Skip to main content

Improvements in Unfolding of Colored Petri Nets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13035))

Abstract

Colored Petri nets offer a compact and user friendly representation of the traditional P/T nets and colored nets with finite color ranges can be unfolded into the underlying P/T nets, however, at the expense of an exponential explosion in size. We present two novel techniques based on static analyses in order to reduce the size of unfolded colored nets. The first method identifies colors that behave equivalently and groups them into equivalence classes, potentially reducing the number of used colors. The second method overapproximates the sets of colors that can appear in places and excludes colors that can never be present in a given place. Both methods are complementary and the combined approach allows us to significantly reduce the size of multiple colored Petri nets from the Model Checking Contest benchmark. We compare the performance of our unfolder with state-of-the-art techniques implemented in the tools MCC, Spike and ITS-Tools, and while our approach remains competitive w.r.t. unfolding time, it outperforms the existing approaches both in the size of unfolded nets as well as in the number of answered model checking queries from the 2020 Model Checking Contest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA - construction of abstract state spaces for Petri nets and time Petri nets. Int. J. Prod. Res. 42, 2741–2756 (2004). https://doi.org/10.1080/00207540412331312688

    Article  MATH  Google Scholar 

  2. Bilgram, A., Jensen, P.G., Pedersen, T., Srba, J., Taankvist, P.H.: Repeatability Package for: Improvements in Unfolding of Colored Petri Nets (2021). https://doi.org/10.5281/zenodo.5255603

  3. Chodak, J., Heiner, M.: Spike – reproducible simulation experiments with configuration file branching. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 315–321. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_19

    Chapter  Google Scholar 

  4. Christensen, N., Glavind, M., Schmid, S., Srba, J.: Latte: improving the latency of transiently consistent network update schedules. SIGMETRICS Perform. Eval. Rev. 48(3), 14–26 (2021). https://doi.org/10.1145/3453953.3453957

    Article  Google Scholar 

  5. Ciaghi, A., Weldemariam, K., Villafiorita, A., Kessler, F.: Law modeling with ontological support and BPMN: a case study. In: The Second International Conference on Technical and Legal Aspects of the e-Society, CYBERLAWS 2011, pp. 29–34 (2011)

    Google Scholar 

  6. Dal Zilio, S.: MCC: a tool for unfolding colored Petri nets in PNML format. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 426–435. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_23

    Chapter  Google Scholar 

  7. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.: TAPAAL 2.0: integrated development environment for timed-arc Petri nets. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_36

    Chapter  MATH  Google Scholar 

  8. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30599-8_9

    Chapter  Google Scholar 

  9. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-4_22

    Chapter  Google Scholar 

  10. Heiner, M., Rohr, C., Schwarick, M.: MARCIE – model checking and reachability analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_21

    Chapter  Google Scholar 

  11. Hillah, L.M.: A hot drink vending machine (2021). https://mcc.lip6.fr/pdf/DrinkVendingMachine-form.pdf

  12. Hillah, L.M.: Family Reunion (2021). https://mcc.lip6.fr/pdf/FamilyReunion-form.pdf

  13. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability analysis of P/T nets. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 307–318. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4_16

    Chapter  Google Scholar 

  14. Jensen, K.: Coloured Petri nets and the invariant-method. Theor. Comput. Sci. 14, 317–336 (1981). https://doi.org/10.1016/0304-3975(81)90049-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1, 2nd edn. Springer, Heidelberg (1996). https://www.springer.com/gp/book/9783540609438

  16. Jensen, K., Kristensen, L.M.: Coloured Petri Nets, Modelling and Validation of Concurrent Systems, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

  17. Klostergaard, A.H.: Efficient Unfolding and Approximation of Colored Petri Nets with Inhibitor Arcs. Master’s thesis, Department of Computer Science, Aalborg University (2018). https://projekter.aau.dk/projekter/files/281079031/main.pdf

  18. Kordon, F., et al.: Complete Results for the 2020 Edition of the Model Checking Contest (2020). http://mcc.lip6.fr/2020/results.php

  19. Liu, F., Heiner, M., Yang, M.: An efficient method for unfolding colored Petri nets. In: Proceedings of the 2012 Winter Simulation Conference (WSC), pp. 1–12 (2012). https://doi.org/10.1109/WSC.2012.6465203

  20. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989). https://doi.org/10.1109/5.24143

    Article  Google Scholar 

  21. Muschevici, R., Proença, J., Clarke, D.: Modular modelling of software product lines with feature nets. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 318–333. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6_22

    Chapter  MATH  Google Scholar 

  22. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Institut für instrumentelle Mathematik, Bonn (1962)

    Google Scholar 

  23. Schwarick, M., Rohr, C., Liu, F., Assaf, G., Chodak, J., Heiner, M.: Efficient unfolding of coloured Petri nets using interval decision diagrams. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 324–344. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_16

    Chapter  Google Scholar 

  24. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_20

    Chapter  Google Scholar 

  25. Thierry-Mieg, Y.: Personal Correspondence with Y. Thierry-Mieg (2021)

    Google Scholar 

  26. Thierry-Mieg, Y., Dutheillet, C., Mounier, I.: Automatic symmetry detection in well-formed nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 82–101. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1_9

    Chapter  MATH  Google Scholar 

  27. Wolf, K.: Petri net model checking with LoLA 2. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_18

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank Yann Thierry-Mieg for his answers and modifications to the ITS-Tools, Silvano Dal Zilio for his answers/additions concerning the MCC unfolder and Monika Heiner and Christian Rohr for their answers concerning the tools Snoopie, Marcie and Spike.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Srba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilgram, A., Jensen, P.G., Pedersen, T., Srba, J., Taankvist, P.H. (2021). Improvements in Unfolding of Colored Petri Nets. In: Bell, P.C., Totzke, P., Potapov, I. (eds) Reachability Problems. RP 2021. Lecture Notes in Computer Science(), vol 13035. Springer, Cham. https://doi.org/10.1007/978-3-030-89716-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89716-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89715-4

  • Online ISBN: 978-3-030-89716-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics