Skip to main content

Question Answering for Visual Navigation in Human-Centered Environments

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2021)

Abstract

In this paper, we propose an HISNav VQA dataset – a challenging dataset for a Visual Question Answering task that is aimed at the needs of Visual Navigation in human-centered environments. The dataset consists of images of various room scenes that were captured using the Habitat virtual environment and of questions important for navigation tasks using only visual information. We also propose a baseline for a HISNav VQA dataset, a Vector Semiotic Architecture, and demonstrate its performance. The Vector Semiotic Architecture is a combination of a Sign-Based World Model and Vector Symbolic Architectures. The Sign-Based World Model allows representing various aspects of an agent’s knowledge, and Vector Symbolic Architectures serve on a low computational level. The Vector Semiotic Architecture addresses the symbol grounding problem that plays an important role in the Visual Question Answering Task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bit.ly/2XR5OUc.

  2. 2.

    https://toloka.yandex.com.

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. arXiv e-prints arXiv:1707.07998, July 2017

  2. Anderson, P., et al.: Vision-and-language navigation: interpreting visually-grounded navigation instructions in real environments (2018)

    Google Scholar 

  3. Bahdanau, D., Cho, K.H., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–15 (2015)

    Google Scholar 

  4. Das, A., et al.: Visual dialog. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  5. Eliasmith, C.: How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford University Press, New York (2013)

    Google Scholar 

  6. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in Visual Question Answering. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2019, pp. 5351–5359 (2019)

    Google Scholar 

  8. Gurari, D., et al.: VizWiz grand challenge: answering visual questions from blind people. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3608–3617 (2018)

    Google Scholar 

  9. Harnad, S.: The symbol grounding problem. Physica D 42(1), 335–346 (1990)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  11. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick, R.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. In: CVPR (2017)

    Google Scholar 

  12. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1(2), 139–159 (2009)

    Article  Google Scholar 

  13. Kiselev, G., Kovalev, A., Panov, A.I.: Spatial reasoning and planning in sign-based world model. In: Kuznetsov, S.O., Osipov, G.S., Stefanuk, V.L. (eds.) RCAI 2018. CCIS, vol. 934, pp. 1–10. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00617-4_1

    Chapter  Google Scholar 

  14. Kiselev, G., Panov, A.: Hierarchical psychologically inspired planning for human-robot interaction tasks. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2019. LNCS (LNAI), vol. 11659, pp. 150–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26118-4_15

    Chapter  Google Scholar 

  15. Komer, B., Stewart, T.C., Voelker, A.R., Eliasmith, C.: A neural representation of continuous space using fractional binding. In: 41st Annual Meeting of the Cognitive Science Society. Cognitive Science Society, QC (2019)

    Google Scholar 

  16. Kovalev, A.K., Panov, A.I.: Mental actions and modelling of reasoning in semiotic approach to AGI. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds.) AGI 2019. LNCS (LNAI), vol. 11654, pp. 121–131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27005-6_12

    Chapter  Google Scholar 

  17. Kovalev, A.K., Panov, A.I., Osipov, E.: Hyperdimensional representations in semiotic approach to AGI. In: Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS (LNAI), vol. 12177, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52152-3_24

    Chapter  Google Scholar 

  18. Ku, A., Anderson, P., Patel, R., Ie, E., Baldridge, J.: Room-across-room: multilingual vision-and-language navigation with dense spatiotemporal grounding. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4392–4412, November 2020

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Linda Smith, M.G.: The development of embodied cognition: six lessons from babies. Artif. Life 11, 13–29 (2005)

    Article  Google Scholar 

  21. Savva, M., et al.: Habitat: a platform for embodied AI research. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  22. Osipov, G.S., Panov, A.I., Chudova, N.V.: Behavior control as a function of consciousness. I. world model and goal setting. J. Comput. Syst. Sci. Int. 53(4), 517–529 (2014)

    Google Scholar 

  23. Osipov, G.S., Panov, A.I.: Relationships and operations in a sign-based world model of the actor. Sci. Tech. Inf. Process. 45(5), 317–330 (2018). https://doi.org/10.3103/S0147688218050040

    Article  Google Scholar 

  24. Osipov, G.S., Panov, A.I.: Rational behaviour planning of cognitive semiotic agent in dynamic environment. Sci. Tech. Inf. Process. 48(6) (2021)

    Google Scholar 

  25. Panov, A.I.: Goal setting and behavior planning for cognitive agents. Sci. Tech. Inf. Process. 46(6), 404–415 (2019)

    Article  Google Scholar 

  26. Panov, A.I.: Behavior planning of intelligent agent with sign world model. Biol. Inspired Cogn. Archit. 19, 21–31 (2017)

    Google Scholar 

  27. Plate, T.A.: Holographic reduced representations. IEEE Trans. Neural Networks 6(3), 623–641 (1995). https://doi.org/10.1109/72.377968

    Article  Google Scholar 

  28. Staroverov, A., Yudin, D.A., Belkin, I., Adeshkin, V., Solomentsev, Y.K., Panov, A.I.: Real-time object navigation with deep neural networks and hierarchical reinforcement learning. IEEE Access 8, 195608–195621 (2020)

    Article  Google Scholar 

  29. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229–256 (2004)

    MATH  Google Scholar 

  30. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. arXiv e-prints arXiv:1810.02338, October 2018

  31. Yu, J., Zhu, Z., Wang, Y., Zhang, W., Hu, Y., Tan, J.: Cross-modal knowledge reasoning for knowledge-based visual question answering. Pattern Recogn. 108, 107563 (2020)

    Article  Google Scholar 

  32. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: visual commonsense reasoning. CoRR abs/1811.10830 (2018)

    Google Scholar 

Download references

Acknowledgements

The reported study was supported by RFBR, research Project No. 19-37-90164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey K. Kovalev .

Editor information

Editors and Affiliations

Appendices

A Appendix: Data Labeling

Fig. 6.
figure 6

The user interface for data labeling in Yandex.Toloka

B Appendix: Examples

Fig. 7.
figure 7

Examples of predicted answers given by Vector Semiotic Architecture and NN baseline. First row: both models give the right answer. Second row: NN baseline fails. Third row: Vector Semiotic Architecture fails. Last row: both models fail.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirilenko, D.E., Kovalev, A.K., Osipov, E., Panov, A.I. (2021). Question Answering for Visual Navigation in Human-Centered Environments. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2021. Lecture Notes in Computer Science(), vol 13068. Springer, Cham. https://doi.org/10.1007/978-3-030-89820-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89820-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89819-9

  • Online ISBN: 978-3-030-89820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics