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Abstract. Acoustic scene classification is a process of characterizing and 

classifying the environments from sound recordings. The first step is to generate 

features (representations) from the recorded sound and then classify the 

background environments. However, different kinds of representations have 

dramatic effects on the accuracy of the classification. In this paper, we explored 

the three such representations on classification accuracy using neural networks. 

We investigated the spectrograms, MFCCs, and embeddings representations 

using different CNN networks and autoencoders. Our dataset consists of sounds 

from three settings of indoors and outdoors environments - thus the dataset 

contains sound from six different kinds of environments. We found that the 

spectrogram representation has the highest classification accuracy while MFCC 

has the lowest classification accuracy. We reported our findings, insights as well 

as some guidelines to achieve better accuracy for environment classification 

using sounds. 

Keywords: Acoustic Scene Classification, Signal Processing, Deep Learning 

Convolutional Neural Network, Autoencoders 

1 Introduction 

Acoustic Scene Classification (ASC) is the process of understanding and classifying 

scenes and environments from ambient audio. It has plenty of use cases in autonomous 

systems such as monitoring, self-driving vehicles and robotics; in helping those with 

visual and hearing disabilities understand their surroundings better; and in analysing 

multimedia recordings. However, there has not been much work done on designing a 

generic and scalable methodology for solving audio classification problems. The lack 



of a generic approach is a major issue, as it has limited the development and widespread 

application of ASC. 

In ASC problems, we generally start with unstructured data in the form of audio 

files. Audio can be represented as 2-D matrices of amplitude, energy, or another 

property of sound against time. As we have a large volume of unstructured data, Deep 

Learning approaches such as Convolutional Neural Networks (CNNs) would be very 

effective at extracting features. While they are commonly used for images, they can 

also be applied to other forms of data that are in 2-D matrix form. To carry out ASC 

using CNNs, we must first extract acoustic features such as volume, pitch and sequence 

of sounds. Raw audio files do not expose these features easily. To get features we can 

input into a CNN, we must convert an audio file into a different form that represents 

features better. Three popular approaches are Spectrograms, MFCCs and Embeddings. 

These approaches are detailed in the Methodology section. Previous research has used 

these approaches to solve specific problems in the field of ASC. They were able to 

optimize a particular approach to a very high degree. However, they did not create any 

kind of general solution that is applicable on a wider scale. 

We hypothesized that a more generic approach or technique will improve scalability 

and reproducibility. Our goal was to figure out what kind of preprocessing and feature 

representation gives us the best result. This would be the first step in developing a 

general approach to CNN-based acoustic scene classification. In order to compare the 

different feature representation approaches, a broad problem was selected: 

classification of indoor and outdoor scenes. We used an audio dataset with six different 

types of scenes, converted them into each of the three feature representations mentioned 

above and compared their performances using several popular CNN models. 

The experimental results show that Spectrograms offer the best results, reaching up 

to 90% accuracy on this problem. The MFCCs were less effective, as the type of 

features they represent are not so distinguishable when applied to ASC. These two 

approaches are very commonly used in audio classification. Embeddings are a less 

common approach, but they proved to be a very lightweight and efficient solution. At 

around 80% accuracy, the results are acceptable but could be improved further. They 

could be used in limited devices such as mobile phones where speed and efficiency is 

more important.  

The paper is organized in the following way: first we discuss previous research done 

in the field of classifying audio using artificial intelligence as well as ASC in general. 

Then we cover the experimental process, starting from the preparation of the data and 

details on the CNN models used. Finally, we evaluate and discuss the results of the 

experiments, and put forward some suggestions for future work. 



2 Related Work 

Analysis and classification of auditory signals with artificial intelligence have a long 

history. Initially, research work was focused on simply detecting and distinguishing 

acoustic events [1] such as distinct noises like claps and speech, or different individuals 

speaking [2]. These early examples of the use of neural networks in the classification 

of audio developed from the intersection of signal processing and artificial intelligence. 

More mature artificial intelligence techniques such as sophisticated convolutional 

neural networks have enabled further exploration of Acoustic Scene Classification 

through different approaches. The DCASE Challenges, initially started in 2013, offer 

datasets and a platform for the exploration of Acoustic Scene Classification [3]. 

DCASE 2013 highlighted the use of large datasets for acoustic scene classification in 

various scenes such as a bus, office, market, et cetera. 

Early research yielded good outcomes with machine learning models. Good results 

were achieved in the DCASE 2013 challenge using algorithms such as support vector 

machines and decision trees [4]. However, as the sophistication and size of datasets 

increased, neural networks became an effective choice. In this specific dataset, Valenti 

et al’s approach using a custom CNN model resulted in higher accuracy compared to 

earlier work - up to 9.7% depending on the technique it is compared to [5]. 

The majority of recent work on acoustic scene classification has followed up on the 

CNN approach. Hussein et al. developed a more in-depth technique using a deep neural 

network with only 3 hidden layers that achieved up to 90% accuracy on the DCASE 

2016 challenge [6]. 

In the DCASE 2020 challenge, several attempts were able to reach 96% test accuracy 

by implementing modern deep convolutional neural networks such as ResNets. While 

both these and the previous approach were highly accurate, they also made use of 

specific preprocessing techniques and model designs that could be difficult to 

implement on a larger scale. 

Finally, an excellent overview of the development and use of deep learning in 

acoustic scene classification between 2013 and 2020 is given in a review paper by 

Abeßer [7]. 

3 Methodology 

The first step is to convert the audio file, an uncompressed .wav file, into a numerical 

form. This returns a one-dimensional array of length equal to the sampling rate in hertz 

– in this case 44,100. This array is completely impractical to use in any kind of deep 

learning application, so we must use a different representation. Initial audio 

preprocessing was carried out on this data, and then it was converted to the three 

different feature representations. 



The CNN models utilized in this experiment were a simple autoencoder, AlexNet, 

ResNet-18 and ResNet-50. ResNets were used because they are an extremely robust 

and powerful architecture for classification problems. Due to the number of layers, it 

would be able to extract features from inputs like Spectrograms that don’t have many 

obvious features. While they are mainly used for images, they could also be used for 

other types of inputs with acceptable performance. The number of deep layers in 

ResNet makes it extremely suitable for generalizing, which is one of our goals. 

Alterations to the structure of the models were kept to a minimum in order to ensure a 

fair comparison. Any changes made were in order to ensure that the input could be 

appropriately fed into the model. 

3.1 Data Organization and Collection 

The dataset was collected from DCASE 2020 challenge [8]. It had three classes of 

indoor, outdoor and transport. These classes were subdivided into nine more subclasses. 

The raw dataset contained 10 second audio clips in 24-bit .wav format taken from ten 

different cities in the world.  

For this paper, we chose to reduce it to two classes: indoor and outdoor. This left us 

with six subclasses, three from each. For Indoor Scenes, the subclasses were ‘Metro 

Station’, ‘Shopping Mall’ and ‘Airport’. For Outdoor Scenes, the subclasses were 

‘Park’, ‘Pedestrian Street’ and ‘Public Square’.  

There were 8640 data samples in total, adding up to 24 hours of audio. Each subclass 

had 1440 data points. We ensured that the number of audio samples for each class was 

equal so that the model was not biased towards any particular category due to 

unbalanced data. The original audio files were binaural at 44.1 kHz. This is a relatively 

small dataset, so we split each of the 10 second audio files into two 5 second files to 

double the size of the dataset. Table 1. Gives the size of the dataset at different stages 

of collection and preprocessing. 

Table 1. Data Organization 

Type of Data No. of Data Points Hours of Audio 

Files in Dataset (10-sec clips) 8,640 24 

Files per subclass 1,440 4 

Indoor Scenes (5-sec clips) 8,640 12 

Outdoor Scenes (5-sec clips) 8,640 12 

Indoor Scenes with Augmentation 17,280 24 

Outdoor Scenes with Augmentation 17,280 24 

Test Data per Class 3,456 4.8 

Train Data per Class 13,824 19.2 

Total Data (with 2 classes) 34,560 48 



 

3.2 Data Augmentation 

Before converting the data into a feature representation, some data augmentation was 

carried out. A small amount of random noise was added and audio tracks were randomly 

shifted forwards and backwards.  

Many other typical augmentations, such as pitch-shifting and extending silences, 

were determined to be detrimental to this dataset. They are typically used for speech-

based datasets. Here, the audio is in the form of a continuous stream of noise rather than 

speech at different tones and with small silences in between. 

This gave us a rich dataset of 34,560 five-second audio clips, half of which was 

augmented.  

3.3 Feature Representations 

The final part of data preprocessing required taking audio samples as input and 

extracting features from the audio signals. By doing so, we aim to find components of 

the audio signals that will help us differentiate it from other categories of signals.  We 

implemented three methods of generating feature representations: producing log-mel 

spectrograms [9], Mel Frequency Cepstral Coefficients (MFCC) [10] and audio 

embeddings. 

MFCCs and Spectrograms.  

To generate MFCCs, first, the audio signal is sliced into 20ms wide frames. We assume 

that there is no change in the signal within each 20ms frame. We applied a short-term 

Fourier Transform on each frame to calculate the power spectrum. This gives us the 

distribution of power into frequency components that make up the signal. Next, we 

applied the Mel filter bank to each power spectra and summed up the energy in each 

filter. This step actually estimates how the human ear perceives sounds at different 

frequencies and different volumes. The last step in the process is to take the discrete 

cosine transform of the logarithm of each filter bank. All these calculations were carried 

out using the python library Librosa [11]. 

Log-mel spectrograms were produced in a similar way. The audio dataset underwent 

a short-time Fourier transform to get spectrograms based on the Frequency and 

Amplitude of the signal rather than Power. The spectrograms were then scaled to the 

Mel scale and saved in .png format. 



 

Fig. 1. Spectrograms of each class. The top row shows Indoor (Airport, Metro Station and 

Shopping Mall from left to right). The bottom row shows Outdoor (Park, Public Square and 

Pedestrian Street from left to right). 

Audio Embeddings 

Humans categorize or recognize things by comparing its details to previous knowledge. 

Many image classification algorithms use the same approach. These algorithms are 

trained on datasets where the input is in the form of images that have objects labelled 

in them. Using audio embeddings utilizes a similar approach for audio classification.  

Embeddings are used to map items from a high dimensional vector space to a low 

dimensional vector space. In dense data such as audio, the embeddings determine 

similarity metrics to other sounds. Essentially, it splits the audio clip into smaller 

intervals. For each interval, it gives a similarity value to all the classes the original 

embedding model was trained on. So, while MFCCs and Spectrograms use features 

extracted directly from the audio signals, Embeddings simply use learned features 

generated by another machine learning model that has been trained to label audio files. 

The embeddings we used were generated using an Audio Embedding Generator [12, 

13]. The generator accepts a 16-bit PCM .wav file as input, embeds the feature labels 

and outputs the result as arrays of 1 second embeddings. The model was trained on 

Audioset, which includes 632 classes. For each second, the embeddings list the 128 

classes that have the highest similarity to the sound. 



The following figure shows an example of each type of preprocessed data, in a visual 

format. Note, that while the MFCCs and Embeddings are depicted visually here, they 

were input into the CNN as two-dimensional matrices. 

 

Fig. 2. Four representations of an audio file recorded at an Airport in Lisbon: a waveform plot 

(top left), a Spectrogram (top middle), MFCCs plotted as a graph (top right) and Audio 

Embeddings plotted as a graph (bottom).  

3.4 Development of CNNs 

Inputting the Spectrograms into the CNNs for training was straightforward, as the 

spectrograms were saved as 224x224-sized images. The MFCCs and Embeddings were 

in the form of two-dimensional matrices, and so could not be input directly. They had 

to be reshaped before being fed into the CNNs. When necessary, the initial layer was 

altered to fit the dataset. 

We tested four CNNs for all three feature representations: ResNet-18, ResNet-50, 

AlexNet and finally an Autoencoder. For each CNN, a limited degree of 

hyperparameter optimization was carried out. 

The ResNet family of neural network architectures is ideal for image classification 

tasks. The ResNet architecture uses stacked layers of residual learning blocks using 

shortcuts between layers to minimize the effect of the vanishing gradient problem [15]. 

We used the SGD optimizer with Cross-Entropy Loss and a learning rate of 0.001. 

Despite being an older architecture, AlexNet [16] was also tested to see how the number 

of parameters affects the results. The results of both models are discussed in the 

Evaluation section. 

We initially tested the autoencoder model for the Embeddings only. The structure of 

the embeddings is such that labels for similar sounds would be clustered together. Using 

a simple Autoencoder with linear layers enhanced this and exposed the largest clusters. 

For the sake of comparison, other autoencoder models were also tested on the other two 

feature representations. 



4 Results and Evaluation 

The following table gives a summary of the results of our experimentation, and a 

discussion of the results follows.  

Table 2. Experimental Results for Spectrograms 

CNN Architecture Test Accuracy Training Accuracy 

Autoencoder 76.2% 79.3% 

AlexNet 86.3% 90.7% 

ResNet-18 89.7% 91.9% 

ResNet-50 90.4% 93.6% 

ShuffleNet 93.1% 95.2% 

 

It’s clear from the table that the Spectrograms offer the best results, up to 93%. 

Considering that these CNNs are normally used for image classification, these results 

are as expected. Most of the models give somewhat acceptable results with the other 

feature representations, getting around 70-80% accuracy. 

 

Fig. 3. Confusion Matrix for the best result – 93.1% with ShuffleNet 

Even a simple fully-connected autoencoder of 4096-2048-1024-512 parameters gives 

us 76.3% accuracy, implying that the spectrograms are actually shallow and do not have 

a lot of features to extract. We used the encoder layer from the aforementioned 

autoencoder to improve feature extraction before feeding the parameters into the 

ResNets to gain a slight improvement. After getting an extremely high value from the 

ResNets but a lower value from AlexNet, we decided to try another state-of-the-art 

model with fewer parameters. We chose Shufflenet, which is a computationally 



efficient CNN architecture, particularly designed for mobile devices with limited 

processing power [17]. While these results do not break any of the benchmarks set in 

previous DCASE challenges, they are all fairly generic approaches that require minimal 

customization to the dataset. This ensures that the results are applicable across different 

acoustic scene datasets rather than being optimized for this particular problem. 

Table 3. Experimental Results for MFCCs 

CNN Architecture Test Accuracy Training Accuracy 

Autoencoder 49.9% 50.0% 

AlexNet 69.8% 89.1% 

ResNet-18 71.3% 86.6% 

ResNet-50 72.1% 88.0% 

 

Due to the features of the MFCCs, using an Autoencoder was completely ineffective, 

as shown by the 50% accuracy on a binary classifier. We note that ResNet models are 

actually too heavy for the MFCC, generally overfitting within a few epochs. The text 

accuracies recorded are before it fully overfits. Using the non-augmented half of the 

data set saw a slight improvement in accuracy, at the cost of even more overfitting. At 

this stage, regularization techniques were ineffective. Therefore, for a dataset of this 

size, augmentation was necessary. 

MFCCs are generally used for speech classification. It can easily distinguish 

between high and low volumes and pitches. However, the audio in this dataset is 

primarily background noise at a similar energy level throughout. Therefore, it is harder 

to extract features using MFCCs compared to other approaches and this feature 

representation has the lowest accuracy of all. 

 

Table 4. Experimental Results for Embeddings 

CNN Model Test Accuracy Training Accuracy 

Autoencoder 80.8% 82.2% 

AlexNet 77.9% 96.8% (overfit) 

ResNet-18 77.6% 99.7% (overfit) 

ResNet-50 77.1% 99.6% (overfit) 

 

The audio embeddings performed surprisingly well considering the nature of the 

dataset. Reducing the audio dataset into a series of labels allowed the autoencoder to 

learn features very easily even if there was much less data compared to the other 

approaches. The original dataset used to develop the embedding generator was focused 

on speech, music and the sounds made by individual objects. Despite being a somewhat 



unsuitable dataset, it gave good results. With a more closely related embedding 

generator, it could give results comparable to Spectrograms at a fraction of the 

computation power. However, no such generator for urban scenes is currently available, 

and developing one from scratch would be out of the scope of this paper. Finally, as 

seen in the table, heavier models like the ResNets and AlexNet led to overfitting when 

used with embeddings. 

At this point, it should be noted that all the models that were run on individual 

subclasses faced significant issues. Even with plenty of augmentation, classifying on 

six classes rather than two led to extensive overfitting and an accuracy of 70% at most. 

It is clear that the dataset is too small to achieve good accuracy unless the classes are 

combined. Generally, the models trained on the Embeddings were able to distinguish 

Metro Station, Shopping Mall, Park and Public Square with a high degree of accuracy 

– close to 80%, while Airport and Pedestrian Street displayed lower confidence. Models 

trained on the Spectrograms showed relatively similar confidence per subclass. 

With typical image classification problems, different objects or segments are highly 

visible, as they have clear contours and different colours. The Spectrograms are not so 

distinguishable, as seen in Fig. 1. So, a huge amount of data is needed to train the 

models to be able to distinguish between different classes. The MFCCs and 

Embeddings do not suffer from this issue, but are not suitable for typical deep networks 

and may require custom CNNs to improve further. 

Additionally, it is clear from both our work and other research that, unlike image 

classification, audio classification does not always benefit from deep networks with lots 

of parameters. The number of features that can be extracted from the Spectrograms or 

other formats is extremely limited. AlexNet has 61 million parameters, while ResNet-

18 has 11 million and ResNet-50 has 23 million. All three networks have very similar 

accuracies and are in fact prone to overfitting. By contrast, the smallest network used 

here, the fully-connected autoencoder with audio embeddings, only has 560k 

parameters. Since datasets for ASC are fairly limited, adding more data to solve this 

problem is not always feasible. Therefore, higher input resolution [18] or additional 

preprocessing may be necessary to achieve better accuracy. 

5 Conclusion 

As the evaluation section shows, the task of Acoustic Scene Classification faces major 

hurdles when it comes to larger models. Extensive data preprocessing and 

augmentations are necessary to achieve high accuracies on even very limited problems. 

Out of the three different approaches tested, Spectrograms offered the best result for 

acoustic scene classification of interior and exterior urban scenes. It achieved over 90% 

accuracy, but required a lot of data to reach this accuracy. 

We suggest not using MFCCs for ASC, as they require extensively customized 

CNNs to get a good result. 



For a lightweight approach, audio embeddings are suitable. Even though the 

embedding generator model was not completely suitable for this domain, it was able to 

achieve almost 81% accuracy. Higher accuracy could easily be reached if an embedding 

generator model is developed that is focused on urban audio. We suggest focusing on 

this approach for further development of a generic approach, since it is an efficient 

process suitable for use in low-power mobile devices. 

Future work to follow up on this paper would involve two other approaches. The 

first would be to increase the resolution and accuracy of our comparison of models by 

using a wider selection of models to see which approach to audio classification works 

best at different sizes of models. Secondly, there are several datasets available for ASC 

outside DCASE. Combining multiple datasets may enable more general conclusions to 

be drawn.  

These avenues of future development mentioned will place the groundwork for 

CNNs focused on audio classification and help acoustic scene classification to be used 

in wider contexts. 
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