
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/355473070

Deep Learning Architectures Applied to Mosquito Count Regressions in US

Datasets

Chapter · October 2021

DOI: 10.1007/978-3-030-89817-5_15

CITATIONS

0
READS

5

6 authors, including:

Some of the authors of this publication are also working on these related projects:

MGDrivE: Mosquito Gene-Drive Explorer View project

Fingerprint Presentation Attack Detection Methods View project

Cuauhtemoc Daniel Suarez-Ramirez

Altair Consulting

4 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

Mario Alberto Duran-Vega

Tecnológico de Monterrey

4 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

Héctor Manuel Sánchez Castellanos

University of California, Berkeley

89 PUBLICATIONS   599 CITATIONS   

SEE PROFILE

Miguel Gonzalez-Mendoza

Tecnológico de Monterrey

131 PUBLICATIONS   279 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Héctor Manuel Sánchez Castellanos on 08 November 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/355473070_Deep_Learning_Architectures_Applied_to_Mosquito_Count_Regressions_in_US_Datasets?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/355473070_Deep_Learning_Architectures_Applied_to_Mosquito_Count_Regressions_in_US_Datasets?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MGDrivE-Mosquito-Gene-Drive-Explorer?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Fingerprint-Presentation-Attack-Detection-Methods?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cuauhtemoc-Suarez-Ramirez-3?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cuauhtemoc-Suarez-Ramirez-3?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cuauhtemoc-Suarez-Ramirez-3?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario-Alberto-Duran-Vega?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario-Alberto-Duran-Vega?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tecnologico_de_Monterrey?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mario-Alberto-Duran-Vega?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hector-Sanchez-Castellanos?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hector-Sanchez-Castellanos?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-California-Berkeley?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hector-Sanchez-Castellanos?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel-Gonzalez-Mendoza?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel-Gonzalez-Mendoza?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Tecnologico_de_Monterrey?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel-Gonzalez-Mendoza?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hector-Sanchez-Castellanos?enrichId=rgreq-fc613a6ef5bdf70755fbb20fec94a381-XXX&enrichSource=Y292ZXJQYWdlOzM1NTQ3MzA3MDtBUzoxMDg3ODk4NzExNTI3NDI0QDE2MzYzODY2NzMyMjU%3D&el=1_x_10&_esc=publicationCoverPdf


Deep Learning Architectures Applied
to Mosquito Count Regressions

in US Datasets

Cuauhtemoc Daniel Suarez-Ramirez1 , Mario Alberto Duran-Vega1 ,
Hector M. Sanchez C.2 , Miguel Gonzalez-Mendoza1(B) ,

Leonardo Chang1 , and John M. Marshall2

1 School of Engineering, Computer Science Department, Tecnologico de Monterrey,
Nuevo Leon, Mexico

{a01206503,a00755076}@exatec.tec.mx, {mgonza,lchang}@tec.mx
2 School of Public Health, Epidemiology and Biostatistics Department,

University of California, Berkeley, Berkeley, USA
{sanchez.hmsc,john.marshall}@berkeley.edu

Abstract. Deep Learning has achieved great successes in various com-
plex tasks such as image classification, detection and natural language
processing. This work describes the process of designing and implement-
ing seven deep learning approaches to perform regressions on mosquito
populations from a specific region, given co-variables such as humidity,
uv-index and precipitation intensity. The implemented approaches were:
Recurrent Neural Networks (LSTM), an hybrid deep learning model, and
a Variational Autoencoder (VAE) combined with a Multi-Layer Percep-
tron (MLP) which instead of using normal RGB images, uses satellite
images of twelve channels from Copernicus Sentinel-2 mission. The exper-
iments were executed on the Washington Mosquito Dataset, augmented
with weather information. For this dataset, an MLP proved to achieve
the best results.

Keywords: Deep Learning · Machine Learning · Computer Vision ·
Mosquito · LSTM · VAE · MLP

1 Introduction

Mosquito-borne diseases have been one of the main causes of mortality in
humans for centuries [2,5,13]. These encompass the malaria parasite, and the
Dengue (DENV), Yellow Fever (YFV), Chikungunya (CHIKV) and Zika (ZIKV)
arboviruses [1,5,13]. According to the World Mosquito Program (WMP), more
than 700 million infections occur each year, with at least 1 million of them result-
ing in death [14]. This is why WHO has declared some of these diseases as some
of the main threats to mankind.

For the Arboviruses, the Aedes genus is the main cause of human-to-human
transmission [13]; particularly, female individuals of Ae. aegypti species [1] are
the main vectors of the disease.
c© Springer Nature Switzerland AG 2021
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Quantifying the presence of the population of these mosquitoes is relevant
to predict which zones will become foci of infection to take preemptive actions
such as the deployment of insecticides or other population control techniques to
prevent a fast paced increase in cases.

One of the efforts regarding monitoring mosquito populations, is the dataset
created by Washington D.C. Health authorities [3]. This department has been
trapping and testing mosquitoes for almost a decade, in response to the Zika out-
break in Latin America and the Caribbean. The Washington Mosquito Dataset
(WMD) contains 2024 records from 28 sites and 36 traps collected across 8 wards
from the District of Columbia. This data is collected and reported from April
through October, which is usually the mosquito season in Washington D.C.

The task of predicting the mosquito populations sizes (regression) using
Machine Learning (ML) or Deep Learning (DL) techniques, has been tackled
with meager efforts. Sotomayor et al . [11] - inspired by Inception Net [12] - used
a Multi-Layered Perceptron (MLP) to process tabular data (weather and trap
related information), and a Convolutional Neural Network (CNN) to process
Satellite information (images) in the CNN. The Hybrid Model (HM) combine
later both outputs. The results were produced by using the Washington Mosquito
Dataset (WMD) and they are shown on Table 1.

This work aims towards tackling the regression task of predicting the pop-
ulation size of the Ae. aegypti in Washington D.C., by combining diverse DL
techniques which encompass the use of spatial and temporal information to cre-
ate more robust architectures.

Table 1. Previous obtained results with Washington Mosquito Dataset

Metric MLP CNN Hybrid

Mean error 14.58 75.05 6.86

SD 17.94 61.21 11.08

R2 0.9816 0.091 0.9956

The remainder of this work is organized as follows Subsect. 2.1 presents a
detailed analysis of multiple MLP implementations. Thereafter, the process of
designing our custom dataset is described in Subsect. 2.2. Subsection 2.3 provides
the implementation of a CNN using Google Maps imagery. Following, the testing
of the Hybrid Model is detailed in Subsect. 2.4. The designing and implemen-
tation of the Sentinel Hybrid Model is described in Sect. 2.5. Subsequently, An
Hybrid VAE Model description and Implementation is shown in Sect. 2.6. Then,
a RNN approach is tested in Subsect. 2.7. Finally, analysis and conclusions are
shown in Sect. 3.
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Additionally, the datasets and the code for implementing the architectures here
presented is located in https://github.com/CuauSuarez/Mosquito-Count-DL.

2 Methods

Sotomayor et al . implemented three DL approaches for the task of predicting
mosquito populations over WMD [11]: a four-layer MLP; a pre-trained VGG19
network; and an HM which concatenates the output from the first and second
model, to create an input for a final MLP. To improve upon these architec-
tures, we implemented a total of seven architectures, four previously tested by
Sotomayor et al . but slightly improved, and three new approaches. These meth-
ods are:

1. An MLP using just the categorical and numerical data from the weather
reports (cleaned and pre-processed).

2. An MLP, with WMD augmented with weather information acquired from
DarkSky API [7] (https://darksky.net) and World Weather Online (WWO)
[9] (https://www.worldweatheronline.com), to improve our previous results
with additional information related to the mosquito life-cycle.

3. A CNN using exclusively satellite imagery from Google Maps. This architec-
ture was based on DarkNet-53 using pre-trained weights from YoloV3 [10].

4. An HM based on the work of Sotomayor et al . It concatenates the output of
an MLP and a CNN, to create an input for the final MLP.

5. The previously presented HM, but instead of using images of three channels
provided by Google Maps, it uses twelve-channel images from Copernicus
Sentinel-2 mission. Which contains more information like humidity and veg-
etation.

6. A custom HM which concatenates a latent vector from the satellite image
(obtained with a VAE), with the rest of the tabular data.

7. A LSTM, approach which fits naturally due to the temporal nature of the
WMD plus weather. Since it is augmented with weather information of two
weeks from the trap collection.

The process of developing these seven architectures was that of gradually
increasing the complexity of it and including more data regarding time and
space.

In the following sections, each of the architectures are further described.

2.1 Multi-Layer Perceptron (MLP)

The first approach we implemented was an MLP with WMD. To make data
patterns easier for the model to learn. We pre-processed the data as follows:

https://github.com/CuauSuarez/Mosquito-Count-DL
https://darksky.net
https://www.worldweatheronline.com
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1. We removed the columns Lifestage, EggsCollected, LarvaeCollected, PupaCol-
lected, Town, State, and County. Since those columns contained the same data
across the 2023 rows.

2. We removed duplicated data, such as X, Y and Address, which represent the
location of the trap, while keeping Latitude and Longitude for that purpose.

3. We decomposed the dates into two numerical columns, week and Year ; and
we normalized all numerical columns.

We selected a K-Fold Cross-validation with a K of 5 for validating our model.
To produce the best possible results by each model, we tried all the combinations
of the next hyper-parameters: Learning rate (0.01, 0.001, 0.0001), Dropout (0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.60), Hidden Units (10, 20, 30, 40, 50, 60, 70, 80, 90, 100),
Hidden Layers (2, 3, 4).

Table 2. Results of each MLP with the corresponding number of layers in Washington
D.C dataset.

MLP results

Metric Previous MLP MLP-2 MLP-3 MLP-4

Mean error 14.58 8.82 8.79 8.78

R2 0.9816 0.61 0.64 0.65

(Only Aedes) MLP results

Metric Previous MLP MLP-2 MLP-3 MLP-4

Mean error – 3.98 3.99 4.00

R2 – 0.49 0.48 0.48

The best combination of hyper-parameters for all mosquito species were:
RMSProp with learning rate of 0.001, 4 layers, with a hidden size of 70, and a
dropout of 0.1. This resulted in a mean absolute error of 8.78.

As shown in Table 2, our MLP architecture of 4 layers obtained a better
median average than the MLP implemented by Sotomayor et al . However, we
are not sure how R2 was measured for the MLP presented by Sotomayor et
al . Since a mean average of 14.58 is unlikely to lead to the R2 = 0.98 they
reported.

The WMD contain information of several species of mosquitoes, like Culex
pipens or Psorophora columbiae. But Aedes aegypti is the main cause of human-
to-human transmission of Arboviruses. We prepared a smaller version of the
dataset, containing only samples of this species. We trained and tested our model
with this dataset. The best mix of hyper-parameters were: RMSProp with learn-
ing rate of 0.01, 4 layers, with a hidden size of 60, and a dropout of 0.1. This led
in a mean absolute error of 3.98 (Table 2).

The results obtained by our MLP, improved the results presented by the MLP
of Sotomayor et al . However, one further improvement is to augment the WMD
with weather information. Since weather information is related to the mosquito
life-cycle and their population number.
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2.2 Approach 2 (MLP + Weather Data)

Aedes aegypti has a life cycle that lasts around 1.5 weeks (with intense sun-
light) or 3 weeks (in cold periods). It involves fours stages: egg, larva, pupa, and
adult. Variables like temperature or food availability, affects the life cycle of the
mosquito. In good environmental conditions, mosquitoes reach their adult form
in around 10 days (Fig. 1) [11].

Fig. 1. Egg (2–7 days) larva (4 or more) pupa (2 days) emerging adult.

To include information about the mosquito life-cycle in our model, we built
a WMD dataset augmented with weather information. To create this dataset,
we requested information from the past 14 days since the trap collection date,
and the GPS coordinates.

To build the aforementioned dataset, we used the DarkSky API [7]. This
framework provides weather information according to a given latitude, longitude
and date. Which is information available in WMD.

A previous approach proposed by Sotomayor et al . involved augmenting the
WMD by requesting weather information from the day the trap was collected.
However, since the life-cycle of Aedes aegypti depends of the weather conditions
from the previous 10 to 14 days, we augmented WMD with weather informa-
tion from the previous 14 days before the trap was collected. We trained our
MLP with the WMD augmented with weather information (Table 3). The best
combination of hyper-parameters for all mosquito species were: RMSProp with
learning rate of 0.01, 3 layers, with a hidden size of 140, and a dropout of 0.3.
This resulted in a mean absolute error of 9.06.

Moreover, we repeated this experiment with a smaller dataset containing
only Aedes aegypti (Table 3). The best mix of hyper-parameters were: RMSProp
with learning rate of 0.01, 2 layers, with a hidden size of 120, and a dropout of
0.2. This led to a mean absolute error of 4.10.

Results obtained by using WMD augmented with weather information were
inferior when compared to the original WMD. This could be caused by the noise
generated by the large amount of variables used to train our MLP. Therefore, we
performed multiple feature selection approaches to improve our results (Pearson,
Kendall, Spearman and PCA).
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Table 3. Results of each MLP by number of layers, using WMD + Weather.

Metric Previous MLP MLP-2 MLP-3 MLP-4

Mean error 14.58 9.061 9.060 9.11

R2 0.9816 0.64 0.60 0.67

(Only Aedes)

Metric Previous MLP MLP-2 MLP-3 MLP-4

Mean error – 4.10 4.15 4.16

R2 – 0.54 0.55 0.50

We trained multiple MLP models selecting features from the aforementioned
coefficients. However, even after performing feature selection, additional weather
information from DarkSky did not improve the results. Thus, we used another
weather information provider to confirm the validity of the information provided
by DarkSky. For this additional test, we used World Weather Online (WWO)
API. We downloaded all the weather information from 14 days before the trap
was collected, and trained our MLP models. However, the result of our best
model was a median error of 9.85, which was inferior when compared with the
results presented at Table 3. DarkSky API andWWOAPI return similar weather
information, since we evaluated two providers of meteorological information.
And despite we included attributes directly related to the mosquito life-cycle,
our results did not improve. Thus, we think WMD is biased or noisy.

2.3 Approach 3: CNN

Mosquitoes like Aedes aegypti, use almost any kind of clean water container to lay
eggs [4]. One of the findings of Sotomayor et al . [11], is that we can use satellite
images of the trap’s surroundings to extract spatial features and improve the
mosquito count prediction (for example, water containers).

We implemented a CNN regression model, which takes as input the satellite
image from the location of the trap (obtained from Google Maps, and scaled to
416× 416). To process the aforementioned images, the selected architecture was
a pre-trained Darknet-53 [10] followed by 3 dense layers. We performed a cross
validation of 5 folds to validate our model and measure the accuracy (Table 4).

The best combination of hyper-parameters for all mosquito species were:
RMSProp with learning rate of 0.001, 3 layers, weight decay of 0.004. This
results in a mean absolute error of 13.11. For Aedes the best combination were:
RMSProp with learning rate of 0.001, 3 layers, with a hidden size of 120, and a
weight decay of 0.004. This led to a mean absolute error of 5.22.

According to the results, our model performed better than the CNN model
presented by Sotomayor et al .
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Table 4. Results of our pre-trained CNN

CNN

Metric Prev Avg

Mean error 75.05 13.11

Aedes CNN

Metric Prev Avg

Mean error – 5.22

2.4 Approach 4: Hybrid Model (CNN + MLP)

The MLP we proposed in Subsect. 2.1 and the CNN model in Subsect. 2.3
improved the results of the same architectures implemented by Sotomayor et
al . Following the idea of the hybrid architecture introduced in their work, we
combined both architectures into one. By adding an additional NN at the end,
which takes as input the output of the MLP and the CNN model. To evalu-
ate this architecture, we used K-Fold Cross-validation of 5 folds, the results are
shown in Table 5. The best mix of hyper-parameters for all mosquito species
were: RMSProp with learning rate of 0.0001, 3 layers, weight decay of 0.004,
and dropout of 0.3. This led in a mean absolute error of 10.85. For Aedes the
best combination were: RMSProp with learning rate of 0.0001, 3 layers, weight
decay of 0.004, and dropout of 0.3. This resulted in a mean absolute error of 4.8.
For this hybrid architecture, results were inferior as the presented by Sotomayor
et al .

Table 5. Results of our Hybrid Model compared to the previous Hybrid Model from
Sotomayor et al . [11]

Hybrid model

Metric Prev Avg

Mean error 6.86 10.85

Aedes hybrid model

Metric Prev Avg

Mean error – 4.8

2.5 Approach 5: Sentinel CNN + MLP

This approach was inspired by the hybrid model proposed by Sotomayor et
al . However, our HM implementation showed in Sect. 2.4 was not able to improve
or replicate the work of Sotomayor et al . Nevertheless, we implemented some
improvements to the aforementioned model, en compare the results with the
previous approaches.
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The hybrid model presented by Sotomayor et al . improved the results of their
predictor by using satellite images provided by Google Maps. However, despite
their good results, we noted some possible improvements.

1. Google Maps API, does not provide images for given dates. To make a good
prediction, we need to gather images which are closer to the day the trap
collection date. To extract features like soil humidity and vegetation that
might affect the mosquito count prediction.

2. Aedes aegypti can only flight around 1 km, thus, each image needs to cover
that maximum space.

3. Google Maps API only offers images of 3 channels (RGB), but other APIs
like Sentinel-02, offer images of 12 channels; which contain information about
vegetation, soil humidity, and other features that could help the predictor to
achieve better results.

Following these improvements, we compiled a dataset of Sentinel-02 images,
one for each of the rows of WMD. Sentinel-02 images have 12 channels instead
of 3, thus, we need to implement and train a Darknet-53 architecture capable of
handling images of 12 channels. Unfortunately, our dataset is too small to train
a Deep Neural Network such as Darknet-53. Therefore, we used a pre-trained
Darknet-53 model trained for Yolov3. However, as Sentinel-2 images have 12
channels, we split each image of 12 channels into 3 images of 3 channels each, to
make them compatible with the pre-trained Darknet-53. Each image contained
information like vegetation and soil humidity.

We pass each of the three images generated by the Sentinel-02 through
Darknet-53 to extract spatial features. Then, we concatenate the resulting 3
outputs with the result of the MLP network. Finally, we sent the resulting vec-
tor to a NN of 3 Dense Layers. The best combination of hyper-parameters for all
mosquito species were: RMSProp with learning rate of 0.00001, 3 layers, weight
decay of 0.004, and dropout of 0.3. This results in a mean absolute error of
11.10. For Aedes the best combination were: RMSProp with learning rate of
0.00001, 3 layers, weight decay of 0.004, and dropout of 0.3. This resulted in a
mean absolute error of 4.8 (Table 6).

Table 6. Results of our hybrid sentinel model

Hybrid sentinel model

Metric Prev Avg

Mean error 6.86 11.10

Aedes hybrid sentinel model

Metric Prev Avg

Mean error – 4.8



Deep Learning Applied to WMD 207

2.6 Approach 6: VAE + MLP

Following the same line of thought, the next approach we tested was based on
combining the spatial information (matrices processed with CNN) from satel-
lite images plus the numerical information (vectors processed with MLP) from
weather data. In this case, before directly using the images, we opted to encode
them into latent vectors, which are lower dimensional representations of the
data, as the most important data that is subtracted from the satellite images
(Sentinel) relies on info like the water bodies, number of houses, potential nests,
vegetation, etc., which does not require multiple dimensions to be represented
(each of them). In other words, we transformed the matrix information into
vectors.

Variational Autoencoder (VAE). Grouped inside the Generative Models,
Autoencoders (AEs) is an architecture composed of an encoder part and a
decoder one. The purpose of this architecture is to reduce the dimensionality
of the input data (to save memory) and then being able to recreate it [8]. After
the encoder section, data is represented by a low dimensionality vector in a
“latent space” which, in concept, encodes the most important features of the
input. Thus, it could be used in the same ways as dimensionality reduction
architectures.

Traditional AEs present an issue in their latent space, it is not continuous.
This has two main problems:

1. Trying to generate new similar images to the data-set from random vectors
from the latent space won’t always have good results.

2. Images that are similar do not necessarilty are closer in the latent space.

Variational Autoencoders (VAEs) are a modification to AEs to introduce a
Divergence Measure (DM) to the latent space to assure that samples are dis-
tributed in a continuous matter; Usually, for the DM, the Kleiber Divergence
(KD) is used, but this is perceived as restrictive and not preserving the variance
across vectors. Thus, the Maximum Mean Discrepancy (MMD) was used as the
error measure [6].

Note: Satellite data (from Google) was not used as it only gives images of the
current time, not historical.

MMD(p(z)‖‖q(z)) = Ep(z),p(z′)[k(z, z′)] + Eq(z),q(z′)[k(z, z′)]
− 2Ep(z),q(z′)[k(z, z′)]

(1)

where k(z, z′) is a generic kernel; in this case, the radial basis kernel was
used.

Based on this, we used the architecture shown in Fig. 2. Here, c is the number
of channels of the original image, Sentinel-1 has 12 different channels and we
tested using only the RGB ones (3 channels) or the 11 channels (only 11 channels
are provided by the sentinel-02 web service). Moreover, the n latent dimension
was chosen to be 50 as it produced low reconstruction error.
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Apart from the MMD, VAEs use the traditional loss function for comparing
images (Negative Log Likelihood). The obtained errors where: 0.0001 when
using just the RGB channels, and 0.0001 when using all the channels.

Adding the Numerical Data. Now that the images are processed, the rest
of data was added following a mixed model approach. This means that the
data from the tables is processed through a Neural Network (NN) having a
lower dimension vector as an output, this is then concatenated to the Images
information, and the resulting vector is then passed through another NN to
obtain the final prediction.

The hyper-parameters that we chose to modify are: e1 as the number of
the dimensions of the embeddings (for the categorical data), nX which are the
different number of hidden layers marked on the architecture. Moreover, we
also chose different optimizers (Adam and RMSProp), and learning rates (0.01,
0.001, 0.005, 0.0005, 0.0001). The final setup used the 5 most important parame-
ters (according to the correlation coefficients), RMSProp as the optimizer (with
learning rate 0f 0.0001), e1 was chosen for each particular categorical parame-
ters, n1 = 20, n2 = 10, n3 = 100, n4 = 50. The error for this model was of 8.58
when measuring mean absolute error.

As an alternative, another architecture was used applying a NN also to
the latent vector. After experimentation, the hyper parameters were chose as:
RMSProp with learning rate of 0.0001, n1 = 30, n2 = 10, n3 = 30, n4 = 50,
n5 = 30. This resulted in a mean absolute error of 8.89.

In general, these both architectures are troublesome for choosing the correct
hyper-parameters (and number of layers/units), it is usual to arrive to solutions
where the same number is always the same number (highly non-convex topology
of the solutions), and the results are plainly surpassed by a simpler NN where
only the structured data is used. Thus, the efforts were redirected to a model that
only uses this kind of data and considers the temporal nature of the information.

2.7 Approach 7: Recurrent Neural Network (LSTM)

As the weather information is obtained per day, it makes sense to use time-series-
analysis techniques in these kind of data, considering the cycle of 14-days for the
development of the mosquitoes. Then, we proposed a mixed model where the
temporal data is processed through a LSTM+MLP, the numerical data is passed
through a MLP, the categorical data is embedded and then passed through
a MLP, and finally, either we take a weighted average of the 3 outputs (first
approach), or concatenate the resulting vectors and pass it through a final MLP.

Weighted Average. For calculating the dimension of the LSTM, the following
formula was used:

n1 = $ batchsize
ah × #columns

+ 1% (2)
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The “TRAPDAYS” column was created by us to count the number of days
that the trap was set. An improvement that can be done to this is to consider
also the time of the day when the trap was set and recovered to include decimal
values; is not the same to set the trap on the evening of day 1 and retiring on
the morning of day 2, when compared to setting the trap on the morning of day
1 and retiring it on the evening of day 2.

Then, after trying several combinations of hyper-parameters, the chosen were:
RMSProp with learning rate of 0.001, ah = 3, l1 = 2, n2 = 15, n3 = 15, and a
weighted average giving a value of 2 to the numerical data. This resulted in a
mean absolute error of 4.80 which is much better than the models using images.

Mixed Model. This architecture was the most explored approach of the tem-
poral ones. The best combination of hyper-parameters gave a mean absolute
error of 4.36 which is considerably better than the weighted average approach.

This combination has a mean absolute error of 4.36 which is considerably
better than the weighted average approach.

3 Analysis and Conclusions

Mosquitoes are one of the most dangerous creatures for the human beings due
to the pathogens they transmit. The development of tools to predict mosquito
populations, is of great interest to design control strategies that might help to
reduce mosquito-related infections.

We implemented a total of 7 approaches for the prediction of mosquito pop-
ulations. To present the results of each approach in a more readable manner,
we have grouped them in Table 7. Surprisingly, the lowest error was obtained by
applying a MLP in the WMD. However, we decided to analyze the dataset to
check if the quality of the data was not a factor in getting poor results.

To have a better understating of the quality of WMD, we performed a correla-
tion analysis, calculating Pearson, Spearman and Kendall coefficients. We found
that the highest correlation (Spearman) with the dependent variable (Total of
mosquitoes) was 0.29 and it corresponded to the “GENUS” variable; the rest of
the variables had correlation coefficients lower than this (by 0.05 or more points).
We concluded thatWMDhas poor data quality for this particular application, due
to the low correlation coefficients that variables like temperature or precipitation,
show for the total number of mosquitoes. Additionally, to corroborate the quality
of the extracted weather information fromDarkSky, we gathered weather informa-
tion fromWWO to compare output of the models. However, both datasets showed
no improvement in the results. Thus, we think that the WMD is a noisy dataset
or, at least, it is not fit for getting further insights from it.

Other possibility to consider is to test more methods to get data from images
and different time-windows for the temporal architectures. As using these infor-
mation increased the error of the model, implementing other techniques to
get relevant attributes from this data could increase the value of the metrics.
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One possibility could be to implement an image segmentation network to search
the bodies of water in the images instead of processing the complete satellite
image.

Table 7. Best results obtained for each of the used approaches

Approach Mean absolute error

VAE + MLP 8.58

Pre-trained CNN 5.22

Sentinel CNN + MLP 4.8

Implemented hybrid model [11] 4.8

LSTM + Weighted average 4.80

LSTM + Mixed model 4.36

Simple MLP-3 + Weather data 4.10

Simple MLP-2 3.98

Although adding extra temporal weather information was not helpful for this
dataset, using information directly related to the mosquito life-cycle might still
work with other datasets since mosquitoes depend of rain, water containers, and
temporal conditions like the temperature over time to develop. In the future, it
would be worth to test these 7 approaches with other mosquito datasets besides
WMD.
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noamérica. Acta pediátrica de México 37(2), 111–131 (2016). http://dx.doi.org/
10.18233/APM37No2pp111-131

2. Bhatt, S., et al.: The global distribution and burden of dengue. Nature 496, 504–
507 (2013). https://doi.org/10.1038/nature12060

3. D.C. Office of the Chief Technology Officer: Mosquito Washington Dataset (2019).
https://opendata.dc.gov/datasets/DCGIS::mosquito-trap-sites/about. Accessed 9
Aug 2020

4. Christophers, S.R.: Aedes aegypti: the yellow fever mosquito. CUP Archive (1960)
5. Ferreira, A.G., Fairlie, S., Moreira, L.A.: Insect vectors endosymbionts as solu-

tions against diseases. Curr. Opin. Insect Sci. 40, 56–61 (2020). https://doi.
org/10.1016/j.cois.2020.05.014. http://www.sciencedirect.com/science/article/pii/
S221457452030078X

6. Gretton, A., Borgwardt, K.M., Rasch, M., Schökopf, B., Smola, A.J.: A kernel
method for the two-sample problem. In: Advances in Neural Information Processing
Systems, pp. 513–520 (2007)

7. Apple Inc: Dark Sky API (2020). https://darksky.net/. Accessed 9 Aug 2020
8. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114 (2014)

http://dx.doi.org/10.18233/APM37No2pp111-131
http://dx.doi.org/10.18233/APM37No2pp111-131
https://doi.org/10.1038/nature12060
https://opendata.dc.gov/datasets/DCGIS::mosquito-trap-sites/about
https://doi.org/10.1016/j.cois.2020.05.014
https://doi.org/10.1016/j.cois.2020.05.014
http://www.sciencedirect.com/science/article/pii/S221457452030078X
http://www.sciencedirect.com/science/article/pii/S221457452030078X
https://darksky.net/
http://arxiv.org/abs/1312.6114


212 C. D. Suarez-Ramirez et al.

9. World Weather Online: World Weather Online (2020). https://www.
worldweatheronline.com/. Accessed 11 Nov 2020

10. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. arXiv preprint
arXiv:1804.02767 (2018)

11. Sotomayor, L., Vallejo, E., Sánchez Castellanos, H.: Application of a hybrid neural
network trained with satellite imagery and weather data to predict mosquito pop-
ulations based on mosquito trap captures. Ph.D. thesis, Tecnologico de Monterrey,
December 2019

12. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pat-
tern Recognition (CVPR) (2015). https://doi.org/10.1109/CVPR.2015.7298594.
http://arxiv.org/abs/1409.4842

13. Weaver, S.C., Charlier, C., Vasilakis, N., Lecuit, M.: Zika, chikungunya, and other
emerging vector-borne viral diseases. Annu. Rev. Med. 69(1), 395–408 (2018).
https://doi.org/10.1146/annurev-med-050715-105122, pMID: 28846489

14. World Mosquito Program (WMP): What are mosquito-borne diseases? (2020).
https://doi.org/10.1016/j.cppeds.2009.01.001. https://www.worldmosquitoprogra
m.org/en/learn/mosquito-borne-diseases. Accessed 9 Aug 2020

View publication statsView publication stats

https://www.worldweatheronline.com/
https://www.worldweatheronline.com/
http://arxiv.org/abs/1804.02767
https://doi.org/10.1109/CVPR.2015.7298594
http://arxiv.org/abs/1409.4842
https://doi.org/10.1146/annurev-med-050715-105122
https://doi.org/10.1016/j.cppeds.2009.01.001
https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases
https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases
https://www.researchgate.net/publication/355473070

	Preface
	Conference Organization
	Contents – Part I
	Contents – Part II
	Machine and Deep Learning
	Identifying Optimal Clusters in Purchase Transaction Data
	1 Introduction
	2 Clustering Taxonomies
	3 Cluster Validity Indices
	4 Data Complexity Measures
	5 Data Sets and Experimental Methodology
	6 Results and Discussions
	7 Conclusions
	A Appendix
	References

	Artificial Organic Networks Approach Applied to the Index Tracking Problem
	1 Introduction
	1.1 Objectives and Limitations

	2 The Proposed Approach
	2.1 AON Properties
	2.2 Artificial Hydrocarbon Networks Algorithm

	3 Implementation Considerations
	3.1 System Identification
	3.2 Target Function Mathematical Formulation
	3.3 Financial Analysis and Strategy

	4 Preliminary Results
	4.1 Experiment 1: Establishing a Regression
	4.2 Experiment 2: Comparing MNLR Performance Vs. Other ML Techniques.
	4.3 Experiment Three: Buy-and-Hold Strategy
	4.4 Experiment 4: A Hybrid K-Means with AHN Algorithm

	5 Conclusions and Future Work
	References

	Supervised Learning Approach for Section Title Detection in PDF Scientific Articles
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Dataset Creation
	3.2 Classifiers Training and Testing

	4 Results
	5 Conclusion
	References

	Real-Time Mexican Sign Language Interpretation Using CNN and HMM
	1 Introduction
	2 Related Work
	2.1 Methods
	2.2 Techniques
	2.3 Works About MSL in Mexico

	3 Proposal
	4 Dataset
	4.1 Description
	4.2 Participants
	4.3 Data Acquisition
	4.4 Dataset Standardization

	5 Experiments and Results
	5.1 Training
	5.2 Results Experiment 1: Focus on Isolated Words
	5.3 Results Experiment 2: Focus on Sentences

	6 Conclusions
	References

	RiskIPN: Pavement Risk Database for Segmentation with Deep Learning
	1 Introduction
	2 Databases
	2.1 Previous Datasets
	2.2 RisksIPN

	3 Segmentation Deep Model
	4 Experiments and Results
	4.1 Preprocessing
	4.2 Training

	5 Conclusion
	References

	A Comparative Study on Approaches to Acoustic Scene Classification Using CNNs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Organization and Collection
	3.2 Data Augmentation
	3.3 Feature Representations
	3.4 Development of CNNs

	4 Results and Evaluation
	5 Conclusion
	References

	Measuring the Effect of Categorical Encoders in Machine Learning Tasks Using Synthetic Data
	1 Introduction
	2 General Methodology
	2.1 Real-World Datasets
	2.2 Synthetic Datasets

	3 Experimental Results
	3.1 Real-World Dataset
	3.2 Synthetic-Datasets

	4 Conclusions
	Appendix
	References

	Long-Term Exploration in Persistent MDPs
	1 Introduction
	2 Related Work
	3 Background
	3.1 Markov Decision Processes
	3.2 Persistent MDPs

	4 Exploration via State Space Clustering
	4.1 Similarity Model
	4.2 Graph of Clusters

	5 The Prince of Persia Domain
	6 Experiments
	6.1 Experimental Setup
	6.2 Exploring the Prince of Persia Environment
	6.3 Ablation Study

	7 Conclusion
	References

	Source Task Selection in Time Series via Performance Prediction
	1 Introduction
	2 Transfer Learning
	3 Related Work
	4 Performance Prediction for Source Task Selection
	4.1 Feature Extraction
	4.2 Regression Model

	5 Experimental Results
	6 Conclusions and Future Work
	References

	Finding Significant Features for Few-Shot Learning Using Dimensionality Reduction
	1 Introduction
	2 Materials and Methods
	2.1 Meta-learning Tasks
	2.2 MiniImageNet Dataset

	3 Proposed Model
	3.1 Feature Reduction Techniques
	3.2 Inter and Intra Class Nearest Neighbors Score (ICNN Score)

	4 Experiments
	4.1 Implementation Details
	4.2 Model Design Choices
	4.3 Comparison with Baselines

	5 Conclusion
	References

	Seasonality Atlas of Solar Radiation in Mexico
	1 Introduction
	1.1 Related Work

	2 Mexico’s Solar Radiation
	3 Methodology
	3.1 Designing the Atlas
	3.2 Cluster Analysis
	3.3 Algorithms
	3.4 Validation of the Results

	4 Results
	4.1 1-Dimensional Cluster Analysis
	4.2 2-Dimensional Cluster Analysis

	5 Discussion
	6 Conclusions
	References

	Best Paper Award, Third Place
	Comparing Machine Learning Based Segmentation Models on Jet Fire Radiation Zones
	1 Introduction
	2 State of the Art
	2.1 Deep Learning Architectures
	2.2 Traditional Computer Vision Methods

	3 Proposed Approach
	4 Data Set
	4.1 Image Processing

	5 Metrics and Loss Functions
	5.1 Metrics
	5.2 Loss Functions

	6 Training
	7 Testing
	8 Results and Discussion
	8.1 Selected Metrics
	8.2 Best Loss Function
	8.3 Traditional and Deep Learning Segmentation
	8.4 Discussion

	9 Conclusions
	References

	A Machine Learning Approach for Modeling Safety Stock Optimization Equation in the Cosmetics and Beauty Industry
	1 Introduction
	2 Related Work
	3 Methodology
	4 Machine Learning Workflow
	5 Results and Discussion
	6 Conclusions
	References

	DBSCAN Parameter Selection Based on K-NN
	1 Introduction
	2 Related Work
	3 DBSCAN Parameter Selection Based on K-Distance
	4 Experiments
	4.1 Parameter Selection DBSCAN
	4.2 ACND
	4.3 Clustering
	4.4 Border Definition

	5 Conclusion
	References

	Deep Learning Architectures Applied to Mosquito Count Regressions in US Datasets
	1 Introduction
	2 Methods
	2.1 Multi-Layer Perceptron (MLP)
	2.2 Approach 2 (MLP + Weather Data)
	2.3 Approach 3: CNN
	2.4 Approach 4: Hybrid Model (CNN + MLP)
	2.5 Approach 5: Sentinel CNN + MLP
	2.6 Approach 6: VAE + MLP
	2.7 Approach 7: Recurrent Neural Network (LSTM)

	3 Analysis and Conclusions
	References

	Causal Based Action Selection Policy for Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Assumptions and Limitations
	3.2 Action Selection

	4 Experimental Set Up
	4.1 Environment
	4.2 Implementation and Compared Approaches
	4.3 Evaluation Metric and Exploration Rate Decay

	5 Results
	5.1 Modifying the Causal Graph
	5.2 Exploit or Keep Exploring
	5.3 Using Visual Observations of the Environment

	6 Conclusions
	References

	Performance Evaluation of Artificial Neural Networks Applied in the Classification of Emotions
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Data Acquisition
	3.2 Preprocessing
	3.3 Artificial Neural Networks
	3.4 Experimental Settings

	4 Results and Discussion
	5 Conclusion and Future Directions
	References

	Machine Learning Algorithms Based on the Classification of Motor Imagination Signals Acquired with an Electroencephalogram
	1 Introduction
	2 Background
	2.1 CNN
	2.2 LSTM
	2.3 GRU
	2.4 Bidirectional RNN
	2.5 DT
	2.6 Random Forest
	2.7 MLP
	2.8 Gaussian Naïve Bayes
	2.9 SVM
	2.10 LDA and Logistic Regression
	2.11 AdaBoost
	2.12 KNN

	3 Methodology
	4 Results
	5 Conclusions
	References

	Image Processing and Pattern Recognition
	Touchless Fingerphoto Extraction Based on Deep Learning and Image Processing Algorithms; A Preview
	1 Introduction
	2 Related Work
	2.1 Image Acquisition
	2.2 Background Removal
	2.3 Fingerprint Enhancement

	3 Methods and Materials
	3.1 Fingerphoto Acquisition
	3.2 Background Removal
	3.3 Fingerphoto Segmentation and Enhancement
	3.4 Equivalent Touch-Based Image
	3.5 NIST Fingerprint Image Quality

	4 Experiments and Results
	4.1 Fingerphoto Dataset
	4.2 U-Net for Background Removal
	4.3 Fingerphoto Extraction

	5 Conclusions and Feature Work
	References

	Real Time Distraction Detection by Facial Attributes Recognition
	1 Introduction
	1.1 Previous Work

	2 Method and Data
	2.1 Image Acquisition
	2.2 Face Detection
	2.3 Facial Attributes Recognition
	2.4 Classification

	3 Results
	3.1 Classic Evaluation
	3.2 5-Fold Cross Validation Evaluation
	3.3 Real Time Environment Evaluation

	4 Discussion
	4.1 Future Work

	5 Conclusions
	References

	Urban Perception: Can We Understand Why a Street Is Safe?
	1 Introduction
	2 Related Works
	2.1 Urban Perception
	2.2 Model Interpretation

	3 Methodology
	3.1 Datasets and Data Pre-processing
	3.2 Visual Components Extraction

	4 Experiments and Discussions
	5 Conclusions
	References

	Continual Learning for Multi-camera Relocalisation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset Generation
	3.2 Continual Learning

	4 Experiments and Results
	5 Conclusion
	References

	Facing a Pandemic: A COVID-19 Time Series Analysis of Vaccine Impact
	1 Introduction
	2 Related Work
	2.1 COVID-19 World Vaccination Progress with Tableau
	2.2 COVID-19: Can We Predict the Future?
	2.3 COVID-19 EDA: Man Vs. Disease
	2.4 Remarks

	3 Methodology
	3.1 Data Understanding
	3.2 Data Preparation
	3.3 Modeling

	4 Results
	4.1 Model Evaluation
	4.2 Deployment

	5 Conclusion
	References

	COVID-19 on the Time, Countries Deaths Monitoring and Comparison Dealing with the Pandemic
	1 Introduction
	2 Focus on Deaths Instead of Reported Infections
	3 Methods
	3.1 Moving Average
	3.2 Plateau
	3.3 Maximum Value
	3.4 Economics Information Per Country

	4 Results
	5 Conclusions and Future Work
	6 Related Work
	References

	Linear Structures Identification in Images Using Scale Space Radon Transform and Multiscale Image Hessian
	1 Introduction
	2 The Scale Space Radon Transform
	3 The Image Hessian
	4 Multiscale Hessian-Based Linear Structure Identification and SSRT Detection
	4.1 Linear Structures Hessian Behaviour in Scale Space
	4.2 Multiscale Hessian Application

	5 Experiments
	6 Conclusion
	References

	Deep Neural Networks for Biomedical Image Segmentation: Trends and Best Practices
	1 Introduction
	2 Imaging Modalities
	2.1 Characteristics of Images

	3 Deep Learning Methods
	3.1 U-Net Based
	3.2 Emerging Neural Networks and Hybrid Approaches
	3.3 Analysis of Approaches

	4 Best Practices
	4.1 Data Augmentation
	4.2 Preprocessing
	4.3 Ensemble Deep Learning
	4.4 Network Blocks
	4.5 Loss Function
	4.6 Weighted Sampling Strategy

	5 Conclusion and Future Directions
	References

	Evolutionary and Metaheuristic Algorithms
	Mexican Stock Return Prediction with Differential Evolution for Hyperparameter Tuning
	1 Introduction
	2 Related Work
	2.1 Macroeconomic Variables Effect on the Mexican Stock Market
	2.2 Machine Learning for Stock Return Prediction
	2.3 Metaheuristics for Hyper-parameter Tuning

	3 Methodology
	3.1 Granger-Causality
	3.2 Hyper-parameter Tuning
	3.3 Portfolio Construction

	4 Results
	4.1 Data
	4.2 Granger-Causality
	4.3 Hyper-parameter Tuning
	4.4 Portfolio Construction

	5 Conclusion
	References

	Towards a Pareto Front Shape Invariant Multi-Objective Evolutionary Algorithm Using Pair-Potential Functions
	1 Introduction
	2 Selection Mechanism Based on Pair-Potential Functions
	2.1 Pair-Potential Functions

	3 NSGA-III with Pareto Front Shape Invariant Selection Mechanism
	3.1 General Framework
	3.2 Environmental Selection Based on Niching and Pair-Potential
	3.3 Niching Procedure with Pair Potential Functions

	4 Experimental Setup
	4.1 Test Problems
	4.2 Parameter Settings
	4.3 Performance Assessment

	5 Results and Discussion
	6 Conclusions and Future Work
	References

	Endowing the MIA Cloud Autoscaler with Adaptive Evolutionary and Particle Swarm Multi-Objective Optimization Algorithms
	1 Introduction
	2 Multi-objective Autoscaling Problem
	2.1 Mathematical Formulation of the Multi-objective Autoscaling Problem

	3 Multi-objective Autoscaler MIA
	3.1 First Phase
	3.2 Second Phase
	3.3 Third Phase

	4 Alternative Multi-objective Optimization Algorithms for MIA
	4.1 Algorithm SMS-EMOA
	4.2 Algorithm SMPSO

	5 Computational Experiments
	5.1 PSE Applications
	5.2 On-Demand Instances of VMs
	5.3 Experimental Settings
	5.4 Experimental Results

	6 Related Work
	7 Conclusions
	References

	Best Paper Award, First Place
	Multi-objective Release Plan Rescheduling in Agile Software Development
	1 Introduction
	2 The Multi-objective Release Plan Rescheduling Problem
	2.1 Previous Studies
	2.2 The Multi-objective Release Plan Rescheduling Problem

	3 Multi-objective Optimization Problems
	3.1 The IGD+ Performance Metric

	4 Experimental Set-Up
	4.1 Solution Encoding, Evolutionary Operators and Repair Operators
	4.2 Test Instances
	4.3 Experimental Design and Parameter Settings

	5 Analysis of Results
	6 Conclusion and Future Work
	References

	Author Index

