
A Quantum Circuit to Speed-up
the Cryptanalysis of Code-based Cryptosystems

Simone Perriello1[0000−0001−9656−7252], Alessandro Barenghi1[0000−0003−0840−6358],
and Gerardo Pelosi1[0000−0002−3812−5429]

Department of Electronics, Information and Bioengineering - DEIB
Politecnico di Milano, 20133 Milano, Italy

Email: simone.perriello@polimi.it, alessandro.barenghi@polimi.it,
gerardo.pelosi@polimi.it

Abstract. The significant interest in cryptographic primitives providing
sound security margins when facing attacks with quantum computers is
witnessed by the ongoing USA National Institute of Standards and Tech-
nology Post-quantum Cryptography Standardization process. Sound and
precise evaluation of the amount of computation required to break such
cryptographic primitives by means of quantum computers is required to
be able to choose the cryptosystem parameters.
We present a full description of a quantum circuit to accelerate the com-
putation of the solution of the Information Set Decoding problem , which
is currently the best known non-structural attack against code-based
cryptosystems. We validate our design running it on small instances of
error correction codes, which allowed a complete validation on the AtoS
QLM quantum computer simulator. We detail the circuit accelerating
the exponential complexity search phase in the Lee and Brickell variant
of the ISD solver, and provide its computational complexity for crypto-
graphically relevant parameters taken from the third round candidates
in the USA post-quantum standardization process.

Keywords: Post-Quantum Cryptography, Code based cryptography, Informa-
tion Set Decoding

1 Introduction

The overwhelming majority of widely employed asymmetric cryptographic prim-
itives rely on the assumption that factoring large integers or solving discrete
logarithms in cyclic groups with large prime order are infeasible tasks. The most
efficient algorithms for integer factoring and the computation of discrete log-
arithms in numerical cyclic groups with prime order, the general number field
sieve and the index calculus, run in sub-exponential computation time. However,
in a pioneering work in 1994, Peter Shor formulated an algorithm running on a
quantum computer that computes integer factorization in polynomial time [25].
The same algorithm can be adapted to solve the discrete logarithm problem on
any cyclic group [24].

2 S. Perriello et al.

Given the significant efforts put in the construction of large scale quantum
computers, designing quantum-computing resistant asymmetric primitives has
become a pressing need. This need is also witnessed by the USA National In-
stitute of Standards and Technology (NIST) standardization effort which has
begun in November 2017 and has recently entered its third round phase [19], se-
lecting a portfolio of (post-quantum) cryptosystems withstanding cryptanalysis
with quantum computers.

Among the mathematical trapdoors available to build a post-quantum cryp-
tographic primitive, cryptosystems based on linear codes represent a prime can-
didate, with three candidates present in the third round of the NIST standard-
ization effort. The hard problem underlying code-based cryptosystems is either
decoding an error affected codeword of a random linear code, or finding an error
vector corresponding to a syndrome of a random linear code. Such problems were
shown to be NP-hard in [6], and were employed to build two families of crypto-
systems, namely McEliece’s [13] and Niederreiter’s [20]. Both of them build the
trapdoor function out of a non-random, efficiently decodable code, constituting
the private key of the cryptosystem, and out of an obfuscated representation
of the same code, made indistinguishable from a completely random one, which
acts as the public key.

The most effective cryptanalytic tool, agnostic to the choice of the non-
random efficiently decodable code, is the Information Set Decoding (ISD) tech-
nique, proposed by Prange [23]. The original proposal was refined with improve-
ments on the computation complexity, albeit with diminishing rewards over
time [3]. The cumulative impact of all the improvements has indeed a small
repercussion in the choice of the key size [8]. A crucial point in designing cryp-
tosystem parameters to provide a predetermined computational security margin
is to evaluate the computational complexity of the ISD algorithms considering
the potential speedups that can be provided by a quantum computer. Currently,
only studies providing asymptotic costs as a function of the cryptosystem pa-
rameters (e.g., key sizes) are present for quantum accelerated ISDs [7,14]. While
asymptotic bounds help to understand the complexity trend, providing finite-
regime estimates of the computation demands of cryptanalysis of code-based
cryptosystems would allow to derive a more precise estimate of their parameters
(e.g., key sizes). In this work, we describe a quantum circuit to accelerate the
Lee and Brickell approach to ISD [16], which improves over [23]. The choice of
the Lee-Brickell variant allows us to proceed with a quantum circuit that does
not need any quantum RAM element, but only standard quantum gates. In a re-
lated work [22], the authors propose a complete circuit to implement a quantum
version of [23].
Contribution. The aim of this paper is to provide first concrete measures to
be used in the evaluation of the complexity parameters required by the NIST
post-quantum cryptography program. To the best of our knowledge, this is the
first detailed implementation of a quantum circuit that aims to speed up an
ISD algorithm. We design the quantum circuit to speed up the exponential time
search-phase of the Lee and Brickell (LB) algorithm, while leaving the polynomial

A Quantum Circuit for Cryptanalysis of Code-based Cryptosystems 3

time input preparation to a classical controller. We analyze the circuit complex-
ity of our solution, and validate the soundness of the approach by simulating
the circuits with the Atos Quantum Learning Machine (QLM) [2]. We report re-
sults on the cryptographically relevant parameters proposed for two code-based
cryptosystems included in the third round of the NIST post-quantum standard-
ization initiative, showing gains between 210× and 220× with respect to a purely
classic ISD implementation.

2 Background

In this section, we recall the basic notions underlying code-based asymmetric
cryptography, the ISD strategy and provide background information on quantum
computing and Grover’s algorithm.

2.1 Code based cryptosystems

An [n, k] binary linear error correcting code C is a k-dimensional vector subspace
of Fn2 , whose n-length (column) vectors are called codewords. Codes are designed
in such a way that the minimum Hamming distance between any two codewords
is at least d, a value known as code distance. Starting from a k-bit long input
message, m∈Fk2, the objective of the code is to transform m into a codeword c∈C
by adding to it r=n−k redundant bits, a process known as encoding.
C can be completely characterized by a generator matrix G∈Fk×n2 such that

C={c∈Fn2 : c=GTm}. In other words, a codeword c∈C is obtained through a
linear combination of the rows of G. As an alternative to G, a linear code can be
described using the so-called parity-check matrix H∈Fr×n2 as C={c∈Fn2 : Hc=0},
with HGT = 0r×k .

The process of removing the r redundant bits of information from a (possi-
bly erroneous) codeword is called decoding. Specifically, the codeword decoding
problem consists in retrieving the original message m starting from a corrupted
codeword y = c + e, where c∈C and e is an n × 1 binary (column) vector with
Hamming weight Wt (e) = t, 0<t<b d2 c. To this end, we can equivalently recover
either c or e. To recover the error e, many algorithms use the so-called syndrome,
i.e. the r × 1 (column) vector s defined as s=Hy=H(c+e)=He. This problem is
known as syndrome decoding.

If H is randomly chosen among the ones in Fr×n2 with rank k, both the code-
word decoding problem and the syndrome decoding problem are NP-hard [6]. To
build a sound cryptosystems, we can therefore start from a non-random and effi-
ciently decodable code with parity-check matrix H ′, and then conceal it through
a multiplication with a random non-singular matrix S, yielding H=SH ′. The
random-looking matrix H can then be used by anyone to send a message over a
public channel: it suffices to encode the message as an error vector e of weight
t, compute its syndrome and send it. An attacker trying to recover the original
message e is then forced to find the solution to the syndrome decoding problem
for an apparently random parity-check matrix H .

4 S. Perriello et al.

2.2 Information Set Decoding (ISD)

The state-of-the-art method to efficiently solve the syndrome decoding problem
is based on ISD techniques. The underlying intuition, due to Prange in [23], is to
see the syndrome s as obtained by the sum of the t columns of H indexed by the
bit-positions in the error vector e containing a term equal to one. To find out the
bit-positions in e corresponding to an asserted bit, Prange’s idea is to guess k bit-
positions in e corresponding to a zero-bit. After that, by using a permutation
matrix Pn×n, Prange’s algorithm continues by packing all the columns of H
indexed by the said k positions to the leftmost part of H , obtaining a new matrix
Ĥ = HP. The next step brings Ĥ in reduced row echelon form, simultaneously
finding a linear transformation represented by an r × r non-singular matrix U,
such that UĤ = [Vr×k | Ir]. The leftmost matrix Vr×k is a random-looking matrix,
while Ir is an identity matrix with size r. The procedure fails if the reduced row
echelon form cannot be obtained, i.e., whenever the rightmost UĤ has a singular
r × r submatrix on its right instead of an identity matrix. In this case, we guess
another permutation matrix Pn×n and we recompute the reduced row echelon
form.

Observing that s = He = (HP)P−1e = Ĥ(P−1e), we have that s̄ = Us =
UĤP−1e = [Vr×k | Ir]P

−1e. The permutation is expected to pack in the r right-
most columns of H all its columns indexed by the bit-positions of e correspond-
ing to an asserted bit. As a consequence, also the vector P−1e will have its t
asserted bits in its r trailing elements, i.e.: P−1e = [0k×1 |e

′
r×1]. For this rea-

son, s̄ can be seen as the syndrome of the permuted error P−1e through the
permuted and row echelon reduced parity-check matrix UĤ = [Vr×k | Ir], i.e.:
s̄ = [Vr×k | Ir][0k×1 |e

′
r×1] = e′r×1. Indeed, in the case that the chosen permuta-

tion packs k positions of e corresponding to unasserted bits on its top part, then
the multiplication between the syndrome and U produces the non-zero part of
the permuted error vector itself. To test if the permutation P actually packed
k-zero positions of the error in the first k rows, Prange’s algorithm checks if the
Hamming weight of s̄ is equal to the one of the error vector, t. In this case, the
error vector can be retrieved by calculating P[0k×1 | s̄] = P[0k×1 |e

′
r×1] = e. If the

test for the permutation correctness fails, the algorithm restarts, picking another
random permutation and repeating the reduced-row-echelon form computation
and the test on s̄. The complexity of Prange’s algorithm can be derived by ob-
serving that it is a Las Vegas algorithm, that is, a randomized algorithm which
always produce a correct result (i.e., the value of e or it notifies about a failure)
in a finite running time. The expected runtime of the algorithm depends on the
expected number of times, N , it must guess the permutation matrix before suc-
ceeding, as well as on the dimensions of H , n and r, and the weight t of the error
vector e, i.e.: CPrange-ISD(n,r, t) = N · CPrange-iter(n,r). Since each matrix guess is
independent of the others, N is computed as N = 1

Prsucc
, with Prsucc being the

probability that a single computation succeeds. In Prange’s algorithm, Prsucc is
computed by dividing the number of permuted error vector admissible by the
hypotheses, i.e. all the vector configurations having all the t error-affected bits in
the last r positions, by the total number of possible error vector configurations,

A Quantum Circuit for Cryptanalysis of Code-based Cryptosystems 5

i.e., Prsucc =
(r
t

)
/
(n
t

)
. An additional factor that makes a single iteration of the

algorithm fail is the probability that the procedure computing the reduced row
echelon form of Ĥ does not succeed. However, the probability that a random
r × r binary matrix is non-singular is

∏r
i=1(1 −

1
2i
) [3], a factor quickly converg-

ing to ≈ 0.2887 for increasing values of r. This contribution adds a constant
factor of about 4 to the number of repetitions N be done by Prange’s ISD.
As a consequence, the prevailing cost in a single repetition of Prange’s algo-
rithm is the computation of the row-echelon form reduction of Ĥ , which takes
Crref =

3nr2

4 +
nr
4 −

n
2 +

3r2

4 −
r
2 bit operations via a simple Gaussian elimination.

Finally, to compute Us and to check the weight of s̄, the algorithm requires
O(r2) and 7r+log2 (r) bit operations.
Lee and Brickell’s ISD. The exponential contribution to the algorithmic com-
plexity of Prange’s ISD comes from the number of iterations that have to be
computed, which is exponential in n and t. The ISD algorithm proposed by Lee
and Brickell [16] reduces the average number of iterations, at the cost of adding
a computation with exponential complexity for each iteration.

The main idea of this optimization is to tolerate the presence of p ≥ 1 asserted
bits of the permuted error, P−1e, in its leftmost k bit-positions adding all the
possible

(k
p

)
choices of columns from the V matrix before performing the check

on the weight of Us. To do so, consider P−1e = [e′
k×1
|e′′r×1], with Wt (e′) =

p and Wt (e′′) = t − p. Denoting as vj,0 ≤ j < k, the j-th column of the
submatrix V of Ĥ , UĤ = [Vr×k | Ir], we can now rewrite s̄ = Us as s̄ =
[V | Ir][e

′
k×1
|e′′r×1] = V e′

k×1
+ e′′ = e′′ +

∑
j∈supp(e′) vj , where supp(w) denotes

the set of indexes of the asserted components/bits in w. Rearranging the terms,
we obtain s̄−

∑
j∈supp(e′) vj=e

′′, which states that, if p asserted components were
present in the portion of the permuted binary error vector multiplied by V , the
weight Wt

(
s̄ −

∑
j∈supp(e′) vj

)
= Wt

((⊕
j∈supp(e′) vj

)
⊕ s̄

)
corresponds to the

number of asserted components of the permuted error portion multiplied by I ,
that is t − p.

Given a parity-check matrix H and a syndrome s, the Lee and Brickell’s
variant of the ISD thus requires each iteration of the algorithm to compute the
reduced row echelon form of the permuted parity-check matrix Ĥ deriving U
such that UĤ = [V |Ir], compute s̄ = Us and then test, for all the

(k
p

)
possible

sums of p columns of V , if adding them to s̄ yields a vector with Hamming
weight equal to t − p. If the check is successful, then the positions of the asserted
bits in the permuted error vector portion e′′ are derived from the positions of
the asserted bits in vector resulting from the sum of s̄ and the p columns of V
that have been selected, while the positions of the asserted bits in e′ are derived
from the indexes of the columns of V that have been added to the syndrome s̄.

The computational cost of a single iteration of the Lee and Brickell algorithm
is CLee-Brickell-iter(n,r, p) = Crref+O(r2)+O

(
(rp + 7r + log2(r))

(k
p

))
bit operations.

The last term considers the cost of performing p−1 additions of r-bit long vectors
for each weight test, plus the linear cost of the weight test itself. Such an increase
in the computation cost of a single iteration is traded off for a significant increase

6 S. Perriello et al.

State
preparation Oracle Diffusion Measure

Fig. 1. High level overview of Grover’s algorithm to speed up the computation of the
zeroes of a generic Boolean function.

in the probability of success of a single iteration (i.e., the guessing of a matrix P),

which becomes PrLB−succ =
(kp)·(

r
t−p)

(nt)
. We note that, while p is a free parameter

in the Lee-Brickell ISD variant, its asymptotically optimal value was found to
be 2 with classic computing, and tested by exhaustive search in [3].

The exponential-time exhaustive search with complexity O
(
rp

(k
p

))
for the

position of the p remaining errors in the permuted error vector is the main
candidate to be sped up by a quantum computer. Indeed, the reduced row ech-
elon form computations and the matrix-vector multiplications, required in the
remainder of the algorithm, are polynomial-time procedures, which have a negli-
gible impact on the iteration time for cryptographically relevant parameters [9].

2.3 Grover’s algorithm

In this work we will rely on the algorithmic framework proposed by Grover [12],
in short known as Grover’s algorithm. The algorithm finds the value of the input
x∗ ∈ {0,1}n such that the Boolean function f : F2n 7→ F2 evaluates to 1, under the
assumption that only a single value x∗ exists, in O(

√
2n) function computations.

The classical algorithm, on the other hand, needs O2n function computation to
obtain the result.

Grover’s framework, summarized in Figure 1, relies on four steps, of which
the second and the third are repeated O(

√
2n) times: the preparation of a quan-

tum computer input state, the computation of the so-called oracle function, the
computation of a diffusion function, and a final measurement stage. The end
goal of the algorithm is to obtain x∗ with a high probability upon measurement,
using as few iterations as possible of the oracle and diffusion steps. We will now
detail the description of the first three stages of the Grover framework.
State preparation. The framework proposed by Grover begins by constructing
a uniform superposition of all the possible basis states, |ψ0〉. Each basis state
can be thought as labeled with binary strings corresponding to the elements of
the Boolean function f , all with equal amplitudes. Denoting with D ⊆ {0,1}n

the domain of function f , with |D| = d, we want to have an input quantum state
described as

|ψ0〉 =
1
√

d

∑
x∈D

|x〉 = α∗r |x
∗〉 + αr

∑
x,x∗

|x〉 (1)

where αr and α∗r are the amplitudes associated to states x , x∗ and x∗ respec-
tively. At this point we have αr = α∗r =

1√
d
. In the original article by Grover,

A Quantum Circuit for Cryptanalysis of Code-based Cryptosystems 7

and in the vast majority of the literature, such superposition contains all the
basis states, as the Boolean function admits any Boolean string with a matching
length as input.
Oracle function computation. The computation of the oracle function in
Grover’s framework aims at identify the basis state corresponding to x∗, the value
we are looking for. One computation doing so acts on n + 1 qubits, where the
first n encode the input to f and the last one is initialized to 0 and maps |x,0〉 7→
|x, f (x)〉, in which the comma is used to stress the action of the oracle on the
last qubit. Concretely, this computation can be performed with a set of quantum
gates corresponding to the classical gates required to compute f applied to the
first n qubits, adding the result to the last qubit. The computation employed
in Grover’s algorithm starts from the previous approach and considers what
happens if, instead of setting the last qubit to |0〉, it is set to |−〉 = 1√

2
(|0〉 − |1〉).

It can be shown that the computation maps |x,−〉 7→ (−1) f (x) |x,−〉, effectively
storing the information on whether the basis vector is the one corresponding to x∗

in the sign of the amplitude of the basis vector itself. The use of the additional
result qubit, although convenient for explanation purposes, is not required in
practical implementation, and the computation performed is then represented
as |x〉 7→ (−1) f (x) |x〉. Applying this computation to the initial state prepared
during the state preparation step |ψ0〉 yields the following mapping:

α∗r |x
∗〉 + αr

∑
x,x∗

|x〉 7→ −α∗r |x
∗〉 + αr

∑
x,x∗

|x〉

effectively singling out the basis vector representing x∗ by changing the sign of
its amplitude α∗r .
Diffusion. The task of the diffusion stage is to build on the output of the oracle
stage to produce a superposition in which α∗r — the amplitude of the vector
representing x∗ — increases its modulus. To do so, Grover observed that the
state after the oracle can be rewritten as

|ξ〉 = −α∗r |x
∗〉 + αr

∑
x,x∗

|x〉 = |ψ0〉 − 2α
∗
r |x
∗〉 (2)

From this, Grover observed that applying the linear transform S = 2 |ψ0〉〈ψ0 | − I
to |ξ〉, and recalling that we indicate with d the size of the domain of the function
f , we obtain:

|ψ1〉 = S |ξ〉 =
d − 4

d
|ψ0〉 +

2
√

d
|x∗〉

Therefore, the state |ψ1〉 is a non-uniform superposition of all the possible
basis states, where the one representing the value x∗ has twice the amplitude
with respect to a uniform superposition. Concretely, the S transform is computed
as PS0P−1, where S0 is a transform inverting the sign of the amplitude of the
all-0 quantum state, while P is the transform which maps the |0n〉 state onto
|ψ0〉.

8 S. Perriello et al.

Number of iterations. Grover observes that applying again the oracle compu-
tation and diffusion procedure to |ψ1〉 will keep increasing the amplitude of the
desired basis state, while reducing the others. The computation is repeated for
a number of times sufficient to make the probability amplitude of the searched
state |x∗〉 grow to a point where measuring the superposition will yield it with
high probability. Care must be taken in choosing the right number of iterations
since the probability of success does not increase monotonically with the number
of iterations. It can be shown indeed that the optimal number of iterations to
have a close to 1 chance of observing |x∗〉 upon measurement is ≈ O(

√
d). As

shown in [10] we can also use half the number of iterations to have a probability
close to 50% to observe |x∗〉.
Amplitude sign flip subcircuit. The goal of this subcircuit, used in both the
oracle and the diffusion stage, is to invert the sign of the amplitude associated
to a specific quantum state, and it can be implemented as a multi-controlled Z
(MCZ). This gate indeed inverts the sign of the all-1’s state, while leaving all
other states unchanged. If the MCZ involves m qubits, m−1 qubits act as control
qubits, while one acts as target. Our goal is therefore to express the state for
which we want to change the sign of the amplitude as an all 1-state right before
performing the sign flip. For the oracle, this goal requires to translate the |x∗〉
into an all-1 state on the qubits expressing the result of the function evaluation.
On the other hand, in the diffusion stage, S0 requires a sign inversion of the all-0
state. As a consequence, to be able to use the MCZ, we need to apply an X gate
before and after the MCZ in order to have a transform equivalent to S0.

Another relevant difference between the oracle and diffusion phase is in the
involved qubits. While in the oracle the circuit acts on all the qubits storing the
result of the oracle computation, in the diffusion the involved qubits are the ones
storing the input quantum state superposition. In the plain version of Grover’s
algorithm those qubits are identical, but it is not necessarily the case.

3 A Quantum Circuit to Speed-up ISD Iterations

In this section, we describe our approach to the acceleration of the exponential-
time exhaustive search for the sum of the p columns of V which, added to the
transformed syndrome s̄, yields a weight t − p vector, as required in the Lee-
Brickell ISD. To employ the algorithmic framework proposed by Grover, we
recast the problem of finding the correct sum of p columns of V into a Boolean
function with a mono-dimensional output. We consider the Boolean function f ,
f : D→ {0,1}, where D ⊆ {0,1}k is the set of all the weight-p, length-k Boolean
vectors. Let x ∈ D, x = (x0, . . . , xk−1); we define f as:

f (x0, . . . , xk−1) =

{
1 if Wt

((⊕
j∈supp(e′) vj

)
⊕ s̄

)
0 otherwise

(3)

The goal of the algorithm is to find the unique input x∗ for which f returns
1. As explained in Section 2.3 we need to create a quantum circuit, the oracle,

A Quantum Circuit for Cryptanalysis of Code-based Cryptosystems 9

that inverts the sign of the amplitude of |x∗〉, leaving all other quantum states
untouched. To exploit the power of quantum computing we additionally want to
prepare an equal-weight superposition of all the possible inputs at once.

3.1 Preparing a superposition of all column selections

As per Equation (3), our algorithm expects as input a state which is the superpo-
sition of states representing length-k, weight-p Boolean strings. This state, called

Dicke state and represented as
��Dk

p

〉
, is defined as

��Dk
p

〉
=

(
k
p

)− 1
2 ∑

Wt(x)=p

|x〉 , x ∈

{0,1}k . To the best of our knowledge, the most efficient quantum circuit to pre-
pare a Dicke state for a generic value of p is the one presented in [18], which
is an improvement over the previous best algorithm presented in [5]. The solu-
tion proposed in [5] is quite efficient, as it only requires p X gates, and O(k + kp)
CNOT gates and RY gates, with an overall depth equal to O(k). The work of [18]
improves the previous solution in its cost in CNOT and RY gates to O(k + p2),
while keeping the same circuit depth: we report the detailed cost of generating��Dk

p

〉
in Table 1.

We recall that the qubits involved in the input preparation will be used in
the diffusion stage. As explained in Section 2.3, in the amplitude sign flip stage
we have to apply an X gate on the involved qubits before and after the flip. In
our algorithm the involved qubits are the ones belonging to the sel register.

3.2 Designing Grover’s oracle function

We now describe the quantum circuit to compute Grover’s oracle function for the
Boolean function f . This quantum circuit is split in five stages: i) the selection
of a set of columns of V corresponding to the set entries of the Boolean input
vector |x〉, ii) the computation of the actual Boolean sum (xor) of the columns
themselves and the syndrome s̄, iii) the computation of the Hamming weight
of the result of ii), iv) the comparison of the Hamming weight with the integer
value t− p and v) the amplitude sign flip if the previous comparison is successful.

In order to leave the input states |x〉 , |x∗〉 unaltered, as demanded by the
oracle model, we have to perform an uncomputation of the oracle circuit before
the flip phase, along the lines of the common compute-uncompute paradigm of
quantum computing. Since the uncomputation is simply the application of the
same gates in reverse order, we do not detail this portion of the circuit.

For the sake of clarity, we will assume that r is a power of two in the descrip-
tion. We will employ a running example where V is a 4 × 4 binary matrix and
the transformed syndrome s̄ vector is 4 elements long, with the following values:

V =


1 1 0 0
1 0 1 1
1 1 1 0
0 1 0 1


 r

︸︷︷︸
k

s̄ =


0
1
1
0



10 S. Perriello et al.

sel k

sum
H
W
C

r
X

X

cins r/2

couts r-1
Z

V s̄

Fig. 2. High level overview of the circuit employed as the Grover oracle.

Figure 2 depicts the instance of the proposed circuit corresponding to the run-
ning example. The circuit acts on four quantum registers: sel (k qubit wide),
containing the input superposition; sum (r qubit wide), containing the superpo-
sition of the addition of the columns of V after stage ii); cin (r2 qubit wide) and
cout (r − 1 qubit wide), used by the Hamming weight computation and check
(stage iii) and iv)) to store carries.
Columns and syndrome addition. We compute in superposition all the pos-
sible Boolean sums (xor) of p columns out of k from the matrix V , storing them
in the sum register. We note that the matrix V is known to the classical controller
circuit driving the quantum computer at each repetition of the ISD procedure,
and can therefore be considered as fixed from the quantum computer standpoint.

To compute the sum we employ each i-th qubit of the sel register, set to the��Dk
p

〉
state, to drive a group of CNOT gates, one for each set term in the i-th

column of V . Considering our running example, the first (topmost in Figure 2)
qubit of sel controls three CNOT gates acting on the first three bits of sum,
since v0, the first column of V , is equal to [1110]T . Performing the addition of
the columns of V in this fashion requires an amount of CNOT gates equal to
the number of set terms in the matrix V . Since V is the result of a reduced row
echelon form computation on a random matrix, we expect that, on average, half
of its elements will be equal to 1, giving therefore an average of rk

2 CNOT (and
a worst case of rk CNOTs). From a circuit depth standpoint, we note that, if
k ≥ r (as it is extremely common in code-based cryptography) it is possible to
schedule the action of the rk CNOTs of the worst case in a circuit with depth
at most k. Indeed, such a scheduling is possible as there are k controlling lines
which pilot r CNOTs each. It is thus possible, at each gate layer, to run CNOTs
with both the controlling and controlled bits different from each other.

Finally, the circuit needs to add (xor) the transformed syndrome s̄ to the
contents of the sum register, regardless of the choice of added columns from V .
This is done via a set of X gates, applied to the qubits in sum corresponding to
set terms in the s̄ vector. In our running example, the X gates are applied to the
second and third qubits of sum, as the transformed syndrome value s̄ is [0110].
We observe that the syndrome addition will require at most r X gates, and r

2
gates on average, that can be interleaved with the previous column additions.

A Quantum Circuit for Cryptanalysis of Code-based Cryptosystems 11

cin0

+

sum0
sum1

+

cout0
cout2 ⊕

with

(t− p)2

cin1

+

cout1
sum3
sum2

(a) HWC circuit acting on sum

a

b X X

c

(b) Our optimized design for
a 1-qubit operand adder

Fig. 3. (a)) shows the two subcircuits used for Hamming weight compute and check on
the sum register for the running example. The computation result is stored on cout2,
cout1 and sum3. Afterward, it is compared against the one’s complement of the Boolean
representation of the constant value (t − p)2. (b)) shows our construction of an adder
working with two 1-qubit register. The sum of the input value a and b is put in c and
b, where c is the most significant bit.

Computing the Hamming weight. After completing the sum of the columns
of V and the transformed syndrome s̄, the oracle circuit computes the Hamming
weight of the result (stage iii)). This is depicted in Figure 2 as the Hamming
Weight Check gate, (HWC for short), acting on sum, cin and cout, while Fig-
ure 3a reports the full HWC circuit for our running example. Our approach to
computing the Hamming weight stems from the classical one employing a log-
arithmic depth adder tree. We compute the superposition of the values of the
Hamming weights of the r-sized sum register using an adder tree of depth log2 (r).
The first layer of the adder tree has only 1 qubit operand adders that store their
carry-out on a qubit from cout. Later layers of the adder tree use the output
of early layers to calculate the sum, until we obtain a single sum as output of
the last layer. To be able to use quantum adders in our circuit, we used Cuccaro
proposal of [11], a reversible variant of the classical ripply carry adder. The Cuc-
caro adder performs a partially in-place addition by storing the sum of its two
input registers x and y, containing the binary representation of values a and b
respectively, on y. It also uses an additional qubit for the carry-in and one more
to store the carry-out. The carry-in qubit is always restored to its initial state
at the end of the adder circuit and can thus be reused by all adders. However,
to run all the adders at the same layer in parallel, we employ a total number of
carry-in qubits exactly equal to the number of adders at the first layer.

To compute the number of gates required by the HWC subcircuit, we ob-
serve that a Cuccaro adder acting on two n-qubit input registers requires 2n−1
CCNOT gates, 5n+1 CNOT gates and 2n X gates, with a depth of 2n+6. For
n=1, we enhanced Cuccaro proposal by implementing an adder (Figure 3b) re-
quiring only 1 CCNOT, 1 CNOT and 2 X gates with depth 4. The adder tree
circuit requires log2 (r) layers. The i-th layer employs r/(2i) adders, for a total
of

∑log2(r)
i=1

r
2i
=r−1 adders. Consequently, r

2 carry-in and r − 1 carry-out ancillary

12 S. Perriello et al.

Table 1. Number of quantum gates and depth as a function of Lee-Brickell ISD pa-
rameters for the different subcircuits. We need an additional MCZ(log2 (r)) gate for the
Oracle stage and an MCZ(k − 1) gate for the Diffusion stage.

State preparation
Cost metric Dicke state i)

X p
CNOT 5kp − 5p2 − 2k
RY 4kp − 4p2 − 2k + 1

Depth O(k)

Diffusion
Cost metric v)

X k + 2p
CNOT 10kp − 10p2 − 4k
RY 8kp − 8p2 − 4k + 2

Depth O(k)

Oracle
Cost metric Column addition ii) Hamming weight compute iii), check iv)

X r 8r − 2 log2 (r) − 2 log2 (t − p) − 6
CNOT rk 9r − 10 log2 (r) − 22
CCNOT 0 6r − 4 log2 (r) − 6

Depth O(k) 2 log22 r + 14 log2 (r) − 8

qubits are required. Each adder belonging to the i-th layer accepts as input two
i-qubit strings. We can therefore compute the overall number of gates required as∑log2(r)

i=1
r
2i

Add_Cost(i), with Add_Cost(i) denoting the gate cost of a single
adder accepting as inputs two i-qubit strings. The summation expansion gives
the gate-count shown in Table 1. The global depth can be computed by summing
together the depth of just a single adder per level, since at the same level all the
adders act on distinct qubits and can therefore be run in parallel.

Since Cuccaro’s adder reuses one of the input registers to store part of the
sum, at stage i the result is stored on i + 1 qubits. Therefore, in the final stage,
the overall sum is stored on log2 (r) + 1 qubits, that we will denote as hw.
Checking the Hamming weight value and flipping stage. The final stage
of the oracle function for Grover’s algorithm compares the obtained Hamming
weight values in superposition with the target weight of t− p (stage iv)) and flips
the amplitude of the states where a match occurs (stage v)). For this reason, we
perform a xor operation between the hw register, containing the superposition
of Hamming weight computed in phase iii), and the one’s complement of the
Boolean representation of the constant value (t − p)2. In this way, if a certain
state is such that Wt (hw) = t − p, all the qubits belonging to hw will be in
state |1〉. As a result, we can apply the multi-controlled Z (MCZ) to invert
the sign of the amplitude of |x∗〉. This process requires only X gates. Indeed,
in the worst case, p = t and the value of the addend is the all-ones string
represented on log2 (r)+1 qubits, a quantity smaller than r. As a result, we need
log2 (r) + 1 − log2 (t − p) X gates to carry out the xor operation. If the output of
stage iii) is a state containing the binary representation of t − p, the said basis
state will have, inside the hw register, an all-ones bitstring. We finally employ
hw in a multicontrolled Z gate to perform the amplitude sign flip, as described
in Section 2.

A Quantum Circuit for Cryptanalysis of Code-based Cryptosystems 13

A noteworthy point to analyze is how the n-controlled Z gate is translated
into a sequence of elementary gates. The approach used in [4] requires 2n − 2
CNOT gates, 2n − 1 gates ∈ SU(2). Therefore, the number of gates increases
exponentially with the number of control qubits, producing a huge impact on
the resource consumption, without however impacting adversely the number of
qubits required. On the other hand, in [21], a simpler approach was presented,
requiring n additional qubits and an equal number of CCNOT, plus 1 CZ. The
total depth of this decomposition is O(n).

4 Experimental Evaluation

To validate the functionality of the proposed circuit for the Grover oracle func-
tion and the entire resulting Grover we employed codes smaller than the ones
employed in cryptographic systems, to allow their simulation on classic hard-
ware. We chose the original Hamming code (n, k, d) = (7,4,3), which is able to
correct t = 1 error bit, and random codes up to n = 23 and k = 12 able to correct
more than one error bit.

The validation of our Grover-accelerated Lee-Brickell search was done pre-
computing a pair (V , s̄) matching Lee-Brickell requirements on the weights of the
two portions of the permuted error P−1e. We employed this pair (V , s̄) to simu-
late the execution of the corresponding quantum circuit on the Atos Quantum
Learning Machine [2] simulator. After successfully validating the soundness of
our circuit, we simulated the execution of the entire ISD procedure, including
the classical random guessing of the required permutation.

To evaluate the computational complexity advantage of our solution with
cryptographically relevant parameters, we consider the parameter sets for each
of the NIST security levels for both the Classic McEliece [8] cryptosystem, the
finalist in the NIST Post quantum standardization effort among code based
cryptosystems, and Bike [1], one of the alternate candidates. We left out the
HQC [17] cryptoscheme from our analysis since its specification consider a raw
asymptotic limit, independent from the ISD technique used. The NIST security
levels are defined as the computational effort of breaking one of the three AES
variants, and therefore correspond to a computational effort of about 2128 (level
1), 2192 (level 3) or 2256 (level 5) AES encryptions. Table 2 reports the number of
gates, split by kind, and the number of qubits needed to build the Grover oracle
according to our design. Table 2 also reports the optimal value of p for the Lee-
Brickell ISD with our technique. The first noteworthy point is that the optimal
value of p, obtained through an exhaustive design space exploration, is higher
than the one for the classic counterpart, i.e. p = 2. This is a result of speeding
up the exponential search of the Lee and Brickell ISD, therefore comparatively
reducing the amount of computation to be done for a given choice of the p
parameter.

The second point is that our design requires a relatively small amount of
qubits, at most 217, making our design plausible even in the scenario where
quantum computers with millions of qubits are not available. We notice also

14 S. Perriello et al.

Table 2. Number of gates, qubits and depth required to build the proposed quantum
circuit. Figures are relative to the value of p minimizing the total number of gates
required.

Scheme NIST p Grover Grover Grover Grover Gate count
level Iter.s Depth Qubits X CNOT CCNOT RY CZ Tot.

BIKE
1 3 218 234 215 236 245 235 236 219 245

3 3 220 237 216 238 249 237 239 221 249

5 3 221 238 217 240 251 240 240 222 251

McEliece
1 13 257 271 212 271 278 270 275 258 278

3 15 267 281 212 281 289 281 285 268 289

5 27 2124 2139 213 2139 2147 2138 2144 2125 2147

Table 3. Comparison between our hybrid Lee-Brickell algorithm, the classical Lee-
Brickell algorithm and the full-quantum Prange algorithm proposed in [7].

Proposed hybrid ISD (total)Classic ISD Quantum [7]
SchemeNIST p Quant.Class.Depth Qubits p Asymp. Asymp.Asymp.

Level gates gates Time Gates Qubits

BIKE
1 3 2161 2159 2159 215 2 2165 2111 229

3 3 2228 2225 2225 216 2 2232 2147 231

5 3 2295 2291 2291 217 2 2299 2182 232

McEliece
1 13 2152 2106 2145 212 2 2162 2107 223

3 15 2194 2139 2186 212 2 2206 2129 224

5 27 2300 2188 2291 213 2 2321 2189 226

that the circuit depths obtained for the optimal p of the BIKE cryptosystem
are below the 240 mark reported by NIST as the most stringent bound for the
plausibility of a sequential computation [19].

We note that the depth of our quantum circuit does not depend on the
value of p, while the number of gates involved depends on O(p2). However, the
largest contribution of p to the total computational cost of the quantum part of
our algorithm, O

(√(k
p

))
, is given to the number iterations. Therefore, hardware

realizations of quantum computers will only tolerate depths lower than the one
required by the optimal choice of p, our algorithm can be re-tuned to adapt.

Furthermore, our approach can be parallelized over multiple separate quan-
tum computers, thanks to the probabilistic nature of the ISD. Indeed, all the
iterations of the ISD algorithm can be run in parallel: separate controllers can
prepare independent pairs of (V , s̄) to be fed to the quantum computers, simply
taking care of exploring separate portions of the column permutation space.

Table 3 reports the overall computational cost of our quantum accelerated
Lee-Brickell algorithm, compared to the estimated gate counts for its classic
counterpart. In order to estimate the number of repetitions of the oracle-diffusion
computations, we consider a number of repetitions which allows us to reach a

A Quantum Circuit for Cryptanalysis of Code-based Cryptosystems 15

probability as close as possible to 1 to observe |x∗〉 upon measurement. It is
possible to halve the number of Grover iterations accepting a success probability
close to 50%; however, given the total computational effort, a factor of 2 does
not have a significant impact.

Table 3 also reports the results of the asymptotic estimates for the number of
quantum gates and qubits required by the high level description of a Prange’s ISD
algorithm provided in [7]. The approach of [7] employs a full-quantum strategy,
in which the guess of the information set and the reduced row echelon form
computation are also performed by the quantum device. The proposal reports
a number of qubits equals to nO(1). Given that we must represent the whole
generator matrix G ∈ Fk×n2 and the codeword c ∈ Fn2 , it is reasonable to assume
that the cost will be in the order of O(n2). The estimate for the number of gates
provided in [7] is O(n3) for a single Grover iteration, with a number of iterations

equal to
√(n

k

)
/0.29

(n−t
k

)
. It is worth noting that [7] leaves the input preparation

and diffusion stage out of the gate counts, while they require additional quantum
gates, and considers only asymptotic gate costs. Further research is therefore
needed in order to have closed-form figures for the proposed quantum circuit.

We highlight that a promising direction for future work is the realization of
quantum ISD circuits concretizing the approaches of [14, 15]. Indeed, the works
evaluate only the expected asymptotic computation costs of two ISD approaches,
highlighting that they have the potential to improve on the ones of Prange and
Lee-Brickell.

5 Concluding Remarks

We presented a quantum circuit to speed up the execution of the exponential-
time portion of the Lee and Brickell’s ISD algorithm. Our proposal allows to
implement a quantum accelerator for the Lee-Brickell variant of the ISD, keeping
the circuit depth within the most stringent bounds pointed out by the USA
NIST [19], and a qubit count varying from 213 to 217 for all set of parameters of
two finalists of the NIST competition. Our solution gains a factor between 210×
and 220× in speed with respect to the purely classic implementation, providing
a concrete quantification of the number of gates of the quantum circuit. The
proposed solution also allows to pipeline the classic and quantum computations
hiding the classic controller latency and allows to parallelize the operations on
multiple quantum accelerators.

Acknowledgment

The research activity was partially funded by Atos Italia S.p.A. with a research
grant on quantum computing.

16 S. Perriello et al.

References

1. Aragon, N., Barreto, P.S.L.M., Bettaieb, S., Bidoux, L., Blazy, O., et al.: BIKE:
Bit Flipping Key Encapsulation. https://bikesuite.org

2. Atos: Quantum Learning Machine, https://atos.net/en/solutions/
quantum-learning-machine

3. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime
analysis of information set decoding algorithms. Algorithms 12(10), 209 (2019),
https://doi.org/10.3390/a12100209

4. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computa-
tion. Physical rev. A 52(5), 3457 (1995)

5. Bärtschi, A., Eidenbenz, S.J.: Deterministic preparation of dicke states. In: Gasie-
niec, L.A., Jansson, J., Levcopoulos, C. (eds.) Fundamentals of Computation The-
ory - FCT 2019, Copenhagen, Denmark, August 12-14, 2019. LNCS, vol. 11651,
pp. 126–139. Springer (2019), https://doi.org/10.1007/978-3-030-25027-0_9

6. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems (Corresp.). IEEE Trans. Information Theory 24(3),
384–386 (1978), https://doi.org/10.1109/TIT.1978.1055873

7. Bernstein, D.J.: Grover vs. mceliece. In: Sendrier, N. (ed.) Post-Quantum Cryptog-
raphy, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. LNCS, vol. 6061,
pp. 73–80. Springer (2010), https://doi.org/10.1007/978-3-642-12929-2_6

8. Bernstein, D.J., Chou, T., Lange, T., von Maurich, I., Misoczki, R., Niederhagen,
R., Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Wang, W.: Clas-
sic mceliece: conservative code-based cryptography. https://classic.mceliece.
org/nist/mceliece-20201010.pdf (2020)

9. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: Ball-collision
decoding. In: Rogaway, P. (ed.) Advances in Cryptology - CRYPTO 2011 - 31st
Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings. LNCS, vol. 6841, pp. 743–760. Springer (2011), https://doi.org/
10.1007/978-3-642-22792-9_42

10. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik: Progress of Physics 46(4-5), 493–505 (1998)

11. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-
carry addition circuit. arXiv quant-ph/0410184 (2004)

12. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In:
Miller, G.L. (ed.) Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp. 212–219. ACM
(1996), https://doi.org/10.1145/237814.237866

13. J. Mceliece, R.: A Public-Key Cryptosystem Based on Algebraic Coding Theory.
JPL DSN Progress Report 44 (05 1978)

14. Kachigar, G., Tillich, J.: Quantum information set decoding algorithms. In: Lange,
T., Takagi, T. (eds.) Post-Quantum Cryptography, PQCrypto 2017, Utrecht, The
Netherlands, June 26-28, 2017. LNCS, vol. 10346, pp. 69–89. Springer (2017),
https://doi.org/10.1007/978-3-319-59879-6_5

15. Kirshanova, E.: Improved quantum information set decoding. In: Lange, T.,
Steinwandt, R. (eds.) Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10786, pp. 507–527. Springer (2018),
https://doi.org/10.1007/978-3-319-79063-3_24

A Quantum Circuit for Cryptanalysis of Code-based Cryptosystems 17

16. Lee, P.J., Brickell, E.F.: An Observation on the Security of McEliece’s Public-Key
Cryptosystem. In: Günther, C.G. (ed.) Advances in Cryptology - EUROCRYPT
’88, Davos, Switzerland, May 25-27, 1988. LNCS, vol. 330, pp. 275–280. Springer
(1988), https://doi.org/10.1007/3-540-45961-8_25

17. Melchor, C.A., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
Gaborit, P., Persichetti, E., Zémor, G., Bourges, I.: Hamming quasi-cyclic (hqc).
NIST PQC Round 2, 4–13 (2018), https://pqc-hqc.org/documentation.html

18. Mukherjee, C.S., Maitra, S., Gaurav, V., Roy, D.: Preparing dicke states on a quan-
tum computer. IEEE Transactions on Quantum Engineering 1(1), 1–17 (2020).
https://doi.org/10.1109/TQE.2020.3041479

19. National Institute of Standards and Technology: Post-Quantum Cryptography
Standardization process. https://nist.gov/pqcrypto (2017)

20. Niederreiter, H.: A Public-key Cryptosystem Based on Shift Register Sequences.
In: Proc. EUROCRYPT ’85. pp. 35–39. Springer-Verlag, Berlin, Heidelberg (1986),
http://dl.acm.org/citation.cfm?id=20110.20114

21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum In-
formation: 10th Anniversary Ed. Cambridge University Press (2010).
https://doi.org/10.1017/CBO9780511976667

22. Perriello, S., Barenghi, A., Pelosi, G.: A Complete Quantum Circuit to Solve the
Information Set Decoding Problem. In: Proc. of the IEEE International Confer-
ence on Quantum Computing and Engineering, QCE 2021, Broomfield, CO, USA,
October 18-22, 2021 (Fully virtual event). IEEE (2021)

23. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Infor-
mation Theory 8(5), 5–9 (1962), https://doi.org/10.1109/TIT.1962.1057777

24. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.E.: Quantum Resource Esti-
mates for Computing Elliptic Curve Discrete Logarithms. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer (2017),
https://doi.org/10.1007/978-3-319-70697-9_9

25. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Review 41(2), 303–332 (1999), https:
//doi.org/10.1137/S0036144598347011

