l‘)

Check for
updates

Recent Advances on Reachability

Problems for Valence Systems
(Invited Talk)

Georg Zetzsche™)

Max Planck Institute for Software Systems (MPI-SWS), Saarbriicken, Germany
georg@mpi-sws.org

Abstract. Valence systems are an abstract model of computation that
consists of a finite-state control and some storage mechanism. In contrast
to traditional models, the storage mechanism is not fixed, but given as
a parameter. This allows us to precisely state questions like: For which
storage mechanisms is the reachability problem decidable?

This survey reports on recent results that aim to understand the
impact of the storage mechanism on decidability and complexity of sev-
eral variants of the reachability problem. The considered problems are
configuration reachability, model-checking first-order logic with reach-
ability, and reachability under bounded context switching and scope-
boundedness.

1 Introduction

Reachability problems play a central role in automata theory, particularly in
applications to verification. The most prominent example is safety verification,
where we have some system model and we want to establish algorithmically that
in this model it is not possible to reach certain undesirable configurations.

Therefore, during the last few decades, an extensive research effort has aimed
to understand, for various kinds of abstract system models, whether reachability
is decidable and with which computational complexity. Many of the results in this
space consider abstract system models that consist of some finite-state control
and some storage mechanism. This is because when we want to verify a particular
program, the finite-state control allows us to describe the control flow of the
program, whereas the storage mechanism can be used to store memory contents.

Well-known examples of such models are vector addition systems with states
(VASS) and pushdown systems. In a VASS, the storage mechanism consists of
several N-counters: These assume values in the natural numbers that can be
incremented and decremented (but not tested for zero). In a pushdown sys-
tem, the storage consists of a stack that can be manipulated with push and pop
instructions. In addition to these basic types of storage mechanisms, there exists
a rich variety of extensions both of N-counters (resets [7,11], transfers [11], lossi-
ness [24], just to name a few) and of pushdowns (e.g. higher-order stacks [28§],
additional counters [15,21], etc.).

© The Author(s) 2021
P. C. Bell et al. (Eds.): RP 2021, LNCS 13035, pp. 52-65, 2021.
https://doi.org/10.1007/978-3-030-89716-1_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89716-1_4&domain=pdf
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.1007/978-3-030-89716-1_4

Recent Advances on Reachability Problems 53

A large part of the questions studied in this space are of the following form:
For a concrete storage mechanism, is a certain reachability problem decidable,
and if so, what is the complexity?

This survey presents a line of work that takes a slightly different perspective.
Instead of studying concrete storage mechanisms, can we obtain general insights
into how the structure of the storage mechanism impacts decidability and com-
plexity of reachability problems? To this end, one considers an abstract model
in which the storage mechanism appears as a parameter. Then, one can ask: For
which storage mechanism is a particular problem decidable, tractable, etc.?

A Too General Question. To set the stage, we start with a question that is
likely too general to answer. Suppose we have a storage mechanism whose (finite)
set of instructions is an alphabet X. The set of all sequences of instructions that
bring the storage into an accepting configurations is a language L C X*. We
consider the following decision problem REACH(L):

Given A regular language R C X*.
Question Is RN L non-empty?

For example, suppose Xy = {a1,...,a4,0a1,...,a8q4} and let V4 C X be the set
of all words where for every i: (1) there are just as many a; as a; and (2) in
every prefix, there are at least as many a; as there are a;. Then, REACH(V}) is
just the reachability problem in d-dimensional VASS.

Another example is the language do C Xso, where w € Py if and only if w
can be obtained from the empty word by repeatedly inserting the words a;a;
with ¢ € {1,...,d}. Then, REACH(P,) is just the reachability problem (of the
empty-stack configuration) for pushdown systems with d stack symbols.

Furthermore, suppose Zg C X is the set of words that contain, for each 7,
the same number of a; as @;. Then REACH(Z,) is the reachability problem for
automata with d separate Z-counters, which can assume values in Z and have
to be zero in the end. This corresponds to the model of Z-VASS [13] (which are
also known as blind counter automata [12] and are in most contexts equivalent
to reversal bounded counter machines [16]).

This raises the following question:

Question 1.1. For which languages L is REACH(L) decidable?

Of course, understanding this would be extremely useful for designing
abstract system models for reasoning about programs. Unfortunately, Ques-
tion 1.1 currently appears out of reach. In fact, it even seems unlikely that
there exists an illuminating characterization.

However, there is a more restricted setting that still covers many storage
mechanisms from the literature and, as it turned out during the last few years,
several variants of the reachability problem admit simple characterizations in
terms of decidability and complexity.



54 G. Zetzsche

(a) (b) (c) (@ (@)

Fig.1. Example graphs

Graphs. In this setting, the storage mechanism is defined by an undirected
graph I' = (V| E)) where self-loops are allowed. Hence, V' is a finite set of vertices
and E C {e CV |1< |e| <2} is its set of edges. A vertex v is looped if {v} € E,
otherwise it is unlooped. We say that I is a clique if there is an edge between any
two distinct vertices. A graph is looped (unlooped) if all its vertices are looped
(unlooped). A graph I'y = (Vy, Ep) is an induced subgraph of I't = (Vi, Ey) if Iy
is isomorphic to a restriction of Iy onto some vertex set. Formally, this means
there there is an injective map f: Vj — Vi such that for u,v € Vj, we have
{f(u), f(v)} € Ey if and only if {u,v} € Ey.

To a graph I', we associate the alphabet X = {v,? | v € V}, which we think
of as a set of instructions as above. Intuitively, ¥ will be the inverse instruction
of v, as in the examples above. Moreover, the edges of I" tell us whether the
respective instructions should commute. Thus, we obtain a rewriting relation —»
on the set of words X7j:

rUvs —» T8 for r,s € X} and v € V, and (R1)
reys — ryxs forr,s € Xp and « € {u,a}, y € {v, 0}, {u,v} € E (R2)

In particular, if v has a self-loop ({v} € E), then we have rovs — rvvs — rs.
This allows us to define a language that can play a similar role as the lan-
guages above:

L([’):{wEXI*«|w—*»5},

where € € X7}, is the empty word and » is the reflexive transitive closure of —».

Examples. Let us see how to realize storage mechanisms with graphs. If I" is
one of the graphs from Figs. 1a to lc, then, up to renaming letters, L(I") is V3,
P53, or Z3 from above.

If I' is the graph from Fig. 1d, then L(I") is the language corresponding to
two pushdowns. This is because the vertices on the left together behave like one
pushdown; the same is true for the two vertices on the right. Moreover, I" has an
edge from any left vertex to any right vertex. Hence, these two pushdowns can
be used independently. It is well-known that such systems can simulate Turing
machines, so that the reachability problem is undecidable.

Let I' be the graph from Fig. le. The two vertices on the left together real-
ize a pushdown (with two stack symbols). The two vertices on the right are



Recent Advances on Reachability Problems 55

adjacent and thus behave like two N-counters. Furthermore, as in Fig. 1d, there
are edges everywhere from left to right. Thus, I" realizes a storage consisting of
one pushdown and two N-counters. Thus, we have a two-dimensional pushdown
VASS [21].

Suppose I' is the direct product of graphs I} and I. This means, I is
obtained from the disjoint union of I} and I by adding an edge from every
vertex of I to every vertex of I's. Then I realizes a storage mechanism that
consists of both the storage mechanisms of I'; and I, and they can be used inde-
pendently. An instance of this which will be used frequently is that of adding an
N-counter or adding a Z-counter. This means, we take the direct product with
an unlooped (resp. looped) vertex.

If I' is obtained from [ by adding an isolated vertex v with no self-loop, then
I" behaves like a stack whose entries are configurations of the storage mechanism
of I'y. Hence, with I', we have the instructions of I, which act on the top-most
entry in the stack. Moreover, using v, we can start a new stack entry. With v,
we pop the top-most entry. The latter can only succeed if the top-most entry
(which is a configuration of I}) is final according to I. Thus, we think of the
storage mechanism of I' as obtained from that of Iy by building stacks.

Valence Systems. Given a graph I' = (V| E), we can now define a formal
machine model that uses I" as its storage mechanism. A valence system over I’
is a pair A = (Q,T), where @ is a finite set of states and T C Q x X x Q
is its set of tramsitions. A pre-configuration of A is a pair (¢, w) with ¢ € @
and w € X}. Then (q,w) can reach (¢',w") in one step if there is a transition
(¢, u,q") with v’ = wu. In this case, we write (¢, w) — (g, w’).

The reachability problem for valence systems over I', short REACH(I) is the
following:

Given A valence system A = (Q,T) over I" and states s,t € Q

Question Is there some w € X} such that (s,e) — (t,w) with w S e?

Now clearly, REACH(I") is essentially the same as REACH(L(I)). This allows us
to formulate a more manageable version of Question 1.1:

Question 1.2. For which graphs I' is REACH(I") decidable?

This question is clearly much more restricted in scope than Question 1.1. There-
fore, there is hope that we can understand this class of graphs. And in fact,
while Question 1.2 is still not settled, at least a partial answer is available (see
Theorem 2.1).

Outline. This survey reports on results about variations of Question 1.2.
In other words, we focus on decidability and complexity results concerning
reachability-type problems for valence systems. In Sect.2, we consider Ques-
tion 1.2 itself. In Sect. 3, we turn to the complexity of REACH(I") depending on
I'. In Sect. 4, we look at a harder problem, namely model-checking first-order



56 G. Zetzsche

logic with a reachability predicate for the configuration space of a valence sys-
tem. Finally, in Sects. 5 and 6, we consider underapproximations of the set of all
runs in which reachability is decidable for every I.

Historical Notes. Some remarks on the history of the notion of valence sys-
tems are in order. The origin of this concept is the idea to study finite automata
in which each edge is labeled (in addition to some input) by an element of a
(typically infinite) monoid. This type of model has been studied under various
names by several authors, either defining acceptance by producing the identity
element of the monoid [10,17-19,26] or a prescribed target set [33]. The earliest
(although implicit) use of this is probably the Chomsky-Schiitzenberger theo-
rem, stating that every context-free language can be obtained using a rational
transduction from the word problem of the free group [2]. The term wvalence
automaton (and thus valence system) originates from the theory of regulated
rewriting (see [5] for a general overview), where it was first used for wvalence
grammars [29], in which each grammar rule has an associated monoid element.
Afterwards, the term was also applied to automata (e.g. in [10]).

The graphs I' above, together with their interpretation as storage mecha-
nisms, were introduced in [36] and used there to define monoids, which were
then used in valence automata. For this survey, it turned out that avoiding the
terminology of monoids simplified the exposition.

2 Reachability

We begin with the partial answer that exists for Question 1.2. As we have seen
in the examples above (Fig. le), there are graphs that realize the storage mech-
anism of a pushdown with additional N-counters. Systems with such a storage
are called pushdown VASS (PVASS) in the literature [8,21]. Whether reach-
ability is decidable for these is a long-standing open problem in the area of
infinite-state systems [8,21]. In fact, even for PVASS with a single counter (i.e.
one-dimensional PVASS), the decidability status is open. Thus, determining the
decidability status of REACH for the graph would amount to a solu-
tion to this problem. Aside from this, there are two other graphs that realize a
one-dimensional PVASS: We say that I" is a PVASS-graph if it is isomorphic to
one of the following three graphs:

The fact that the left and the middle graph represent a (one-dimensional) PVASS
can be seen as for Fig.le. For the graph on the right, this follows from the
classical Chomsky-Schiitzenberger theorem [2,18].

We say that the graph I' is PVASS-free if it has no PVASS-graph as an
induced subgraph. Observe that a graph I' is PVASS-free if and only if in the
neighborhood of each unlooped vertex, any two vertices are adjacent.

To state the result, we need a further notion. We define the class of transitive
forests inductively. First, every isolated vertex is a transitive forest. Moreover,



Recent Advances on Reachability Problems 57

if I'7 and Iy are transitive forests, then (i) the disjoint union of Iy and I3 is a

transitive forest and (ii) if I" is the graph obtained by adding one vertex v to I

so that v is adjacent to every vertex in I, then I' is also a transitive forest.
We are now ready to state the partial answer to Question 1.2.

Theorem 2.1 ([38]). Let I' be PVASS-free. Then REACH(I") is decidable if and
only if I' is a transitive forest.

By SC*, we denote the class of PVASS-free transitive forests. Intuitively, the
storage mechanisms in SC* are obtained as follows. In the simplest case, they
are unlooped cliques (hence a set of N-counters). In addition to this, we can
build stacks and add Z-counters. In this notation, “+” stands for the two types
of counters: We start with N-counters (4), but after building stacks once, we
can then only add Z-counters (—).

In contrast, let SCT consist of all graphs that are transitive forests and con-
tain a PVASS-graph. One can show that if I" is not a transitive forest, then
REACH(I") is undecidable [38]. Thus, SC* is the class of graphs for which
decidability remains open. Intuitively, the corresponding storage mechanisms are
obtained by starting with a set of N-counters and then alternating (1) building
stacks and (2) adding N-counters.

Open Problem 2.2. Is REACH(I") decidable for every I' in SCT 2

Of course, the simplest case of Open Problem 2.2 is the reachability problem in
one-dimensional PVASS.

3 Complexity

Let us now turn to the complexity of REACH(I"). What we know so far is confined
to the class SC™, which consists of all graphs in SCT that do not have s— as
an induced subgraph. Hence, intuitively, the corresponding storage mechanisms
are obtained by starting from a pushdown and then alternating Stl) adding Z-
counters and (2) building stacks. (Thus, they are the same as SC™, but all the
counters are Z-counters, which explains the “—”). This is an important subclass,
because according to a characterization in [1], these are exactly those graphs for
which valence automata (i.e. valence systems that can read input and accept
languages) have semilinear Parikh images.
Among the graphs in SC™, the complexity landscape is understood.

Theorem 3.1 ([14]). Let I" be a graph in SC™. Then REACH(I") is

1. NL-complete if I' is a looped clique.
2. P-complete if I is a disjoint union of at least two cliques, and
3. NP-complete otherwise.

Strictly speaking, the proof in [14] is only about the case where I' has a self-
loop on every vertex (in this case, REACH(I") is the rational subset membership
problem for graph groups, see also [22]). However, the proof works essentially the



58 G. Zetzsche

same for all of SC™. Moreover, it follows from [14] that if the graph I" is part of
the input, then reachability is NEXP-complete. In order to show these results, the
paper [14] introduces an extension of existential Presburger arithmetic inspired
by [30] and determines its complexity.

However, the complexity of reachability for the graphs in SC* is far from
being understood.

Open Problem 3.2. Describe the complexity landscape of REACH for the
graphs in SC*.

Until a few years ago, Open Problem 3.2 seemed out of reach. However, given
the recent stunning resolution of the complexity of reachability in VASS [3,4,20]
and the fact that decidability for SC* is shown in [38] using a reduction to
reachability in VASS with nested zero tests, there is hope to obtain new insights
into Open Problem 3.2.

4 First-Order Logic with Reachability

We now consider a decision problem that is computationally significantly harder
than traditional reachability. Instead of asking whether a particular configura-
tion can reach another, we want to decide a given first-order sentence that can
mention configurations and express reachability (either in a single step or in a
finite run).

Configuration Graphs of Valence Systems. Let us make this precise. With
a valence system A = (Q,T) over a graph I' = (V| E) we define its configuration
space as follows. Its universe consists of the configurations of A, which we define
next. It is not appropriate to define pre-configurations (recall that those are pairs
(¢, w) € @xX7}.) as elements of the configuration space. This is because, in all the
examples mentioned above, the configurations of the realized storage mechanism
correspond rather to certain equivalence classes of words in X7}.. For example, if
I' is the graph in Fig. 1a, the set of configurations should be @ x N x N x N and if
I’ is the graph in Fig. 1b with vertices a, b, ¢, then the configuration graph should
be @ x {a,b,c}*. In general, the equivalence relation is given by the rewriting
relation —». We define the equivalence relation = to be the reflexive, symmetric,
and transitive clogure of —. It is not difficult to show that then we have w = ¢
if and only if w — ¢ (this is because — is terminating and confluent, see [37,
Equation (8.2)]). The equivalence class of w € X7} is denoted [w]. We shall define
configurations of A as certain equivalence classes with respect to =.

Recall that in a valence system, we consider a run arriving in (g, w) to be
valid if w —» e. Therefore, we define an equivalence class [u]= is admissible (for
configurations) if there is some v € X} . with uv Se (equivalently, [uv] = [¢]).
This leads to the following definition.

A configuration of A is a pair (¢, [w]) with ¢ € Q and w € X7 such that w is
admissible. Observe that in all the examples given above, this definition yields
a notion of configuration that fits with the realized storage mechanism.



Recent Advances on Reachability Problems 59

On configurations, it is now natural to define a step relation: Whenever we
have (¢, w) — (¢’,w’), then we also have (g, [w]) — (¢, [w']).

The Logical Structure. With the valence system A, we associate the following
logical structure S(A). Its universe is the set of configurations of .A. Moreover,
it has the following predicates:

1. For each configuration, it has a constant.

2. For each ¢ € @, there is a unary predicate state,(-), which is true if the
finite-state component of a configuration is q.

3. A binary one-step relation step(-, -), which states that one configuration can
reach the other in exactly one step.

4. A binary reachability relation reach(:,-), with expresses reachability with an
arbitrary run.

We are now interested in the model checking problem of first-order sentences
over the structure S(A):

Given A first-order formula ¢ over the above signature.
Question Does ¢ hold in §(A)?

Since this problem consists in deciding first-order sentences that involve reach-
ability, we call this problem briefly FO[R] for I'.

In order to state the result on decidability of FO[R], we need some terminology
on graphs. We call a graph an N2-triangle if it is isomorphic to one of the
following two graphs:

VAN A\

In other words, the graph realizes either (1) three N-counters or (2) two N-
counters and one Z-counter. We say that I' is N2-triangle-free if it does not
contain an N2-triangle as an induced subgraph. We are now ready to state the
result about FO[R].

Theorem 4.1 ([6]). Let I" be a graph. Then FO[R] is decidable for I' if and
only if I' is a disjoint union of N2-triangle-free cliques.

5 Underapproximation I: Bounded Context Switching

A well-known example of a storage mechanism for which reachability is unde-
cidable is a multipushdown: Two or more stacks that can be used independently.
Here, undecidability is unfortunate, because this problem is equivalent to decid-
ing safety properties of multithreaded recursive programs with shared mem-
ory [32]. However, it turned out that many bugs in such programs already man-
ifest in runs where the program switches between its threads a small number of



60 G. Zetzsche

times [23,27]. Checking whether such runs exist is called context-bounded model-
checking [31]. On the side of multipushdown systems, this corresponds to a small
number of switches between its stacks. Moreover, given a small bound k£ > 0, it
is NP-complete to decide if a multipushdown system has a run reaching a given
configuration with at most &k switches between its stacks [9,31].

Given the sharp drop in complexity from undecidable to NP, it would be
useful to have a more abstract notion of bounded context switching that also
applies to other storage mechanisms. Such a concept was developed in [25].

Contexts. To define this concept, we begin with the notion of contexts. In the
case of a multipushdown system, a context is a segment of the run in which only
one stack is used. Observe that a multipushdown consisting of r stacks, with s
stack letters each, corresponds to a graph MP, ¢, which is a direct product of
r separate unlooped anticliques, each having s vertices. Here, an anticlique is a
graph in which no two distinct vertices have an edge. Thus, if I' = MP, ;, then
a context corresponds to a word over X where the occurring vertices form an
anti-clique. This motivates the following definition.

Let I" be any graph and w € X7.. Then the factorization of w into its contexts
is obtained as follows. Take the maximal prefix of w whose set of vertices forms
an anticlique. This prefix is the first (left-most) context in the factorization.
Then, recursively factorize the remaining suffix of w. By |w|, we denote the
number of contexts in its context factorization.

Context-Bounded Reachability. Given the notion of contexts, we can now
define the problem of context-bounded reachability for valence systems over I,
which we denote by BCREACH(I"):

Given A valence system A = (Q,T), s,t € @, and k > 0 (encoded in unary)
Question Is there a w € X} such that (s, &) = (t,w) with w S eand lw| < k?

It turns out that this notion of context bounding yields decidability, and even
membership in NP, for every graph I'.

Theorem 5.1 ([25]). For every graph I', BCREACH(I) is in NP. If I" is a
transitive forest, then BCREACH(I") is in P.

However, the exact set of graphs for which BCREACH is in P remains unclear:

Open Problem 5.2. Describe the complexity landscape of BCREACH. In par-
ticular, what is the complexity of BCREACH for the graph ?

As mentioned in [25], if one could show NP-hardness for the graph
and every version of it obtained by placing self-loops, then this
would yield the complete landscape: This would imply that BCREACH(I") is in
P for transitive forests and NP-complete otherwise.




Recent Advances on Reachability Problems 61

6 Underapproximation II: Scope Boundedness

Aside from bounding the number of contexts, there exist a number of other
underapproximations of the set of runs of multipushdown systems that lead to
decidable reachability. One such underapproximation that covers a relatively
large portion of the set of all runs is obtained by scope-bounding [35]. The idea
is, instead of bounding the number of all contexts, we just bound the number
of contexts between each push instruction and its matching pop. A run of a
multipushdown system is said to be k-scoped if every letter pushed onto some
stack ¢ will be popped within at most k visits to the same stack ¢. Thus a run with
at most k contexts is also k-scoped. However, the price of this higher coverage
is that the complexity of k-scoped reachability goes up to PSPACE [35].

As in the case of bounded context switching, this motivates the study of
analogues of scope boundedness for more general storage mechanisms. In [34],
such an analogue was found.

Weak Dependence Classes. In the notion of scope-boundedness, we first need
an analogue of two contexts “belonging to the same stack”. This is achieved by
the notion of weak dependency. Observe that in the case of multipushdowns, i.e.
graphs MP,. 5, two instructions belong to the same pushdown if they belong to
the same anticlique. However, “the same anticlique” may not be well-defined in
a general graph: It is possible that for vertices u, v, w, there is an edge from w
to v and from v to w, but no edge from u to w. In that case, do v and w to the
same anticlique?

Instead, we generalize this in a different way. Note that two vertices in MP, 4
belong to the same stack if and only if there is a path between them in the
complement graph of MP, ;. This also makes sense in the general case: We say
that vertices u,v of I' are weakly dependent if there is a path between u and
v in the complement of I'. Here, the complement of I' is the graph with the
same set of vertices, but the opposite set of edges. Clearly, weak dependency is
an equivalence relation. Moreover, each context in a word w € X7 belongs to a
well-defined weak dependence class.

Greedy Reductions. The next step is to find a generalization of “matching
push and pop instructions”. It is natural to define this based on which letters

cancel in a reduction w —» e. However, to avoid some corner cases in the algo-
rithms, we define this with respect to a particular type of reduction. Instead of
the rules in (R1) and (R2), consider the slightly different relation defined by

ruvs — rS$ for r;s € Xj and v € V, and (R1)
rOUS — TS for r;s € X and v € V,{v} € E, and (R2")
reys — ryzs forr,s € X; and z € {u,a}, y € {v,0}, {u,v} € £ (R3)

Then of course, we have w < ¢ if and only if w 56 A word w € X7
is @rreducible if none of the rules (R1) and (R2) (equivalently, none of the rules



62 G. Zetzsche

(R1") to (R3")) are applicable to w. A reduction of w is a sequence of applications
of (R1') to (R3") to obtain e. We call this reduction greedy if it begins with a
sequence of applications of (R1") and (R2’) that turn each each context of w
into an irreducible word. Since the relation —» and thus — is confluent, we have

w —» ¢ if and only if w admits a greedy reduction.

Matching Relation. A reduction 7: w e naturally defines a matching
relation between positions of w: Two positions are related if they are cancelled
using (R3") (after possibly being transported using (R1") and (R2')). This binary
relation on the set of positions of w, induced by 7, is called the matching relation.

Scope Boundedness. We are now ready to formulate the notion of scope
boundedness. We say that w € X} is k-scoped if there exists a greedy reduction

71w <> ¢ such that: for any two matched positions 7 and j, there are at most
k — 1 contexts strictly between the contexts of ¢ and j that belong to the same
weak dependence class as ¢ and j. It is an easy exercise to observe that in the
special case I' = MP,. 5, this notion coincides exactly with the original notion of
scope boundedness.

This leads to the problem of bounded scope reachability for valence systems
over I', briefly BSREACH(I'):

Given A valence system A = (Q,T), s,t € @, and k > 0 (encoded in unary)

Question Is there a k-scoped w € X} with (s,¢) = (t,w) and w S e?

We will also consider the problem BSREACH(I"), where k is not part of the
input, but fixed.

This notion of scope-boundedness does indeed yield decidable reachability
for every graph. Moreover, in contrast to the case of bounded contexts, the
complexity landscape is well understood.

Theorem 6.1 ([34]). Let I" be a graph. Then BSREACH(I) is

1. NL-complete if I' has at most one vertez,
2. P-complete if I' is an anti-clique with > 2 vertices,
3. PSPACE-complete otherwise.

Note that the complexity of BSREACH is always PSPACE, except for those
cases where scope-bounded reachability is merely classical reachability in one-
counter machines (namely, the first case above) or in pushdown automata (the
second case). Therefore, the paper [34] also studies the case of fixed k.

Theorem 6.2 ([34]). Let I" be a graph and k > 1. Then BSREACH(I") is

1. NL-complete if I is a clique, and
2. P-complete otherwise.



Recent Advances on Reachability Problems 63

Since the complexity is well-understood for individual graphs, the paper [34] also
studies the case where I" is part of the input, and drawn from a class of graphs.
It then gives partial results on the complexity landscape in terms of the possible
graph classes. In this setting, the are many cases where the complexity is not
understood yet. We refer to [34] for details.

References

10.

11.

12.

13.

Buckheister, P., Zetzsche, G.: Semilinearity and context-freeness of languages
accepted by valence automata. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 231-242. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2_22

Chomsky, N., Schiitzenberger, M.P.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems, pp. 118-161. North-Holland,
Amsterdam (1963). https://doi.org/10.1016/S0049-237X(08)72023-8

Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachability
problem for Petri nets is not elementary. In: Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing (STOC 2019), pp. 24-33. ACM
(2019). https://doi.org/10.1145/3313276.3316369

Czerwinski, W., Orlikowski, L.: Reachability in vector addition systems is
Ackermann-complete. CoRR abs/2104.13866 (2021). https://arxiv.org/abs/2104.
13866

Dassow, J., Paun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Heidelberg (1989)

D’Osualdo, E., Meyer, R., Zetzsche, G.: First-order logic with reachability for
infinite-state systems. In: Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS 2016), pp. 457-466. ACM (2016). https://
doi.org/10.1145/2933575.2934552

Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and
undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 103-115. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055044

Englert, M., et al.: A lower bound for the coverability problem in acyclic pushdown
VAS. Inf. Process. Lett. 167, 106079 (2021). https://doi.org/10.1016/j.ipl.2020.
106079

Esparza, J., Ganty, P., Poch, T.: Pattern-based verification for multithreaded pro-
grams. ACM ToPLaS 36(3), 9:1-9:29 (2014)

Fernau, H., Stiebe, R.: Sequential grammars and automata with valences. Theoret.
Comput. Sci. 276, 377-405 (2002). https://doi.org/10.1016/S0304-3975(01)00282-
1

Finkel, A., Sutre, G.: Decidability of reachability problems for classes of two coun-
ters automata. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp.
346-357. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3_29
Greibach, S.A.: Remarks on blind and partially blind one-way multicounter
machines. Theor. Comput. Sci. 7, 311-324 (1978). https://doi.org/10.1016,/0304-
3975(78)90020-8

Haase, C., Halfon, S.: Integer vector addition systems with states. In: Ouaknine,
J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 112-124. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11439-2_9


https://doi.org/10.1007/978-3-642-40313-2_22
https://doi.org/10.1007/978-3-642-40313-2_22
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1145/3313276.3316369
https://arxiv.org/abs/2104.13866
https://arxiv.org/abs/2104.13866
https://doi.org/10.1145/2933575.2934552
https://doi.org/10.1145/2933575.2934552
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1016/S0304-3975(01)00282-1
https://doi.org/10.1016/S0304-3975(01)00282-1
https://doi.org/10.1007/3-540-46541-3_29
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1007/978-3-319-11439-2_9

64

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

G. Zetzsche

Haase, C., Zetzsche, G.: Presburger arithmetic with stars, rational subsets of graph
groups, and nested zero tests. In: Proceeding of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2019), pp. 1-14. IEEE (2019).
https://doi.org/10.1109/LI1CS.2019.8785850

Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743-759.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_60
Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116-133 (1978). https://doi.org/10.1145/322047.322058
Ibarra, O.H., Sahni, S.K., Kim, C.E.: Finite automata with multiplication.
Theoret. Comput. Sci. 2(3), 271-294 (1976). https://doi.org/10.1016/0304-
3975(76)90081-5

Kambites, M.: Formal languages and groups as memory. Comm. Algebra 37, 193
208 (2009). https://doi.org/10.1080/00927870802243580

Kambites, M., Silva, P.V., Steinberg, B.: On the rational subset problem for groups.
J. Algebra 309, 622-639 (2007). https://doi.org/10.1016/j.jalgebra.2006.05.020
Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: Proceeding of the 34th Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS 2019), pp. 1-13. IEEE (2019). https://
doi.org/10.1109/LICS.2019.8785796

Leroux, J., Sutre, G., Totzke, P.: On the coverability problem for pushdown vector
addition systems in one dimension. In: Halldérsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 324-336. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_26

Lohrey, M., Steinberg, B.: The submonoid and rational subset membership prob-
lems for graph groups. J. Algebra 320(2), 728-755 (2008)

Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: A comprehensive
study on real world concurrency bug characteristics. In: Proceedings of the 13th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2008), pp. 329-339. ACM (2008). https://doi.
org/10.1145/1346281.1346323

Mayr, R.: Undecidable problems in unreliable computations. Theoret. Comput.
Sci. 297(1-3), 337-354 (2003). https://doi.org/10.1016/S0304-3975(02)00646- 1
Meyer, R., Muskalla, S., Zetzsche, G.: Bounded context switching for valence sys-
tems. In: Proceeding of the 29th International Conference on Concurrency Theory
(CONCUR 2018). LIPIcs, vol. 118, pp. 12:1-12:18. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2018). https://doi.org/10.4230/LIPIcs. CONCUR.2018.12
Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discret. Appl.
Math. 108(3), 287-300 (2001). https://doi.org/10.1016/S0166-218X(00)00200-6
Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2007), pp. 446-455.
ACM (2007). https://doi.org/10.1145/1273442.1250785

Ong, L.: Higher-order model checking: an overview. In: Proceeding of the 30th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2015), pp.
1-15. IEEE Computer Society (2015). https://doi.org/10.1109/LICS.2015.9
Paun, G.: A new generative device: Valence grammars. Rev. Roumaine Math.
Pures Appl. 25, 911-924 (1980)

Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 268-280. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-70545-1_25


https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1145/322047.322058
https://doi.org/10.1016/0304-3975(76)90081-5
https://doi.org/10.1016/0304-3975(76)90081-5
https://doi.org/10.1080/00927870802243580
https://doi.org/10.1016/j.jalgebra.2006.05.020
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1016/S0304-3975(02)00646-1
https://doi.org/10.4230/LIPIcs.CONCUR.2018.12
https://doi.org/10.1016/S0166-218X(00)00200-6
https://doi.org/10.1145/1273442.1250785
https://doi.org/10.1109/LICS.2015.9
https://doi.org/10.1007/978-3-540-70545-1_25
https://doi.org/10.1007/978-3-540-70545-1_25

31.

32.

33.

34.

35.

36.

37.

38.

Recent Advances on Reachability Problems 65

Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93-107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_7
Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Transactions on Programming languages and Systems (TOPLAS)
22(2), 416-430 (2000). https://doi.org/10.1145/349214.349241

Red’ko, V., Lisovik, L.: Regular events in semigroups. Probl. Cybern. 37, 155-184
(1980). in Russian

Shetty, A.K., Krishna, S.N., Zetzsche, G.: Scope-bounded reachability in valence
systems. In: Proceeding of the 32nd International Conference on Concurrency The-
ory (CONCUR 2021). LIPIcs, vol. 203, pp. 29:1-29:19. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2021). https://doi.org/10.4230/LIPIcs. CONCUR.2021.29
Torre, S.L., Napoli, M., Parlato, G.: Reachability of scope-bounded multistack
pushdown systems. Inf. Comput. 275, 104588 (2020). https://doi.org/10.1016/].
ic.2020.104588

Zetzsche, G.: Silent transitions in automata with storage. In: Fomin, F.V.
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
434-445. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2.39

Zetzsche, G.: Monoids as Storage Mechanisms. Ph.D. Thesis, Technische Univer-
sitdt Kaiserslautern (2016). https://kluedo.ub.uni-kl.de/frontdoor/index/index/
docld/4400

Zetzsche, G.: The emptiness problem for valence automata over graph monoids.
Inf. Comput. 277, 104583 (2021). https://doi.org/10.1016/j.ic.2020.104583

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.


https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1145/349214.349241
https://doi.org/10.4230/LIPIcs.CONCUR.2021.29
https://doi.org/10.1016/j.ic.2020.104588
https://doi.org/10.1016/j.ic.2020.104588
https://doi.org/10.1007/978-3-642-39212-2_39
https://doi.org/10.1007/978-3-642-39212-2_39
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4400
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4400
https://doi.org/10.1016/j.ic.2020.104583
http://creativecommons.org/licenses/by/4.0/

	Recent Advances on Reachability Problems for Valence Systems (Invited Talk)
	1 Introduction
	2 Reachability
	3 Complexity
	4 First-Order Logic with Reachability
	5 Underapproximation I: Bounded Context Switching
	6 Underapproximation II: Scope Boundedness
	References




