.1121/1.1918465

    Article  Google Scholar 

  9. Titze, I.R.: Workshop on Acoustic Voice Analysis: Summary Statement. NCVS. 36 (1994). https://doi.org/10.1016/S0892-1997(97)80022-7.

  10. Boersma, P.: Should jitter be measured by peak picking or by waveform matching? Folia Phoniatr. Logop. 61, 305–308 (2009). https://doi.org/10.1159/000245159

    Article  Google Scholar 

  11. Horii, Y.: Some statistical characteristics of voice fundamental frequency. J. Speech Hear. Res. 18, 192–201 (1975)

    Article  Google Scholar 

  12. Roark, R.M.: Frequency and voice: perspectives in the time domain. J. Voice. 20, 325–354 (2006). https://doi.org/10.1016/j.jvoice.2005.12.009

    Article  Google Scholar 

  13. Ferrer, C.A., Torres, D., González, E., Calvo, J.R., Castillo, E.: Effect of different jitter-induced glottal pulse shape changes in periodicity perturbation measures. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH (2015)

    Google Scholar 

  14. Degottex, G., Kane, J., Drugman, T., Raitio, T., Scherer, S.: COVAREP – A Collaborative Voice Analysis Repository for Speech technologies. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 960–964 (2014)

    Google Scholar 

  15. Childers, D., Larar, J.N.: Electroglottography for laryngeal function assessment and speech analysis. IEEE Trans. Biomed. Eng. BME-31(12), 807–817 (1984). https://doi.org/10.1109/TBME.1984.325242

    Article  Google Scholar 

  16. Abberton, E., Fourcin, A.: Electrolaryngography. In: Ball, M.J., Code, C. (eds.) Instrumental Clinical Phonetics, pp. 119–148. Whurr Publishers Ltd., London (1997)

    Chapter  Google Scholar 

  17. Henrich, N., d’Alessandro, C., Doval, B., Castellengo, M.: On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. J. Acoust. Soc. Am. 115, 1321–1332 (2004). https://doi.org/10.1121/1.1646401

    Article  Google Scholar 

  18. Baken, R.J.: Electroglottography. J. Voice. 6, 98–110 (1992). https://doi.org/10.1097/00002508-199209000-00009

    Article  Google Scholar 

  19. Krishnamurthy, A., Childers, D.: Two-channel speech analysis. IEEE Trans. Acoust. Speech Signal Process. 34(4), 730–743 (1986). https://doi.org/10.1109/TASSP.1986.1164909

    Article  Google Scholar 

  20. Howard, D.M.: Variation of electrolaryngographically derived closed quotient for trained and untrained adult female singers. J. Voice. 9, 163–172 (1995)

    Article  Google Scholar 

  21. Pützer, M., Barry, W.J.: Saarbruecken Voice Database. http://stimmdb.coli.uni-saarland.de/. Accessed 16 Mar 2018

  22. Harar, P., Alonso-Hernandez, J.B., Mekyska, J., Galaz, Z., Burget, R., Smekal, Z.: Voice pathology detection using deep learning: a preliminary study. In: International Conference and Workshop on Bioinspired Intelligence, IWOBI 2017. pp. 1–4. IEEE Xplore, Madeira (2017)

    Google Scholar 

  23. Ferrer, C., Torres, D., Hernández-Díaz, M.E.: Using dynamic time warping of T0 contours in the evaluation of cycle-to-cycle Pitch Detection Algorithms. Pattern Recognit. Lett. 31, 517–522 (2010). https://doi.org/10.1016/j.patrec.2009.07.021

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by an Alexander von Humboldt Foundation Fellowship granted to one of the authors (Ref 3.2-1164728-CUB-GF-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Nöth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riesgo, C.A.F., Rodríguez-Guillén, R., Nöth, E. (2021). Evaluation of GOI Detectors in EGG Signals Assuming Different Models for the Pulse Length Variability. In: Hernández Heredia, Y., Milián Núñez, V., Ruiz Shulcloper, J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2021. Lecture Notes in Computer Science(), vol 13055. Springer, Cham. https://doi.org/10.1007/978-3-030-89691-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89691-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89690-4

  • Online ISBN: 978-3-030-89691-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics