Skip to main content

Seasonality Atlas of Solar Radiation in Mexico

  • Conference paper
  • First Online:
  • 994 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13067))

Abstract

Due to the imminent climate-change emergency, it is urgent to boost the exploitation of renewable resources to produce clean energy, being solar energy one of the most promising ones. However, one of the greatest challenges that solar energy faces is its intermittency. Thus, to get the biggest benefit from this resource, especially for photovoltaic generation, it is required to predict its availability to estimate variations in energy production. As the first step for solar radiation forecasting, a seasonality analysis is mandatory to obtain better results. In this work, we perform a seasonality analysis of solar radiation in Mexico using Machine Learning. Specifically, we accomplish a cluster analysis of solar radiation data in locations representative of the different climate conditions in Mexico to obtain a seasonality atlas of the solar resource. Cluster analysis is performed with two algorithms, k-means and k-medoids. Finally, the Silhouette method is used to validate the results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. IPCC AR5 WG1 (2013).

    Google Scholar 

  2. Energy and the challenge of sustainability. United Nations Development Programme and World Energy Council. Retrieved January 2017 (2000)

    Google Scholar 

  3. Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N.: Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 27, 65–76 (2013)

    Article  Google Scholar 

  4. Guermoui, M., Melgani, F., Gairaa, K., Mekhalfi, M.L.: A comprehensive review of hybrid models for solar radiation forecasting. J. Clean. Prod. 258, 120357 (2020)

    Article  Google Scholar 

  5. Lan, H., Zhang, C., Hong, Y.Y., He, Y., Wen, S.: Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network. Appl. Energy 247, 389–402 (2019)

    Article  Google Scholar 

  6. Ghofrani, M., Ghayekhloo, M., Azimi, R.: A novel soft computing framework for solar radiation forecasting. Appl. Soft Comput. 48, 207–216 (2016)

    Article  Google Scholar 

  7. Wang, S.Y., Qiu, J., Li, F.F.: Hybrid decomposition-reconfiguration models for long-term solar radiation prediction only using historical radiation records. Energies 11(6), 1376 (2018)

    Article  Google Scholar 

  8. Bigdeli, N., Borujeni, M.S., Afshar, K.: Time series analysis and short-term forecasting of solar irradiation, a new hybrid approach. Swarm. Evol. Comput. 34, 75–88 (2017)

    Article  Google Scholar 

  9. Voyant, C., Muselli, M., Paoli, C., Nivet, M.L.: Hybrid methodology for hourly global radiation forecasting in Mediterranean area. Renew. Energy 53, 1–11 (2013)

    Article  Google Scholar 

  10. Yacef, R., Mellit, A., Belaid, S., Sen, Z.: New combined models for estimating daily global solar radiation from measured air temperature in semi-arid climates: application in Ghardaïa, Algeria. Energy Convers. Manag. 79, 606–615 (2014)

    Article  Google Scholar 

  11. Akarslan, E., Hocaoglu, F.O.: A novel adaptive approach for hourly solar radiation forecasting. Renew. Energy 87, 628–633 (2016)

    Article  Google Scholar 

  12. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons (2005)

    MATH  Google Scholar 

  13. King, R.S.: Cluster Analysis and Data Mining An Introduction. Mercury Learning and Information LLC (2015)

    Google Scholar 

  14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  15. Boland, J.: Characterising seasonality of solar radiation and solar farm output. Energies 13, 471 (2020)

    Article  Google Scholar 

  16. Lima, F.J.L., Martins, F.R., Costa, R.S., Goncalves, A.R., Santos, A.P.P., Pereira, E.B.: The seasonal variability and trends for the surface solar irradiation in northeastern region of Brazil. Sustainable Energy Technol. Assess. 23, 335–346 (2019)

    Article  Google Scholar 

  17. Vindel, J.M., Valenzuela, R.X., Navarro, A.A., Polo, J.: Temporal and spatial variability analysis of the solar radiation in a región affected by the intertropical convergence zone. Meteorol. Appli. 27, e1824 (2020)

    Google Scholar 

  18. Fernández, P.C.M., García, B.J., Guisado, M.V., Gastón, M.: A clustering approach for the analysis of solar energy yields: A case study for concentrating solar thermal power plants. AIP Conf. Proc. 1734, 070008 (2016)

    Article  Google Scholar 

  19. Bessafi, M., et al.: Clustering of solar irradiance. In: Lausen, B.., Krolak-Schwerdt, S.., Böhmer, M.. (eds.) Data Science, Learning by Latent Structures, and Knowledge Discovery. SCDAKO, pp. 43–53. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44983-7_4

    Chapter  Google Scholar 

  20. Govender, P., Brooks, M., Matthews, A.P.: Cluster analysis for classification and forecasting of solar irradiance in Durban, South Africa. J. Energy South. Afr. 29(2), 63–76 (2018)

    Article  Google Scholar 

  21. https://nsrdb.nrel.gov/

  22. Al-Waeli, A.H.A., Kazem, H.A., Chaichan, M.T., Sopian, K.: Photovoltaic Thermal System: Principles, Design and Applications, 1st edn. Springer Nature (2020)

    Google Scholar 

  23. Pelleg, D., Moore, A.: Accelerating exact k-means algorithms with geometric reasoning. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – KDD’99. California (1999).

    Google Scholar 

  24. Kaufman, L., Rousseeuw, P.J.: Partitioning Around Medoids (Program PAM). Wiley Series in Probability and Statistic. John Wiley & Sons, Hoboken, NJ, USA (1990)

    Google Scholar 

Download references

Acknowledgments

This work arises from the project “Predicción del recurso solar usando imágenes satelitales para impulsar el desarrollo sostenible en comunidades aisladas con energía asequible y no contaminante” approved in the Proyecto Espacial Universitario (PEU) from UNAM. The authors wish to thank the PEU program for their support in the elaboration and publication of this work. M.B. also thanks CONACYT for her Catedra Research Position with ID 71557, and to INEEL for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Borunda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borunda, M., Ramírez, A., Liprandi, N., Rodríguez, M., Sánchez, A. (2021). Seasonality Atlas of Solar Radiation in Mexico. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Computational Intelligence. MICAI 2021. Lecture Notes in Computer Science(), vol 13067. Springer, Cham. https://doi.org/10.1007/978-3-030-89817-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89817-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89816-8

  • Online ISBN: 978-3-030-89817-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics