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Abstract. We survey our recent work on the verification of population
protocols and their state complexity.

1 Introduction

Population protocols are a model of computation in which an arbitrary number
of indistinguishable finite-state agents interact in pairs to collectively decide if
their initial global configuration satisfies a given property. Population protocols
were introduced by Angluin et al. in [7,8] to study the theoretical properties
of networks of mobile sensors with very limited computational resources, but
they are also very strongly related to chemical reaction networks [53], a discrete
model of chemistry in which agents are molecules that change their states due
to collisions.

Population protocols decide a property by stable consensus. Each state of
an agent is assigned a binary output (yes/no). At each step, a pair of agents is
selected uniformly at random and allowed to interact. In a correct protocol, all
agents eventually reach with probability 1 the set of states whose output correctly
answers the question “did our initial configuration satisfy the property?” and
stay in these states forever.

The parallel runtime of a protocol is defined as the expected number of in-
teractions until a stable consensus is reached (i.e. until the property is decided),
divided by the number of agents. In recent years, much research on popula-
tion protocols has focused on the runtime of population protocols, and several
landmark results have been obtained. In particular, recent results have studied
protocols for majority and leader election in which the number of states grows
with the number of agents, and shown that poly-logarithmic time is achievable by
protocols without leaders, even for very slow growth functions, see e.g. [3,4,40].
Many of these results have been described in excellent surveys [5,27].

My work on population protocols, carried out with many of my PhD students
and postdocs, and in collaboration with other colleagues, has focused on other as-
pects than runtime analysis, and this is the reason for the title of this note. I first
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learned about population protocols at a talk by Paul Spirakis in ICALP 2008.
As a researcher working on the theory of Petri nets, I noticed the connection
of population protocols to Petri nets, and as a researcher working on automatic
verification, I asked myself if the correctness problem—given a population pro-
tocol and a property, does the protocol decide the property?—was decidable.
The problem consisted of checking whether an infinite collection of finite-state
Markov chains, one for each initial configuration of the protocol, satisfies a rather
sophisticated liveness property with probability 1. This makes it very hard: live-
ness properties are harder to verify than safety properties, probabilistic systems
are harder than non-probabilistic ones, and parameterized problems, i.e., prob-
lems involving families of systems with an arbitrarily large number of agents, are
much harder to verify than systems with a fixed number of agents. After looking
at the problem for some time I could not find an answer, but I kept it at the back
of my mind, and in 2015 (seven years later!) I suggested to my colleagues Pierre
Ganty, Jérôme Leroux, and Rupak Majumdar to examine it again. This time,
thanks to new progress by Leroux on the theory of Petri nets, we proved that the
correctness problem is decidable, although as hard as the reachability problem
for Petri nets [31]. This was the starting point of a research program devoted to
the theory and practice of verifying population protocols, which reached an im-
portant milestone in 2020 with the release of Peregrine 2.0, a verifier based on
new theoretical results [15,32]. The first part of this note surveys this research,
adding all the work carried out since 2017 to a brief previous survey [28].

In 2018, Michael Blondin, Stefan Jaax and myself observed that a well-known
result of the theory of Petri nets had a surprising application to the theory
of population protocols: It showed that an infinite family of predicates of the
form x ≥ k for certain values of k could be decided by extremely succinct
protocols with only O(log log k) states. This sparked our interest in the question
of how many states are needed to decide a given predicate, or, by analogy to
automata theory, the state complexity of the predicate. The question is relevant.
For example, the fast protocol for majority implicitly described in [10] has tens
of thousands of states. This is an obstacle to implementations of protocols in
chemistry, where the number of states corresponds to the number of chemical
species participating in the reactions. The number of states is also important
because it plays the role of memory in sequential computational models. Indeed,
the total memory available to a population protocol is the logarithm of the
number of states multiplied by the number of agents.

To the best of our knowledge, we are the first group to study the state
complexity of predicates. While we do not have a complete characterization
yet, we have already proved several results. In 2018 the only bounds on state
complexity were the ones derived from the synthesis procedures of [9,10]. The
input to these procedures is a boolean combination of atomic predicates of the
form

∑k
i=1 aixi ∼ b, where ai and b are integers, and ∼ is either < or ≡m, the

latter denoting congruence modulom. (It is known that every predicate decidable
by population protocols is of this form.) The bounds of [9,10] are exponential in
both the number of atomic predicates, and in their size, with numbers written
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in binary. Since 2018 we have shown that every predicate has a protocol with
a polynomial number of states both in the number and the size of the atomic
predicates [16,14], and that, as mentioned above, some predicates have much
smaller protocols [16]. Very recently, we have also obtained lower bounds for the
state complexity [24]. The second part of the note surveys this work.

The note is structured as follows. Section 2 introduces terminology, and Sec-
tions 3 and 4 survey our work on verification and state complexity, respectively.

2 Some terminology

We assume that the reader is familiar with the basics of the population protocol
model; here we just fix some terminology.

Population protocols. A population protocol has a set of states and transitions,
with a distinguished set of initial states. Every state also has an associated
output, 1 or 0. Transitions model interactions between two agents. They have
the form q1, q2 7→ q′1, q

′
2, meaning that two agents in states q1 and q2 interact and

move to states q′1 and q′2. We assume that there is exactly one transition for each
pair of states, but transitions can also be silent, meaning that the states of the
agents do not change. A configuration of a protocol is a mapping assigning to
each state a number of agents. Initial configurations put arbitrarily many agents
in the initial states, and 0 agents elsewhere. A protocol starts at some initial
configuration, and executes steps by repeatedly picking two agents uniformly at
random and applying the corresponding transition. A run is an infinite sequence
of configurations obtained by executing infinitely many steps.

A configuration has consensus 1 resp. 0 if all its agents occupy states with
output 1 resp. 0. We also say that the configuration is a 1-consensus, resp. a
0-consensus, or just a consensus when we are not specific. A configuration is a
stable 1-consensus if every configuration reachable from it, including itself, is
a 1-consensus. A protocol is well specified if for every initial configuration C
there is b ∈ {0, 1} such that runs starting at C eventually reach a stable b-
consensus with probability 1 (abbreviated as w.p.1 in this note); in this case, we
say that the protocol outputs b for the initial configuration C. A well specified
protocol with initial states q1, . . . , qk decides the predicate ϕ(x1, . . . , xk) defined
by: ϕ(n1, . . . , nk) = b iff the protocol outputs b for the initial configuration that
puts n1, . . . , nk agents in q1, . . . , qk.

We also consider protocols with (one or more) leaders. Intuitively, this is
a population protocol with a set of distinguished agents. Formally, a protocol
with leaders only differs from a normal population protocol in the definition of
the set of initial configurations. The initial configurations of normal protocols
put arbitrarily many agents in the initial states, and 0 agents elsewhere. In a
protocol with leaders the initial configurations also put a fixed number of agents,
the same for every initial configuration, in other states.

Population protocols can be seen as special classes of Petri nets or Vector
Addition Systems [52,51]. For the purposes of this note, it suffices to say that,
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like a protocol, a Petri net has a set of states (called places in Petri net jargon)
and transitions. However, transitions have the form q1, . . . , qn 7→ q′1, . . . , q

′
m for

arbitrary n,m ≥ 0. So, intuitively, transitions of a Petri net can represent inter-
actions between more than two agents, and they can create or destroy agents.
The theory of Petri nets has produced numerous results about the properties of
their reachability graphs, i.e., the graphs with the configurations as nodes, and
the steps as transitions. Such results can be immediately translated to population
protocols.

Presburger arithmetic, Presburger predicates, and Presburger sets. A fundamen-
tal result of the theory of population protocols is that they decide precisely
the Presburger predicates, i.e., the predicates expressible in Presburger arith-
metic [11]. We briefly recall the definition of Presburger arithmetic and some
results, and refer to [41] for more details.

Atomic formulas of Presburger arithmetic are of the form
∑k

i=1 aixi ∼ b,
where ai and b are integers, xi are variables, and ∼ is either < or ≡m, the latter
denoting the congruence modulo m for some m ≥ 2. We call these atomic formu-
las threshold and remainder (or modulo) formulas, respectively. The formulas of
Presburger arithmetic are the result of closing atomic formulas under Boolean
operations and first-order existential or universal quantification. For example,

ϕ(x, y) = ∀z ∃u : 3x− u ≤ 0 ∧ 2z − y + u ≥ 4 ∧ (x+ y) ≡5 3

is a formula of Presburger arithmetic with free variables x and y.

A formula ϕ(x1, . . . , xn) is interpreted over Nn in the expected way. A set of
vectors S ⊆ N

n is a Presburger set if there is a Presburger formula ϕ such that
a vector belongs to S iff it satisfies ϕ, and a predicate over Nn is a Presburger
predicate if the set of vectors satisfying the predicate is a Presburger set. So
Presburger formulas are finite representations of the Presburger sets and predi-
cates. Semilinear sets are another representation of the Presburger sets, that is,
a set is semilinear iff it is Presburger. In this note we do not need any specific
properties of the semilinear representation.

Presburger arithmetic has a quantifier-elimination procedure, meaning that
every formula can be transformed into an equivalent boolean combination of
threshold and remainder predicates. The satisfiability problem for full Presburger
arithmetic is decidable, but its complexity is high, it lies between 2-NEXP and
2-EXPSPACE. For quantifier-free formulas the problem is NP-complete, and
there exist SMT-solvers efficient in practice. The tools Peregrine 1.0 and 2.0
described later in this note are implemented on top of the Z3 solver [50].

3 Verification of population protocols

The design of population protocols is quite error prone. In our experience, it is
hardly ever the case that the first design for a protocol computing a predicate is
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correct. The problem is accentuated by the lack of a suitable high-level program-
ming language for protocols, which makes their design akin to writing machine
code.

In this context, the limited expressive power of population protocols also has
a positive side: the correctness problem is not trivially undecidable, as happens
with many other models of computation. In this section we show that the prob-
lem is in fact decidable, and survey our work leading from the first decidability
result to the current decision procedures and to their practical implementation.

3.1 Decidability and complexity

In [31] we proved that the two central verification problems for population pro-
tocols are decidable:

– Well-specification: Given a population protocol, is it well specified?
– Correctness: Given a population protocol and a Presburger predicate (repre-

sented as a Presburger formula), does the protocol compute the predicate?

The results were extended to decidability of more general properties in [30]. The
proofs proceed by reduction to the reachability problem for Petri nets, which
is decidable [47,43]. We also showed that well-specification and correctness are
recursively equivalent to the reachability problem for Petri nets. More precisely:

– The reachability problem for Petri nets can be reduced to well-specification
or correctness in polynomial time;

– Given an oracle for the reachability problem for Petri nets, well-specification
and correctness can be decided in elementary time, i.e., in time bounded by
a finite tower of exponentials.

It has been shown recently that the reachability problem for Petri nets is Ackermann-
complete, meaning that its complexity is bounded from below and from above by
non-primitive recursive fast growing functions related to the Ackermann func-
tion [25,46,26]. Therefore, well-specification and correctness are not primitive
recursive either, that is, no algorithm running in time bounded by a primitive
recursive function can solve them.

The very high complexity of the correctness problem leads to the question
whether the problem could be more tractable for special protocol classes. In [11]
Angluin et al. not only characterized the expressive power of population proto-
cols, but also of other models with more restricted communication mechanisms.
In [36,33] we conducted a complete analysis of the complexity of the correctness
problem for the models of [11]. We showed that for models based on immediate
and delayed observation the correctness problem is PSPACE-complete and com-
plete at the second level of the polynomial hierarchy, respectively. Immediate
observation protocols have transitions of the form q1, q 7→ q2, q. Intuitively, an
agent in state q1 observes that the other process is in state q, which allows it to
immediately move to state q2. Intuitively, in such protocols if an agent at q1 can
execute the transition, then every agent at q1 can take it as well, which greatly
simplifies the verification task. In delayed observation protocols the observer in
q1 may move to q2 at a later point.



6 J. Esparza

3.2 A first attempt at a verification tool

In [18], published in 2017, we addressed the problem of developing an algorithm
that would be efficient enough to automatically prove correctness for a class of
protocols satisfying three conditions:

(a) No loss of expressive power: the class should compute all Presburger predi-
cates.

(b) Naturality: the class should contain many of the protocols discussed in the
literature.

(c) Feasible membership problem: deciding if a protocol belongs to the class
should have reasonable complexity.

In the paper we introduced the class of Well-Specified Strongly Silent proto-
cols (WSSS). Intuitively, a protocol is silent if an execution reaches a terminal
configuration with probability 1, where a configuration is terminal if cannot
reach any other configuration. (Observe that a protocol correctly deciding a
property need not be silent; indeed, the definition of when a protocol decides a
property only requires that an execution reaches a consensus w.p.1. Reaching a
consensus is a weaker property, because it allows the protocol to keep visiting
different configurations, as long as in all of them the agents agree on the same
value.) Further, a protocol is strongly silent if, loosely speaking, its transitions
are organized in layers such that transitions of higher layers cannot be enabled
by executing transitions of lower layers. In particular, if the protocol reaches a
configuration of the highest layer that does not enable any transition, then this
configuration is terminal. We showed that WSSS protocols satisfy (a) and (b),
and proved that the membership problem for the class is in the complexity class
DP. Recall that DP is the class of languages L such that L = L1 ∩ L2 for some
languages L1 ∈ NP and L2 ∈ coNP; in view of the Ackermannian complexity of
the general case, this result shows that WSSS satisfies (c). The proof that the
problem is in DP reduces membership to checking satisfiability resp. unsatisfi-
ability of two quantifier-free formulas of Presburger arithmetic. The procedure
was implemented in Peregrine 1.0 [17], a tool for the verification of popula-
tion protocols built on top of the constraint solver Z3, and the first tool able to
automatically prove well-specification for all initial configurations.

While WSSS protocols decide all Presburger predicates, Peregrine 1.0 had
several limitations, which will be subject of the next section. From the most
conceptual to the most practical:

– The verification algorithm of [18] was dissociated from the decidability re-
sults proved in [31]. To put it bluntly, the theoretical result was not guiding
the design of a practical algorithm.

– The tool did not produce correctness certificates; if the tool returned “cor-
rect”, the user had to trust the result.

– Many protocols designed to be fast, or to use few states, are not in WSSS.
Examples include the average-and-conquer protocol of [6] (for fixed values
of the parameters), or the compact threshold protocols of [14]. In particular,
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many protocols that perform a “random search”, like the second protocol in
Example 1 below, are non-silent.

Example 1. The following two (very slow) protocols decide whether the number
of blue agents minus the number of red agents is at least 2k for a given k ≥ 1.
These protocols are also of interest in the next section on state complexity.

First protocol. Each agent has a bag that can hold up to 2k pebbles and a
flag that can be up or down (corresponding to output 1 and 0, respectively).
Initially, each agent has one pebble and its flag is down. When two agents meet
they update their bags and flags depending on their colors:

– Two red agents. No change.
– One blue and one red agent. If none of the two bags is empty, then both

agents throw one pebble away and lower their flags; we call this interaction
a cancellation. Else, if the bag of the blue agent is full (that is, if it has 2k

pebbles) or if both flags were up before the interaction, then both agents
raise their flags. Else, both agents lower their flags.

– Two blue agents. One agent gives the other as many pebbles as the other
agent’s bag can still hold. If this fills the other agent’s bag, or if both flags
were up before the interaction, then both agents raise their flags; otherwise
they lower them.

Let us prove correctness. Let x and y be the numbers of blue and red
agents, respectively. W.p.1 cancellations keep occurring until a configuration
C is reached in which only blue or only red agents have pebbles (or no agent
has pebbles). If x − y ≥ 2k, then no red agents have pebbles at C, and in runs
from C some blue agent fills its bag and raises its flag w.p.1. The bag remains
full forever, and w.p.1 this agent eventually meets all other agents without any
other interaction happening in-between, after which all flags are up, and stay up
forever. If x − y < 2k, then after C no bag is ever full, and so any flag that
is lowered stays down forever. Moreover, at C the flag of the blue agent that
participated in the last cancellation is down, and this agent brings down the flag
of any agent it meets. So eventually all flags stay down w.p.1.

Second protocol. Again, agents have bags and flags. The following updates ensure
that the number of pebbles in each bag is always 0 or a power of 2:

– Two red agents. No change.
– One blue and one red agent. If both agents have exactly one pebble, they

throw their pebbles away and lower their flags. Else, if the bag of the blue
agent is full or both flags were up before the interaction, then both agents
raise their flags. Else, both agents lower their flags.

– Two blue agents. If both agents hold the same number of pebbles, then one
of them gives to the other as many pebbles as the other’s bag can still hold;
if one agent has no pebbles, then it receives from the other half its pebbles;
otherwise no pebbles are exchanged. If after this some bag is full, or if both
flags were up before the interaction, then both agents raise their flags, else
they lower them.
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This protocol is also correct. Intuitively, blue agents can distribute pebbles
among them into any combination of powers of 2 (up to 2k). For example, if
k = 2 the blue agents can partition 5 pebbles among them as 1+1+1+1+1 (5
agents get one pebble each); 2+1+1+1; 2+2+1; or 4+1. Randomness ensures
that all these partitions are visited infinitely often, and so that cancellations
keep occurring until a configuration C is reached in which only blue or only red
agents have pebbles (or no agent has pebbles).

If x − y ≥ 2k, then runs from C eventually execute the following sequence
of interactions w.p.1: first, some blue agent fills its bag and raises its flag; this
agent then proceeds to meet all red agents, and then all blue agents whose bag is
not empty; after that, the agent meets each blue agent with empty bag, sharing
its pebbles with it, but only to recover them immediately. After this sequence
all flags are up, and remain so forever. If x− y < 2k, then the argument is as for
the first protocol.

The first protocol is silent. If x ≥ y, then w.p.1 it eventually reaches and
stays in the configuration in which ⌊(x − y)/2k⌋ blue agents have 2k pebbles,
one blue agent has (x− y) mod 2k pebbles each, all other agents have 0 pebbles,
and all flags are up or down, depending on whether x − y ≥ 2k holds or not. If
x ≤ y, the protocol reaches and stays in the configuration in which y − x red
agents have one pebble each, all other agents have 0 pebbles, and all flags are
down. The second protocol needs exponentially fewer states, but is not silent.
Indeed, when x ≥ y the blue agents keep visiting all partitions of x− y forever.

3.3 A new proof methodology: stage graphs

Finding theoretical and algorithmic answers to the limitations of Peregrine

1.0 took three years. Initially we did not even have a clear picture of these
limitations. They emerged when we started to investigate how to automatically
compute an upper bound on the expected runtime of a protocol. This work,
published in [19], introduced stage graphs, a notion that, after many rewrites,
finally led to the stage graph proof methodology of [15], which we describe now.

Stage graphs reduce correctness to checking that certain assertions are induc-
tive invariants, and that certain ranking functions decrease in appropriate ways.
For standard sequential programs these checks are still undecidable problems,
but for population protocols they turn out to be decidable.

Certificates of correctness The reachability graph of a population protocol
has all possible configurations as nodes, and an edge from C to C′ whenever C′

is reachable from C in one step. It is an infinite graph, but every configuration
has finitely many descendants. (A consequence of the fact that transitions do
not change the number of agents.) We call graphs with this property weakly
finite [29]. An edge of the graph corresponds to executing one transition of the
protocol. The probability of executing a transition at configuration C is the
fraction of the pairs of agents at C that enable the transition. Equipped with
these notions, let us briefly review how to certify different kinds of properties.
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Certifying safety. Safety properties can be certified using inductive invariants.
An inductive invariant is just a set of configurations closed under the reachability
relation, i.e., if a configuration belongs to the set, then so do all its successors.
Given a set I of initial configurations and some setD of dangerous configurations,
an inductive invariant Int satisfying I ⊆ Int and Int ∩D = ∅ certifies that D is
not reachable from I.

Certifying termination. Liveness properties, like termination, can be certified
by ranking functions assigning to each configuration an element of a set with
a well-founded order, like the natural numbers. Termination for all runs of the
program starting at I is certified by an inductive invariant Int containing I,
and a strictly decreasing ranking function over Int , i.e., a ranking function that
strictly decreases whenever the protocol takes a step.

Certifying termination w.p.1. Termination with probability 1 can also be certified
by an inductive invariant Int containing I, and a ranking function f . However,
the ranking function only needs to be weakly decreasing, meaning that for every
non-terminal configuration C ∈ Int , some configuration C′ reachable from C in
one or more steps satisfies f(C′) < f(C). Indeed, if such a function exists, then
for every non-terminal configuration of C ∈ Int there is a positive probability
of taking a path that stays within Int by inductivity, and decreases the ranking
function. Since the reachability graph is weakly finite, this probability is bounded
from below by some ǫ > 0 independent of C. So runs reach and stay at terminal
configurations w.p.1.

Certifying stable consensus w.p.1. In order to certify that a run starting at a
given set I eventually reaches stable consensus b w.p.1, for some given b ∈ {0, 1},
we need two inductive invariants Int1 , Int2 and a ranking function f satisfying
three properties:

– Int1 contains I (and so, by inductivity, also all configurations reachable from
I) and Int2;

– Int2 contains only b-consensus configurations (and so, by inductivity, any
run reaching Int2 reaches stable consensus); and

– f is weakly decreasing on Int1 \ Int2, i.e., for every C ∈ Int1 \ Int2, some C′

reachable from C in one or more steps satisfies f(C′) < f(C).

The same argument as above shows that runs starting at C ∈ Int1 \ Int2 even-
tually reach Int2 w.p.1, and, since Int2 is inductive, get trapped in Int2. Since
Int2 only contains configurations with consensus b, runs starting at I reach stable
consensus b w.p.1.

This proof technique is complete, meaning that if a run starting at I even-
tually reaches stable consensus b w.p.1, then we can always find a suitable Int1
and Int2, and f . Indeed, it suffices to choose Int1 as the set of all configurations
reachable from I; Int2 as the set of all configurations of Int1 with stable consen-
sus b; and f as the function assigning 0 to the configurations of Int2, and 1 to
the configurations of Int1 \ Int2.
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Stage graphs. It is useful to split stable consensus proofs into a small steps. For
this one can exhibit a finite, directed, and acyclic graph, whose nodes are pairs
v = (Int , f), where Int is an inductive invariant, and f is a ranking function cer-
tifying that runs starting at Int eventually get trapped in Int1∪ . . .∪ Intn w.p.1,
where Int1, . . . , Intn are the invariants of the children of v. Further, the invari-
ants of the bottom nodes of the graph only contain consensus configurations. In
[15] we call these objects stage graphs, and their nodes stages. A stage graph
proves that runs starting at a stage “travel down the graph w.p.1” until they
reach a bottom stage, and so stable consensus. Intuitively, stages correspond to
“milestones” towards stable consensus.

To prove a protocol correct, we produce two stage graphs proving that runs
starting at initial configurations that satisfy the predicate eventually reach stable
consensus 1, and the corresponding property for stable consensus 0. The stage
graphs have an initial stage containing the initial configurations satisfying or not
satisfying the predicate, respectively. Observe that, since stages are inductive the
initial stages also contain every reachable configuration. Let us examine stage
graphs in more detail with the help of a well-known example.

Example 2. Consider the following majority protocol, whose purpose is to decide
if the initial configuration contains more blue agents than red agents. Apart from
red or blue, agents can also be active of passive, yielding four possible states
Q = {B,R,b, r} (uppercase for active agents, lowercase for passive ones). The
initial states are B and R, and so initially all agents are active. The protocol
has four transitions:

t1 : B,R 7→ b, r t2 : B, r 7→ B,b

t3 : R,b 7→ R, r t4 : b, r 7→ b,b

The blue states B,b have output 1, and the red states R, r output 0. So in this
case, for better visualization, we call the outputs “blue” and “red”, instead of
1 and 0. The protocol is correct if it satisfies the following property: for every
initial configuration C, i.e., every configuration C satisfying C(b) = C(r) = 0, if
C(B) < C(R), eventually all agents stay forever in the red states {R, r} w.p.1,
and if C(B) ≥ C(R) eventually all agents stay forever in the blue states {B,b}
w.p.1.

Figure 1 shows two stage graphs for the protocol. Stages are given as con-
straints over variables B,R,b, r, describing the number of agents in states
B,R,b, r, respectively. For example, the constraint B < R represents the set of
all configurations C satisfying C(B) < C(R). Ranking functions are described
as functions of B,R,b, r. For example, the function B + R assigns to every
configuration C the number C(B) + C(R).

The stage graph on the left of Figure 1 proves that runs starting at any
configuration satisfying B < R reaches stable consensus red with probability 1.
The “human” proof goes as follows: because of transition t1, from any configura-
tion satisfying B < R the protocol eventually reaches a configuration satisfying
B = 0, and then transition t3 eventually changes all remaining blue agents into
red agents. The stage graph reflects this proof structure:
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S1 : B < R

Cert.: B+R

S2 : B = 0 ∧R > 0

Cert.: b

S3 : B+ b = 0

Stage graph for B < R

S1 : B ≥ R ∧ (r = 0 ∨ b+R > 0)

Cert.: B+R

S2 : B > 0 ∧R = 0

Cert.: r

S3 : B+R = 0 ∧ b > 0

Cert.: r

S4 : R+ r = 0

Stage graph for B ≥ R

Fig. 1: Stage graphs for the protocol of Example 2

– The initial stage S1 contains exactly the configurations satisfying B < R.
The ranking function f(B,R,b, r) = B + R certifies that runs starting at
a configuration of S1 eventually get trapped in S2, the set of configura-
tions satisfying R > 0 ∧ B = 0, w.p.1. Indeed, consider any configuration
C ∈ S1 \ S2, i.e., a configuration satisfying 0 < B < R. Then C enables

transition t1. Letting C
t1−→ C′ we have

f(C′) = B′ +R′ = (B− 1) + (R− 1) < B+R = f(C) .

So f is weakly decreasing.
– Similarly, the ranking function g(B,R,b, r) = b certifies that runs starting

at a configuration of S2 \ S3 eventually get trapped in S3. Since S3 is the
set of configurations without blue agents, we are done. Observe that not
every transition decreases b; actually, transition t4, which is enabled at some
configurations of S2\S3, increases it. However, g is weakly decreasing because
of transition t3.

– Observe that S1,S2,S3 are inductive invariants. For example, if a configu-
ration satisfies B < R, then so does any configuration reached by applying
any of the four transitions of the protocol.

Let us now consider the stage graph on the right. It proves that runs starting
at initial configurations satisfying B ≥ R (that is, at the set of configurations
satisfying B ≥ R and b = 0 = r) reach stable consensus blue w.p.1. The choice
of the initial stage S1 is not completely trivial. S1 must satisfy three conditions:
(a) contain all configurations satisfying B ≥ R and b = 0 = r; (b) contain
only configurations with a majority of blue agents or a tie, because only those
configurations reach stable consensus blue; (c) be inductive. We cannot choose
S1 = B ≥ R because it violates (b); for example, the configuration given by
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B = 1, R = 1, b = 1, r = 2 has a majority of red agents. We cannot choose
S1 = B ≥ R∧b = 0 = r either, because it violates (c). One has to find the right
set between these two.

The “human” proof uses as milestone the configurations at which there are no
agents left in state R. These configurations can be of three kinds, corresponding
to the stages S2, S3, and S4:

– if there are no red agents left (stage S4), then the run has already reached
stable consensus blue;

– if there are agents left in B (stage S2), then any agents in state r are even-
tually turned blue by transition t2;

– if there are agents left in b (stage S3), then any agents in state r are even-
tually turned blue by transition t4.

Decidability of correctness. If we are given stage graphs and told they prove
that a protocol correctly decides a given property, we can in principle check this
statement. We need to check that the initial stages contain the initial configu-
rations satisfying and violating the property, respectively; that all stages are in-
ductive and all ranking functions weakly decreasing; and that the bottom stages
only contain configurations with the right consensus. However, since stages are
infinite sets, the problem of carrying out such checks might be undecidable. The
main theorem of [15] proves that, if a protocol is correct, then there exist stage
graphs for which the checks reduce to proving satisfiability of formulas of Pres-
burger arithmetic, which is decidable. More precisely, the theorem proves that
every correct protocol has Presburger stage graphs, i.e., stage graphs satisfying
the following properties:

– Stages are Presburger sets of configurations, i..e, sets expressible in Pres-
burger arithmetic.

– Ranking functions are Presburger functions.
A ranking function f is Presburger if there is a formula ϕ(C,n) of Presburger
arithmetic with free variables C and n such that for every configuration C
and every number n we have f(C) = n iff ϕ(C, n) holds.

– Each ranking function f comes equipped with a bound B such that for
every configuration C in the domain of f , some configuration C′ reachable
from C in at most B steps satisfies f(C′) < f(C). So, strictly speaking, a
Presburger stage graph consists not only of stages and ranking functions,
but also of bounds for these functions.

Let us now see why checking that a stage graph is Presburger reduces to the
satisfiability problem of Presburger arithmetic. Checking that the initial stages
contain all initial configurations, and that the bottom stages only contain config-
urations with the right consensus is easy, because the sets of initial configurations
and consensuses are Presburger. Let us consider the other two checks.
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Checking that a stage is inductive. Since stages are Presburger sets, given a stage
S there is a formula S(C) expressing it. Further, for every transition t it is easy

to construct a formula stept(C,C
′) that holds iff C

t
−→ C′. For example, for our

majority protocol we have

stept1
(C,C′) := C ≥ (1, 1, 0, 0) ∧C′ = C+ (−1,−1, 1, 1)

So inductivity is expressed by the formula

∀C,C′ :

(
S(C) ∧

∨

t∈T

stept(C,C
′)

)
→ S(C′)

where T is the set of transitions of the protocol.

Checking that a ranking function is weakly decreasing. If the reachability relation
of population protocols would be expressible in Presburger arithmetic, i.e., if
there were a Presburger formula reach(C,C′) such that reach(C,C′) holds iff

C
∗
−→ C′, then the weakly-decreasing property for arbitrary ranking functions

would be expressible by the formula

∃C′,n,n′ : reach(C,C′) ∧ ϕf (C,n) ∧ ϕf (C
′,n′) ∧ n′ ≥ n

However, this is not the case; it is well known that the reachability relation of
Petri nets may not be Presburger, and the result easily transfers to population
protocols. This is the reason for the restriction to bounded ranking functions.
It is easy to construct by induction a formula reachB(C,C

′) that holds if there
exists a configuration C′ reachable from C in at most B steps. Just take

reach1(C,C
′) := C = C′ ∨

∨

t∈T

stept(C,C
′)

reachk+1(C,C
′) := ∃C′′ : reach1(C,C

′′) ∧ reachk(C
′′,C′)

Now we can express the weakly decreasing property as above, replacing reach
by reachB .

As we mentioned before, the proof of existence of Presburger stage graphs
is based on deep results on the theory of Petri nets, which can also be applied
to population protocols. The main one is Leroux’s theorem [45], stating the
following. Let X and Y be Presburger sets of configurations of a Petri net,
and let reach(X) be the set of configurations reachable from X . The theorem
states that if reach(X) ∩ Y = ∅ holds, then there exists a Presburger inductive
invariant that certifies this fact, i.e., there exists a Presburger set S closed under
the reachability relation such that reach(X) ⊆ S and S ∩ Y = ∅. Observe
that if reach(X) were always itself a Presburger set, then we could just take
S = reach(X). Intuitively, Leroux’s theorem shows that, while reach(X) is not
always a Presburger set, it is always very close to it (in fact, Leroux’s proof
shows that reach(X) always belongs to a class of sets called almost semilinear).
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3.4 Population protocols decide exactly the Presburger predicates

Angluin et al. proved in [11] that population protocols compute exactly the
Presburger predicates. The difficult part is to show that population protocols
only compute Presburger predicates. Let us show that this is a simple corollary
of the fact that correctness can always be certified by Presburger stage graphs.

Consider a protocol that decides a predicate, say ϕ. Let I be the set of initial
configurations of the protocol, and let I1 and I0 be a partition of I into the set of
initial configurations that satisfy and do not satisfy ϕ, respectively. Our theorem
shows that there exists a Presburger stage graph with initial stage S such that
I1 ⊆ S. This stage graph proves that a run starting at any configuration of S
eventually reaches stable consensus 1 w.p.1. Since the protocol decides ϕ, no
configuration of I0 belongs to S, i.e., we have S ∩ I0 = ∅. Together with I1 ⊆ S,
we have S ∩ I = I1. But S is Presburger, and so is I (indeed, I is just the set
of configurations with 0 agents in non-initial states). Since Presburger sets are
closed under intersection, I1 is also Presburger.

3.5 Automatic computation of stage graphs

We have developed a practical approach to the computation of stage graphs,
implemented in the tool Peregrine 2.0 [32]. The design of the tool is guided
by the theoretical results on stage graphs, and by the notion of dead transitions.
A transition t is dead at a configuration C if no run starting at C executes t,
and t is dead at a stage S if t is dead at every C ∈ S. Population protocols
designed by humans usually run in phases. Initially, all transitions are alive, and
the end of each phase is marked by the “death” of one or more transitions, i.e.,
by reaching a configuration at which these transitions become dead. Runs of the
protocol keep “killing transitions” until they reach a consensus configuration
whose consensus cannot be broken by any of the transitions still alive. This
consensus is then stable. When applied to the majority protocol, Peregrine
2.0 computes automatically two stage graphs very similar to those of Figure 1
in a couple of seconds.

Like Peregrine 1.0, Peregrine 2.0 is built on top of the Z3 constraint
solver. More precisely, it uses Z3 to check satisfiability of formulas of the existen-
tial fragment of Presburger arithmetic. The existential fragment is as expressive
as full Presburger arithmetic, but can be handled much more efficiently.

Given a protocol and a Presburger predicate, Peregrine 2.0 computes two
stage graphs, proving that runs starting at every initial configuration of the pro-
tocol satisfying (resp. violating) the predicate eventually reach stable consensus
1 (resp. stable consensus 0) w.p.1. Let I1 be the set of initial configurations
satisfying the predicate, the other case being similar. Peregrine 2.0 maintains
a worklist of Presburger stages, finitely represented by Presburger formulas.
Initially, the worklist contains only one stage, namely an inductive Presburger
overapproximation PotReach(I1) (for “potentially reachable”) of the configura-
tions reachable from I1. The procedure computing PotReach(I1) is the result of
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many years of research on tractable “relaxations” of the reachability relation of
Petri nets [35,34,39,20,13].

In its main loop, Peregrine 2.0 repeatedly picks a Presburger stage S from
the worklist, and processes it. First, the tool checks whether S is terminal, i.e., if
all its configurations are a 1-consensus. (Since S is inductive by construction, an
affirmative answer implies that all configurations of S are stable 1-consensuses.)
Checking that every configuration of S is a 1-consensus reduces to checking
unsatisfiability of a simple formula. If S is not terminal, the tool attempts to
construct one or more successor stages with strictly more dead transitions than
S. For this, the tool computes a set of eventually dead transitions : transitions
that are alive at one or more configurations of S, but will become dead w.p.1
in any run starting at those configurations. Again, the procedure to compute
U makes heavy use of results of Petri net theory [42], but also of the theory of
well-quasi-orders [1,38].

If Peregrine 2.0 finds a nonempty set of eventually dead transitions, then it
constructs a successor stage of S by overapproximating the configurations reach-
able from S, underapproximating the configurations at which the transitions of
U are dead, and intersecting the results. If Peregrine 2.0 fails to find eventu-
ally dead transitions, it heuristically splits S into different stages and adds them
to the worklist to be processed. Indeed, it could be the case that no transition
becomes eventually dead from every configuration of S, but this no longer holds
after a split; for example, imagine that transition t1 eventually becomes dead
from every configuration of S1 ⊂ S, and another transition t2 becomes eventu-
ally dead from every configuration of S2 = S \ S1. In this case, after splitting
S into S1 and S2 the tool can find nonempty sets of eventually dead transitions
for both S1 and S2.

Peregrine 2.0 has successfully proved correct a large variety of protocols,
including majority and approximate majority protocols (Example 2, [19, Ex. 3],
[6], [21], [44, coin game], [49]), various flock-of-birds protocol families ([22], [16,
Sect. 3], [23, threshold-n]) for the family of predicates x ≥ k for some constant
k ≥ 0; or protocols for threshold and remainder predicates of [7,16]. For all these
examples Peregrine 2.0 computes stage graphs with a few stages. Currently,
the main limitation of the tool is the size of the systems of linear constraints
involved, which limits the tool to protocols with up to some dozens of states and
some thousands of transitions.

4 Succinct predicates and state complexity

After writing our first papers on the verification of population protocols, we ob-
served that the theory of Petri nets was also relevant for a problem that, perhaps
surprisingly, had not been studied yet: the state complexity of predicates decid-
able by population protocols. Informally, the state complexity of a predicate is
the minimal number of states of the protocols that decide it, and, given a number
η, one defines the function STATE(η) as the maximum state state complexity
of all predicates of size at most η. But what is the size of a predicate? This re-
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quires us to fix a representation. Since population protocols compute exactly the
predicates expressible in Presburger arithmetic [11], we must choose a represen-
tation of the Presburger sets. There are three natural representations: formulas
of Presburger arithmetic, quantifier-free formulas of Presburger arithmetic, and
semilinear sets [41]. Semilinear sets are difficult to parse by humans, and no
paper on population protocols uses them to describe predicates. Full Presburger
arithmetic is very succinct, but the complexity of its satisfiability problem lies
between 2-NEXP and 2-EXPSPACE [41], and so it can lead to results in which
a predicate requires very few states, but only because of a representation that is
very difficult to compute. This leaves quantifier-free Presburger arithmetic. This
representation also has two advantages of its own. First, standard predicates
for which numerous protocols have been given in the literature (like majority,
threshold, or remainder predicates) are naturally expressed without quantifiers.
Second, the procedures given so far to construct population protocols for any
given Presburger predicate explicitly use the fact that Presburger arithmetic
has a quantifier elimination procedure, i.e., they first construct protocols for all
threshold and remainder predicates, and then show that the predicates computed
by protocols are closed under negation and conjunction.

4.1 State complexity: upper bounds

The first synthesis procedure for the construction of a protocol deciding a given
Presburger predicate was presented in [9]. The procedure is simple and elegant,
but it yields large protocols. Given a quantifier-free Presburger formula ϕ, i.e., a
boolean combination of atomic formulas, the number of states of the synthesized
protocol grows exponentially in both the number of bits of the largest coefficient
of ϕ in absolute value, and the number of atomic formulas. In terms of |ϕ|
(defined as the number of bits needed to write ϕ, with coefficients written in
binary) they have Ω(2poly(|ϕ|)) states. This raises the question whether protocols
with O(poly(|ϕ|)) states, which we call succinct, exist. We gave an affirmative
answer in [14], completing first partial results obtained in [16]. We describe how
to avoid both exponential dependencies.

Handling large coefficients. In order to prevent having the exponential depen-
dence on the coefficients, we design protocols for threshold and remainder pred-
icates that, loosely speaking, represent numbers in binary. A very easy case is
described in Example 1: the first predicate for x− y ≥ 2k has Θ(2k) states, be-
cause agents can hold any number of pebbles between 0 and 2k, but the second
has only Θ(k) states, because the number of pebbles is always a power of 2. The
construction of [14] proceeds in two steps: first we construct a succinct protocol
in which the agents are assisted by helpers, additional agents that are not part
of the input, and initially occupy a distinguished state, say H ; then we give an
equivalent protocol without helpers. Helpers are similar to leaders, but with the
property (guaranteed by the design of the protocol) that if the protocol works
correctly with a certain number of helpers, then it also works correctly for any
larger number. This property is crucial when dealing with boolean combinations.
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Consider a predicate like 13x− 9y ≥ 5. Protocols for this predicate have two
initial states, for x and y. Since 13 = 23 + 22 + 20, the protocol has a transition
that moves an agent in the initial state for x and two helpers into states 23, 22,
and 20, respectively. (Transitions that move multiple agents to new states in one
single step can be easily simulated by the usual protocol transitions with a very
low cost in terms of states.) Similarly, another transition for each agent in the
initial state for y, the protocol moves this agent and one helper into states −23

and −21. Pairs of agents in states 2l and −2l can “cancel”, meaning that they
both move to state H , and so become helpers ready to continue assisting.

In [14] we show that this idea can be applied to every threshold or remainder
predicate, resulting in a succinct protocol with a fixed number of helpers, cubic
in the size of the predicate, but independent of the size of the input. But how
do we go from this protocol to another one without helpers? For large inputs
in which the number of agents exceeds this number of helpers, we can let each
agent take two jobs: act as a regular agent and a helper. Let us show how to
do for h helpers. In a first phase, the protocol assigns to each agent a number
between 1 and h, ensuring that each number is assigned to at least one agent
(this is the point at which we need a sufficiently large input with at least h
agents). More precisely, at the end of this phase each agent is in a state of the
form (x, i), meaning that the agent initially represented one unit of input for
variable x, and that it has been assigned number i. For this, initially every agent
is placed in state (x, 1). Transitions of the form (x, i), (x, i) 7→ (x, i + 1), (x, i)
for every 1 ≤ i ≤ h − 1 guarantee that all but one agent is promoted to (x, 2),
all but one to (x, 3), etc. In other words, at each step one agent is “left behind”,
and so the protocol has at least h helpers.

However, the protocol must be correct for all inputs, not only for those with
at least h agents. In [14] this is solved by designing a second family of protocols
for small inputs, which works in a completely different way. It is then easy to
combine the protocols for large and small inputs into a protocol for all inputs.

Handling large boolean combinations of atomic formulas. The second problem
of the synthesis procedure of [9] is the exponential dependence of the number
of states on the number of atomic formulas. The dependence comes from the
fact that, given protocols P1, . . . ,Pk with n1, . . . , nk states deciding formulas
ϕ1, . . . , ϕk, respectively, the synthesis procedure yields a protocol P for deciding
ϕ1 ∧ · · · ∧ ϕk with n1 · n2 · . . . · nk states (and similarly for ϕ1 ∨ · · · ∨ ϕk).
Intuitively, in P each agent carries out k jobs: act as an agent of P1, of P2, . . . ,
and of Pk. The state of an agent is a k-tuple of states of the P1, . . . ,Pk, and
when two agents meet, they compare their states in each protocol Pi, and apply
the corresponding transition. In other words: the new protocol executes all of
P1, . . . ,Pk synchronously.

We need a new succinct construction for a boolean combination of atomic
predicates withO(n1+· · ·+nk) instead ofΩ(n1·. . .·nk) states. A naive first idea is
to let P execute P1, . . . ,Pk asynchronously in parallel, instead of synchronously,
and combine the results. However, this does not work. Assume ϕ1, . . . , ϕk have
arity m. In order to compute (ϕ1 ∧ · · · ∧ ϕk)(x), where x = (x1, . . . , xm), the
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protocol P would have to dispatch x agents to (the input states of) each Pi,
giving a total of k · x agents, but the protocol only has the agents of the input,
i.e. x agents. But couldn’t we use (k−1)·x helpers, and then obtain an equivalent
protocol without helpers? No, this does not work either, because in this case the
number of helpers depends on the size of the input, and the technique we used
above only allows us to simulate a fixed number of helpers. The solution is to
use a more sophisticated construction for parallel asynchronous computation.
Again, we need to consider separately the cases of large and small inputs, but
the former is more interesting, and so we only describe protocols for large inputs.

Given an arbitrary threshold or modulo predicate ψ(x) of arity m, it is easy

to construct a predicate ψ̃(y, z) of arity 2m satisfying

ψ̃(y, z) = ψ(ky + z)

For instance, if ψ(x1, x2) = (3x1 − 2x2 > 6) and k = 4, then we can choose

ψ̃(y1, y2, z1, z2) = (12y1 + 3z1 − 8y2 − 2z2 > 6).
Intuitively, the idea is to let P compute ϕ̃1(y, z), . . . , ϕ̃k(y, z) instead of

ϕ1(x), . . . , ϕk(x) for some y and z satisfying x = ky+z. Then P only needs to
dispatch a total of

k

(
m∑

i=1

yi + zi

)
= k

(
m∑

i=1

yi + (xi − kyi)

)
≤

m∑

i=1

xi +m · (k − 1)2

agents to compute all of ϕ̃1, . . . , ϕ̃k. So P only needs m · (k− 1)2 helpers, a fixed
number independent of the number of agents.

Let us now describe how P computes ϕ̃i(y, z) for some y and z satisfying

x = ky + z. Let P̃1, . . . , P̃k be protocols computing ϕ̃1, . . . , ϕ̃k, let x1, . . . , xm
be the input states of P , and let y

j
1, . . . , y

j
m and z

j
1, . . . , z

j
m be the input states

of P̃j for every 1 ≤ j ≤ k. Protocol P repeatedly chooses an index 1 ≤ i ≤ m,
and executes one of these two actions, which can be implemented with some
effort using only binary interactions: take k agents from xi, and dispatch them
to y

1
i, . . . , y

k
i (one agent to each state); or take one agent from xi and (k − 1)

helpers, and dispatch them to z
1
i, . . . , z

k
i. If all agents of xi are dispatched for

every 1 ≤ i ≤ m, then we say that the dispatch is correct. Observe that a correct
dispatch satisfies x = ky + z.

The problem is that the dispatch may or may not be correct. Assume, e.g.,
that k = 5 and m = 1. Consider the input x1 = 17, and assume that P has
m · (k − 1)2 = 16 helpers. P may correctly dispatch y1 = 3 agents to each of
y
1
1, . . . , y

1
5 and z1 = 2 to each of z11, . . . , z

1
5; this gives a total of (3 + 2) · 5 = 25

agents, consisting of the 17 agents for the input plus 8 helpers. However, it may
also wrongly dispatch 2 agents to each y

1
i and 4 agents to each of z1i, with a

total of (2 + 4) · 5 = 30 agents, consisting of 14 input agents plus 16 helpers. In
the second case, each Pj wrongly computes ϕ̃j(2, 4) = ϕj(2 · 5 + 4) = ϕj(14),
instead of the correct value ϕj(17).

To solve this problem we ensure that P can always recall agents already
dispatched to P̃1, . . . , P̃k as long as the dispatch is not yet correct. This allows
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P to “try out” dispatches until it dispatches correctly, which happens eventually
w.p.1. For this we design P so that the atomic protocols P̃1, . . . , P̃k can work
with agents that arrive to the initial states over time (dynamic initialization),
and can always return to their initial states and go back to P , unless the dispatch
is correct (reversibility). To ensure that P stops recalling agents after a correct
dispatch, we modify the dispatch transitions so that they become disabled when
x1, . . . , xm are not populated.

4.2 State complexity: lower bounds

In [16,24] we have also studied the problem of obtaining lower bounds for
STATE (η). This question turns out be surprisingly hard, and so we have fo-
cused on obtain lower bounds for the state complexity of a particularly simple
family of predicates, namely those of of the form x ≥ k. This amounts to finding
a lower bound for the number n of states needed to decide x ≥ k, or, equiva-
lently, an upper bound for the largest number k such that x ≥ k can be decided
by a protocol with n states. We prefer the latter formulation due to its analogy
with the busy beaver function. Recall that the busy beaver function assigns to a
number n the largest η such that a Turing machine with at most n states, started
on a blank tape, writes η consecutive 1s on the tape and halts. Analogously, the
busy beaver function for population protocols assigns to n the largest η such
that a population protocol with at most n states decides the predicate x ≥ η.
Intuitively, η is the largest number “recognizable” by protocols with at most n
states.

We have obtained results for protocols with and without leaders. It is known
that the time complexity of predicates is different for population protocols with
and without leaders: While the first can decide any Presburger predicate in poly-
logarithmic parallel time [10], the latter need linear parallel time for majority
[4]. Is the same true for state complexity? The question is still open, but we have
made some progress.

Let BB ,BBL : N → N be the busy beaver functions for leaderless protocols
and for protocols with leaders, respectively. A protocol similar to the second
one of Example 1, only simpler, decides x ≥ 2n with O(n) states, showing
that BB(n) ∈ Ω(2n). In [16] we prove BBL(n) ∈ Ω(22

n

). This result is quite
surprising: for certain numbers k, there are population protocols that decide
x ≥ k even though an agent does not have enough memory to index even one
bit of k. The proof follows from a theorem by Mayr and Meyer on presentations
of commutative semigroups [48], which can be reformulated in protocol terms
as follows: for every n ≥ 1, there exists a protocol with O(n) states and three
distinguished states start , end , counter such that from an initial configuration
that puts one agent in start and k agents in counter , respectively, it is possible
to reach a configuration putting at least one agent in state end if and only if
k ≥ 22

n

. By adding transitions that allow an agent in state end to attract all
other agents to end , it is easy to obtain a protocol deciding x ≥ 22

n

.
Can we also obtain upper bounds on BB(n) and BBL(n), and so lower bounds

on the state complexity? After some years investigating this question without
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progress, we have recently made a breakthrough [24]. Our first result is that
BBL(n) is bounded by a variant of the Ackermann function. The result is proved
by means of a pumping technique. We first show that if a protocol with n states
answers 0 for two inputs a < b satisfying certain conditions, then it also answers
0 for every input a+λ(b−a), and so the protocol cannot compute any predicate
of the form x ≥ η. Then we find a function F (n) such that if a protocol with
at most n states rejects all inputs with at most F (n) agents, then there are
inputs a < b < F (n) satisfying the conditions. The function is obtained using
results from the theory of controlled sequences, an area of mathematics related
to well-quasi-orders [2,12,37].

An Ackermannian upper bound may seem extremely weak. However, it fol-
lows from recent results in the theory of Petri nets that functions similar to
BBL(n) have an Ackermannian lower bound. To give an example, say that a
protocol weakly decides the predicate x ≥ k if the following holds: for every
initial configuration with at least k agents there exists a run leading to a config-
uration with consensus 1; for every initial configuration with less than k agents,
no such configuration is reachable. Then the largest k such that x ≥ k is weakly
computable with n states is an Ackermannian function of n.

The main result of [24] is a triple exponential bound on BB(n). That is,
leaderless protocols with at most n states can recognize numbers at most triple
exponential in n. The proof technique is again a pumping lemma. The key prop-
erty of leaderless protocols that we use to obtain an elementary bound is that,
loosely speaking, the set of initial configurations of a leaderless protocol is closed
under addition. To understand this, observe that initial configurations of a lead-
erless protocol deciding x ≥ k put k agents in the initial state and 0 agents in
all others. Therefore, the sum of two initial configurations with k1 and k2 agents
is the initial configuration with k1 + k2 agents. This does no longer hold for
protocols with a leader, whose initial configurations also put one agent in the
initial state of the leader; in this case, the sum of two initial configurations with
a leader is a configuration with two leaders.

In an unpublished result obtained together with Jérôme Leroux, we have
improved the bound for leaderless protocols to double exponential; we conjecture
that the optimal upper bound is single exponential, matching the lower bound.
But currently we do not even have a line of attack to obtain an elementary bound
for protocols with a leader.

5 Conclusions and future work

We have surveyed our recent work on the verification of population protocols,
and on their state complexity. This work has produced Peregrine, the first
automatic tool able to verify correctness of protocols for all inputs. In the veri-
fication area, there are many open directions for future work:

– Protocols are often designed parametrically, for example, one gives a con-
struction that yields a protocol deciding ax−by ≥ c for arbitrary coefficients
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a, b, c. Our methods cannot yet prove that the construction is correct for ev-
ery a, b, c. It is easy to show that verifying infinite families of protocols is an
undecidable problem, even for very restricted cases, but it should be possible
to design procedures that perform well in practice.

– As mentioned in the introduction, in the last years families of protocols that
decide one single predicate, but where the number of states increases with
the number of agents, have been intensely investigated, see e.g. [5,27]. Again,
we do not have any verification technique for them.

– The work initiated in [19] on the automatic verification of the expected
runtime of a protocol is still in its infancy.

Our work on the state complexity problem is tightly linked to difficult prob-
lems of the theory of Petri nets. The obvious future direction is closing the
current gaps between the upper and lower bounds for the busy beaver functions
in the leaderless case, and the case with leaders. We consider this a fundamental
problem in the theory of population protocols. Intuitively, it measures quantita-
tively the relation between the microscopic scale of agents and the macroscopic
scale of the predicates they decide.
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