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Abstract. In this article we introduce a solution method for a spe-
cial class of nonlinear initial-value problems using set-based propagation
techniques. The novelty of the approach is that we employ a particular
embedding (Carleman linearization) to leverage recent advances of high-
dimensional reachability solvers for linear ordinary differential equations
based on the support function. Using a global error bound for the Car-
leman linearization abstraction, we are able to describe the full set of
behaviors of the system for sets of initial conditions and in dense time.
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1 Introduction

We consider the problem of solving a system of nonlinear ordinary differential
equations (ODEs) for a set of initial states. This is better known as reachability
analysis. While for linear systems there exist very efficient algorithms [20,28,1,8],
reachability analysis for nonlinear systems remains a challenging problem.

Traditional approaches [2] include those based on Taylor models [12], sim-
ulation [14], or hybridization [29]. In this paper we present a new approach to
this problem by transforming the nonlinear system into an infinite-dimensional
linear system, which we then truncate. This truncated model approximates the
original system.

More specifically, our approach is based on Carleman linearization, which is
an established method in mathematical nonlinear control but differs from the
above-mentioned approaches. The Taylor-model approach truncates an infinite
Taylor polynomial, while we truncate a linear system. Hybridization approaches
linearize smalls regions in the state space, while we linearize the whole system.

To achieve good accuracy, the truncation results in a high-dimensional linear
system. To solve such systems, we leverage efficient reachability solvers based on
the support function that have recently been developed.

? The first author is partly supported by Agencia Nacional de Investigación e Inno-
vación (ANII), Uruguay.
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Our approach can be used to obtain approximate solutions very quickly, but
in an unsound way. Alternatively, using an error estimate, one can obtain a sound
overapproximation. Under certain conditions (essentially weak nonlinearity), the
error estimate converges, resulting in a precise approximation.

Contributions. This paper makes the following contributions:

– We revisit Carleman linearization and explain how it can be used as a fast
but unsound way to propagate sets through a nonlinear dynamical system.

– We extend the approach to a sound and practical reachability algorithm for
dissipative nonlinear dynamical systems.

– We evaluate the algorithm in two case studies and discuss its strengths.

Related work. The original idea by Carleman [11,26] did not receive much atten-
tion for several decades. Steeb showed that, while the nonlinear system and its
infinite-dimensional embedding share the same analytic solutions, the embed-
ding may admit additional non-analytic solutions [38]. Carleman linearization
has since been applied successfully in control theory [18,13,32,35] and physics
and chemistry [17,22].

Several works provide bounds on the approximation error of the truncated
linearized system [15,30]. In this paper we use the error bound derived in [30].

An approach that is related to ours transforms a nonlinear system into a
linear or polynomial system via a “change of bases,” using polynomials instead
of Kronecker powers, and derives conditions under which this transformation
preserves invariants [36].

Outline. The next section recalls the mathematical basis used in this paper.
Section 3 introduces the classic Carleman linearization. In Section 4 we describe
how to propagate sets using Carleman linearization. In Section 5 we extend this
approach to a reachability algorithm for dissipative nonlinear dynamical systems.
We evaluate the algorithm in Section 6 and conclude in Section 7.

2 Preliminaries

In this section we summarize the mathematical prerequisites to make this paper
self-contained. For a detailed derivation of the Carleman linearization procedure
we refer to [15].

2.1 Vectors, norms, and sets

Let N = {1, 2, . . .} be the set of positive integers and R the set of real numbers,
and for any N ∈ N we let [N ] := {1, 2, . . . , N}. n-dimensional vectors x ∈ Rn are
understood as column vectors with components xi ∈ R, i ∈ [n]. Transposition is
written xT . For any x ∈ Rn and p ∈ R≥1∪{∞}, ‖x‖p denotes the vector p-norm
of x, with notable special cases p = 2 (Euclidean norm) and p =∞ (supremum
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norm). If A = (aij) ∈ Rm×n is a matrix, ‖A‖p denotes the matrix norm induced
by the vector p-norm, with notable special cases p = 2 (spectral norm: the largest
singular value) and p =∞ (supremum norm: the maximum absolute row sum).
We may abbreviate ‖·‖ for ‖·‖∞. See [23] for precise definitions of these concepts.

For a compact, i.e. bounded and closed set X ⊆ Rn, ‖X‖p denotes the max-
imum of ‖x‖p over all x ∈ X . If X is polytopic (i.e. admits a representation
as the finite intersection of half-spaces), its norm can be computed by a finite
number of vector p-norm evaluations. Indeed, the map x→ ‖x‖p is convex and
the maximum of a convex function over a polytope is attained at one of its ver-
tices. However, computing the vertex representation of a polytope initially given
by its half-space representation can be computationally expensive in dimensions
higher than two (see [24]). A simpler rule applies if X is hyperrectangular (i.e.,
can be represented as an axis-aligned box with center c ∈ Rn and radius vector
r ∈ Rn). Then ‖X‖p = ‖c + Dr‖p where D = (Dij) ∈ Rn×n is diagonal with
matrix elements Dii = 1 if ci ≥ 0 and Dii = −1 otherwise, i ∈ [N ]. We write
Bnr for the n-dimensional infinity-norm ball with radius r centered in the origin.
The projection of a set X to the first k dimensions is denoted by π1:k(X ).

2.2 Support function

A standard approach to operate with compact and convex sets in Rn is to use
the support function [27]. The support function of X ⊆ Rn along direction
d ∈ Rn, ρ(d,X ), is the maximum of dTx over all x ∈ X . In particular, if X is a
polytope in half-space representation, its support function can be computed by
solving a linear program (LP), and for certain classes of sets analytic formulas
exist, which can be numerically evaluated in an efficient way. Such cases include
hyperrectangular sets. Since the support function distributes over Minkowski
sums, i.e. ρ(d,X ⊕Y) = ρ(d,X )+ρ(d,Y) for any pair of sets X and Y, and since
it holds that ρ(d,MX ) = ρ(MT d,X ) for any matrix M ∈ Rn×n, the support
function has been successfully applied to solve linear set-based recurrences of the
form Xk+1 = MXk ⊕Yk, either explicitly or implicitly by solving the recurrence
only along a predefined number of directions [28,16,8]. It is well-known that such
recurrences are prevalent in reachability analysis of linear initial-value problems
(IVPs), or nonlinear ones after some form of conservative linearization; see for
example [2] and references therein.

2.3 Kronecker product

For any pair of vectors x ∈ Rn, y ∈ Rm, their Kronecker product is w = x ⊗
y = (x1y1, . . . , x1ym, x2y1, . . . , xnym)T , and the dimension is dim(w) = mn.
This product is not commutative. For matrices the definition is analogous: if
A ∈ Rm×n and B ∈ Rp×q, then A⊗B ∈ Rmp×nq and

A⊗B :=

a11B . . . a1nB
...

...
am1B . . . amnB

 .
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The Kronecker power x⊗i of x ∈ Rn is a convenient notation to express all
possible products of elements of a vector up to a given order:

x⊗i := x⊗ · · · ⊗ x︸ ︷︷ ︸
i times

, x ∈ Rn.

Note that dim(x⊗i) = ni, and each component of x⊗i is of the form xω1
1 xω2

2 · · ·xωnn
for some multi-index ω ∈ Nn, ‖ω‖1 = i. For example, if n = 2, the first two Kro-
necker powers are x⊗1 = x = (x1, x2)T and x⊗2 = x⊗ x = (x21, x1x2, x2x1, x

2
2)T .

Further properties of Kronecker products can be found in [41] and [39].

3 Carleman linearization

In this section we recall the classic Carleman linearization approach [11,26].

Polynomial differential equations are an important class of nonlinear systems
x′(t) = f(x(t)), f : Rn → Rn, such that the coordinate functions fi : Rn → R are
multivariate polynomials. Many systems can be rewritten as polynomial vector
fields by introducing auxiliary variables, and any polynomial system is formally
equivalent to a second-order system, possibly in higher dimensions – for a proof
of this statement and an algorithm to compute such transformation see [15]. We
can thus focus on quadratic ODEs without loss of generality. Consider the IVP
for an n-dimensional quadratic ODE,

dx(t)

dt
= F1x+ F2x

⊗2, (1)

with initial condition x(0) ∈ Rn. Each xi(t), i ∈ [n], is a function of t over
the interval [0, T ] where T is the time horizon. We assume that the matrices

F1 ∈ Rn×n and F2 ∈ Rn×n2

are independent of t. Intuitively, F1 (resp. F2) is
associated with the linear (resp. nonlinear) behavior of the dynamical system;
thus ‖F2‖2/‖F1‖2 being small corresponds to weak nonlinearity – a concept we
will use in a later section.

The Carleman linearization (or Carleman embedding) procedure begins by
introducing a sequence of auxiliary variables ŷj := x⊗j , j ∈ N. Differentiating
such variables with respect to time, and repeatedly substituting (1) into the
derivatives of each ŷj gives a formal equivalence with an infinite-dimensional
linear system of ODEs [26]. Truncation to order N leads to a finite linear IVP
in the lifted variables ŷ := (ŷ1, ŷ2, . . . , ŷN )T , namely

dŷ

dt
= Aŷ, ŷ(0) = ŷ0, (2)

with initial condition ŷ0 = (x0, x
⊗2
0 , . . . , x⊗N0 )T and coefficients matrix A, which

has the bi-diagonal block structure
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A =



A1
1 A

1
2 0 0 · · · 0

0 A2
2 A

2
3 0 · · · 0

0 0 A3
3 A

3
4 0

...
...

...
...

. . .
. . . 0

0 0 · · · 0 AN−1N−1 A
N−1
N

0 0 · · · 0 0 ANN


, (3)

where the Aii and Aii+1, which we call transfer matrices, have dimensions ni×ni
and ni × ni+1 respectively, and are defined by the formula

Aii+i′−1 =

i∑
ν=1

i factors︷ ︸︸ ︷
In ⊗ · · · ⊗ Fi′

↑
ν-th position

⊗ · · · ⊗ In.

for all i ∈ [N ] and where i′ is either 1 (Aii is placed on the main diagonal) or
2 (Aii+1 is placed on the upper diagonal) and where In is the identity matrix
of order n. Note also that A1

1 = F1 and A1
2 = F2. The dimension of (2) is

n+ n2 + · · ·+ nN = nN+1−n
n−1 = O(nN ).

Running example. We illustrate the concepts described above in the simplest
possible scenario. Consider the logistic equation (a special case of (1) for n = 1)

dx(t)

dt
= rx(1− x/K). (4)

This equation and related generalizations arise naturally in the context of
population dynamics, where r > 0 controls the initial rate of exponential growth,
and K > 0 is the asymptotic equilibrium (the other equilibrium being x = 0). We
transform (4) into the canonical scalar form (1), namely x′(t) = ax(t)+bx2(t), via
a = r and b = −r/K. Defining the auxiliary variables ŷj = xj , j ∈ N, we see that
their first-order derivatives satisfy ŷ′1 = x′ = aŷ1 + bŷ2, ŷ′2 = 2x′x = 2aŷ2 + 2bŷ3,
etc. Hence the nonlinear ODE (4) is equivalent to the (infinite) linear ODE

ŷ′j = jaŷj + jbŷj+1, j ∈ N.

If we now fix the truncation order N , say, to N = 4, we obtain

dŷ(t)

dt
=


a b 0 0
0 2a 2b 0
0 0 3a 3b
0 0 0 4a

 ŷ, ŷ(0) =


x0
x20
x30
x40

 .

To estimate the quality of the approximation by finite truncation, we plot
the solutions of (4) from x0 = 0.5 over a time horizon of 10 and also plot the
solution of (2) for several choices of N in Figure 1(a). The model parameters are
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(a) Initial condition x0 = 0.5. (b) Initial condition X0 = [0.47, 0.53].

Fig. 1: Solution of the original and of the truncated linearized IVPs for (4).

r = −0.5 and K = 0.8. As can be seen, for increasing N the solutions converge
to the analytic solution, which in this case is known and given as

x(t) =
x0ae

at

a+ b(1− eat)x0
.

Solving Eq. (2) requires computing the matrix exponential acting on the ini-
tial states ŷ(t = kδ) = eAkδ ŷ(0) at all times, which may be expensive for higher-
dimensional systems. In the next section we introduce a method to propagate
sets of initial conditions in dense time making use of the particular structure of
the matrix (3) using support function techniques. Theoretical estimates of the
truncation error are considered in Section 5.

4 Set propagation

In the previous section we saw how to transform a nonlinear IVP into an approx-
imate linear IVP by Carleman linearization and truncation at a chosen order N .
In this section we describe how this approach generalizes to IVPs whose initial
condition is a set of states X0 ⊆ Rn described by a hyperrectangle. This is a com-
mon case, and hyperrectangular approximations can be computed efficiently. We
need to discuss two steps: how to transform X0 to the linear system and how to
propagate sets of states for a linear IVP.

For the transformation of X0 we generalize the Kronecker product to sets
with X⊗i := {x⊗i | x ∈ X}. For a hyperrectangle X we approximate X⊗i by
applying the rules of interval arithmetic to each dimension [31]. We note that
one needs to carefully arrange the variables in order to obtain a tight solution.
The arrangement consists of grouping the same variables of each monomial;
for example, x21x2x1 is evaluated using interval arithmetic as x31x2 to avoid the
dependency problem. To illustrate, consider the extension of the example in
Section 2.3 to the hyperrectangle X = [0.9, 1.1]× [−0.1, 0.1]. Then X⊗1 = X ⊆
R2 and X⊗2 ⊆ [0.81, 1.21]× [−0.11, 0.11]× [−0.11, 0.11]× [0.0, 0.01] ⊆ R4.
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There exist many algorithms to propagate a set through an IVP in a con-
servative way, i.e., the result overapproximates the true solution, in particular
for linear IVPs [19,20,21,28,25,1,3,8,2]. Most of these approaches first discretize
the continuous-time system, for which the error can be made arbitrarily small
by choosing a small discretization step δ, and then propagate the sets in dis-
crete time, which in certain cases can be done in an error-free way. We refer the
reader to the above works for details about the discretization. Below we explain
the second step because it is relevant for the later discussion.

Given a discretized linear IVP with discretized matrix Φ = eAδ and dis-
cretized initial condition X̂0,

xk+1 = Φxk, x0 ∈ X̂0,

the set of reachable states is described by the flowpipe
⋃
k≥0Rk where the Rk :=

ΦkX̂0 is the reach set for the time span [kδ, (k+ 1)δ]. In other words, a flowpipe
is a sequence of reach sets given by the matrix powers of Φ applied to X̂0. This
computation scales to systems with hundreds of dimensions.

Example (cont’d). Consider again the logistic system. In Figure 1(b) we plot
the flowpipes obtained for the different truncated approximations with an initial
condition X0 = [0.47, 0.53].

5 Reachability algorithm

In this section we discuss an error estimation that allows us to obtain a sound
overapproximation of the states reachable by the original nonlinear system.

5.1 Error bound

We have yet to determine how the solutions of the truncated linear IVP (2) are
related to those of the original nonlinear IVP (1). To formulate this relation
precisely, we introduce some notation. The error of the j-th block of variables is
defined as ηj(t) := x⊗j(t)− ŷj(t), which is the difference between the Kronecker
power of the solution of (1) and the projection of the solution of (2) onto the
corresponding block of variables of the lifted ŷ. We are mostly interested in the
first block, i.e., j = 1, since x(t) = x⊗1(t), and the truncation error corresponds
to upper bounding the quantity ‖η1(t)‖ ≤ ε(t) for some error function ε(t) to be
determined. Ideally, for fixed t the error function should decrease sufficiently fast
for increasing order N , so we can use low orders in practice, typically 2 to 6. In
[15] the authors derived explicit error bounds for the linearization, i.e., a function
ε(t) that only depends on the initial condition and the norms of the matrices F1

and F2. However, that approach is too conservative since ε(t) diverges in finite
time – even in cases when the solution of the linearized system (2) is converging.

Crucial to the present article, the authors in [30] discovered that, by imposing
an assumption on the class of quadratic problems considered, an arbitrary-time
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and exponentially convergent error formula holds. There are two main assump-
tions: 1) linear terms dominate over nonlinear ones (weak nonlinearity) and
2) nonlinear effects play a prominent role during a finite time span, after which
only linear terms matter (linear dissipation). These definitions are formalized
below. In the following we assume that the eigenvalues of F1 in (1) are sorted
(counting multiplicities) such that <(λn) ≤ · · · ≤ <(λ1), where <(λ) is the real
part of λ.

Definition 1. System (1) is said to be weakly nonlinear if the ratio

R :=
‖x0‖‖F2‖
|<(λ1)|

(5)

satisfies R < 1.

Definition 2. System (1) is said to be dissipative if <(λ1) < 0 (i.e., the real
part of all eigenvalues is negative).

The conditions <(λ1) < 0 and R < 1 ensure arbitrary-time convergence.

Theorem 1 ([30, Corollary 1]). Assuming that (1) is weakly nonlinear and
dissipative, the error bound associated with the linearized problem (2) truncated
at order N satisfies

‖η1(t)‖ ≤ ε(t) := ‖x0‖RN (1− e<(λ1)t)N , (6)

with R as defined in (5). This error bound holds for all t ≥ 0.

5.2 Obtaining a sound set-propagation algorithm

The interesting aspect of (6) is that we can enclose all possible behaviors of
a nonlinear problem for a hyperrectangular initial condition X0 ⊆ Rn in two
steps: first, propagating the solutions of the high-dimensional linear system (2)
forward in time using a suitable linear reachability technique; in a second step,
enlarging the solution (a sequence of reach sets Rj with associated time span
∆t = [t, t + δ] for some δ > 0) by taking the Minkowski sum with a ball of
radius r := max(|a|, |b|) where [a, b] is the interval-arithmetic evaluation of ε(∆t).
Moreover, the truncation error converges to zero for increasing N and, as we will
see in the experiments, typical values of N do not have to be prohibitively large
to obtain reasonable approximation bounds.

Theorem 2. Given a flowpipe, consider any n-dimensional reach set Rj, j ≥ 0,
and its associated time span ∆t = [t, t + δ]. Let Rk be the true set of reachable
states in the time span ∆t and r as defined above. Then we have Rk ⊆ Rk⊕Bnr .

This allows us to present a sound reachability method as shown in Algo-
rithm 1. Crucially, we see that in Line 5 we only require the reach sets Rj in
the first n dimensions. Thus it suffices to compute these sets in a “sparse” way
in Line 2. We can use an algorithm based on the support function for post to
achieve that. In our implementation we use the algorithm from [28], which takes
as input a set of direction vectors in which the reach sets are evaluated.
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Algorithm 1: Reachability algorithm

Input: X0 ⊆ Rn: hyperrectangular initial states; F1, F2: system matrices;
N : truncation order; T : time horizon; post : algorithm to compute a flowpipe
for linear systems

Output: flowpipe overapproximating the reachable states until T

1 A, X̂0 ← linearize(X0, F1, F2, N) ; // Carleman linearization

2 (R0, . . . ,Rm)← post(y′ = Ay, y(0) ∈ X̂0) ; // flowpipe for linear system
3 for j ← 0 to m do
4 ε← error(Rj ,X0, F1, F2, N) ; // linearization error
5 Rε

j ← π1:n(Rj)⊕ Bn
ε ; // enlarged reach set

6 end
7 return (Rε

0, . . . ,Rε
m)

5.3 Reevaluation of the error term

For dissipative systems, while the solution of the linear system may converge to
zero, the corrected term including the error estimate may not. This observation
leads to the idea of reevaluating the error estimate after some time t∗, since for
fixed F1 and F2, a decreasing ‖x0‖ leads to a smaller value R which, in turn,
reduces the error estimate ε(t). This is, however, nontrivial because by the time
one reevaluates, the past error estimate must be taken into account and thus
the new state estimate at t∗ may already be too pessimistic. In the evaluation
we apply such a reevaluation manually.

6 Evaluation

In this section we study two models that have also been used in [30], but we
repeat them here to make this article self-contained. In the first model we evalu-
ate all aspects outlined in the present article including the error bounds. In the
second model we demonstrate that even if the assumptions for the error bounds
do not apply, we can still obtain solutions of useful accuracy.

For comparison we compute an overapproximation of the reachable states for
the original nonlinear systems using a Taylor-model (TM) approach implemented
in JuliaReach [7,6,34,4], with the default parameters (Taylor polynomials with
spatial and temporal expansions of orders 2 and 8 respectively), which generally
has high precision. To evaluate the flowpipe for the linear system in Algorithm 1,
we use the 2n directions ±ei for i ∈ [n], where ei is the unit vector in dimension
i, which corresponds to the outer hyperrectangular approximation of π1:n(Rj).
Note that the number of directions, 2n, is independent of the truncation order
N . Interval-arithmetic computations are performed using the Julia library In-
tervalArithmetic.jl [5], and for set-based computations we use LazySets.jl [37].
The code and scripts to run these problems is available online. 3

3 github.com/JuliaReach/RP21 RE

https://github.com/JuliaReach/RP21_RE
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6.1 Epidemic model (SEIR)

There exist several widely used models of population dynamics that generalize
the logistic model from Section 3 [9]. We consider the popular SEIR epidemic
model with data on the early spread of the COVID-19 disease from [33]. A
population P is divided into four compartments: susceptible (PS), exposed (PE),
infectious (PI), and recovered (PR). An individual is initially susceptible and
becomes exposed/infected with rate rtra. The latent time before an exposed
individual becomes infectious themselves is Tlat. Finally, an infectious individual
recovers after time Tinf. New individuals are added to the population with rate
Λ. We also consider a vaccination with rate rvac [40]. The system of ODEs is:

dPS
dt

= −ΛPS
P
− rvacPS − rtraPS

PI
P

+ Λ

dPE
dt

= −ΛPE
P
− PE
Tlat

+ rtraPS
PI
P

dPI
dt

= −ΛPI
P

+
PE
Tlat
− PI
Tinf

dPR
dt

= −ΛPR
P

+ rvacPS +
PI
Tinf

In this model we assume that P = PS + PE + PI + PR remains constant, so
we need not model PR. The corresponding Fi matrices thus simplify to

F1 =

−Λ
P − rvac 0 0

0 −Λ
P −

1
Tlat

0

0 1
Tlat

−Λ
P −

1
Tinf

 , F2 =

0 0 − rtraP 0 0 0 0 0 0
0 0 rtra

P 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 .

Since F1 is triangular, <(λ1) = −Λ
P − min{rvac, 1

Tlat
, 1
Tinf
}. We also have

‖F2‖ =
√
2rtra
P and ‖X0‖ ≤ P . Thus we can estimate

R =
‖X0‖

√
2rtra
P

Λ
P + min{rvac, 1

Tlat
, 1
Tinf
}
≤

√
2rtra

Λ
P + min{rvac, 1

Tlat
, 1
Tinf
}
.

The time scale is measured in days. We use the same parameters as in [30]:
a population of P = 107, Λ is small (here: Λ = 1), hence the constant term
is disregarded in the analysis, Tlat = 5.2, Tinf = 2.3, rtra = 0.13 days−1, and
rvac = 0.19 days−1. We choose X0 = [6e6, 3e5, 3.7e6] ⊕ B3

1e5, which results in
R ≈ 0.68 and <(λ1) ≈ −0.19 and thus Theorem 1 is applicable.

The analysis results without and with conservative error estimate are plotted
in Figure 2, where we used the discretization step δ = 0.1. We can see that the
non-conservative Carleman approximation is precise even for the small value
N = 2. However, the error estimate is too conservative for such small value of
N thus it is not plotted. However, using N = 5 the error estimate improves
significantly, but only until around time t = 4; this is due to the large values in
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(a) Reach sets Rj without error estimate.(b) Reach sets Rε
j including error estimate

with a reevaluation at t = 4 (cf. zoom).

Fig. 2: Results for the SEIR model.

SEIR model Burgers model

no error bound incl. error bound initial point initial set

TM 6.14 s 0.88 s 0.91 s

Carleman
N = 2: 0.006 s N = 5: 0.185 s N = 2: 0.0065 s N = 2: 0.0067 s

N = 3: 0.24 s N = 3: 0.29 s

Table 1: Run times for the SEIR model and the Burgers model obtained for
the Taylor-model (TM) approach and the Carleman linearization with different
truncation orders N .

X0. At t = 4 we reevaluate the estimate. Since the state and with it the norm
has changed, the new error estimate is more optimistic and converges quickly.
The run times are given in Table 1.

6.2 Burgers partial differential equation

We study a model arising from the discretization of a partial differential equation
(PDE). Consider the viscous Burgers equation to model convective flow [10]

∂tu+ x∂xu = ν∂2xu.

We use the following model parameters: viscosity ν = 0.05, domain length
L0 = 1, and U0 = 1. We consider the initial condition u(x, 0) = −U0 sin(2πx/L0)
on the domain x ∈ ±L0/2 and Dirichlet conditions u(x, 0) = 0 at the boundaries.
We distribute this initial condition to a set by keeping the end points fixed and
enlarging the initial point to some width w = 0.06. For the PDE discretization
we use central differences obtaining the coupled differential equations

∂tui = ν
ui+1 − 2ui + ui−1

∆x2
−
u2i+1 − u2i−1

4∆x
. (7)
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(a) Point initial condition (w = 0). (b) Distributed initial condition (w = 0.06).

Fig. 3: Results for the Burgers model at t = 0.5 with initial condition width w.

We use nx = 10 points and ∆x = L0/(nx − 1). Eq. (7) has the form of (1)
that we need to apply Carleman linearization. We obtain <(λ1) ≈ −0.488 < 0
but R ≈ 18.58, i.e., R as defined in Eq. 5 is not smaller than one. Although the
theoretical error bounds from Theorem 1 are not applicable here, it is interesting
to observe that the set-based solution is reasonably accurate with respect to the
solution obtained for the original nonlinear system. In Figure 3 we plot the results
at t = 0.5. For the linear reachability algorithm we used the step size δ = 0.01.
We can see that we still obtain good approximations that decrease exponentially
by incrementing the truncation N . The run times are given in Table 1.

7 Conclusions

In this paper we have presented a reachability method that abstracts nonlinear
terms into a higher-dimensional space such that the evolution is approximately
linear. The main advantage of the method is that we can leverage recent set
propagation techniques that are specialized to high-dimensional linear ODEs.
However, the method does not apply to general nonlinear systems but requires
weak nonlinearity, i.e., the relative norm of the nonlinear term should be smaller
than that of the linear term. Under such limitations, the presented method
outperforms other reachability methods because linear reachability in high di-
mension can be solved efficiently.

This work can be extended in several ways. First, we can consider time-
dependent terms; an error bound is derived in [30]. Second, in our experimental
evaluation we observed that manually reevaluating the error bound can improve
the precision if the norm of the states shrinks (which should generally happen
for dissipative systems). It would be interesting to automate this process. Third,
the reachability analysis can be accelerated, e.g., using Krylov methods to work
more efficiently in high dimensions. A more challenging direction is to devise a
new reachability algorithm that exploits the structure of the linearized system.
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