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Abstract

Robustness against the presence of environmental disruptions can be observed in many sys-
tems of chemical reaction network. However, identifying the underlying components of a system
that give rise to robustness is often elusive. The influential work of Shinar and Feinberg estab-
lished simple yet subtle network-based conditions for absolute concentration robustness (ACR),
a phenomenon in which a species in a mass-action system has the same concentration for any
positive steady state the network may admit. In this contribution, we extend this result to em-
brace kinetic systems more general than mass-action systems, namely, power law kinetic systems
with reactant-determined interactions (denoted by “PL-RDK”). In PL-RDK, the kinetic order
vectors of reactions with the same reactant complex are identical. As illustration, we considered
a scenario in the pre-industrial state of global carbon cycle. A power law approximation of the
dynamical system of this scenario is found to be dynamically equivalent to an ACR-possessing
PL-RDK system.

Keywords. Absolute concentration robustness , Chemical reaction network, Power law kinetics,
Reactant-determined interactions, Carbon cycle model

1 Introduction

Robustness may be generally defined [15, 26] as a system-level dynamical property that allows a
system to sustain its functions despite changes in internal and external conditions. This feature, in
fact, is fundamental and ubiquitous in many biological processes, including cellular networks and
entire organisms [2,15,26]. One type of robust behavior is “concentration robustness,” wherein some
quantity involving the concentrations of the different species in a network is fixed at equilibrium
[10]. In a well-cited paper published in Science, Shinar and Feinberg [26] introduced absolute
concentration robustness (ACR), a condition in which the concentration of a species in a network
attains the same value in every positive steady state set by parameters and does not depend on
initial conditions.

Shinar and Feinberg presented sufficient structure-based conditions for a chemical reaction net-
work (CRN) to display ACR on a particular species through a structural index called the deficiency.
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This non-negative parameter has been the center of many powerful results in Chemical Reaction
Network Theory (CRNT), a theoretical body of work that associates the structure of a CRN to
the dynamical behaviour of the system [11,12]. CRNT employs mathematical methods from graph
theory, linear algebra, group theory and the theory of ordinary differential equations. In CRNT,
chemical reaction networks are viewed as digraphs whose vertices (called complexes) are mapped
to non-negative vectors representing compositions of chemical species and whose arcs represent
chemical reactions between them. The Shinar-Feinberg Theorem on ACR holds for systems whose
evolution are modelled by ordinary differential equations with mass-action kinetics (MAK), and is
stated as follows:

Consider a mass-action system that admits a positive steady state and suppose that the
deficiency of the underlying reaction network is one. If there are two nonterminal nodes
in the network that differ only in species S, then the system has absolute concentration
robustness in S.

Here, we show that this result extends to systems endowed with power law kinetics (PLK),
which generalize mass-action kinetics [7,14]. Several experiments have shown that the kinetic order
of a reaction with respect to a given reactant is a function of the geometry within which the reaction
occurs [16–18, 22, 25]. In the case of reactions occurring within a three-dimensional homogenous
space (as in mass-action systems), the kinetic order is the same as the number of molecules entering
into the reaction. However, for systems characterized by molecular overcrowding (e.g., when other
molecules deny the reactants from the supposedly allowable space, and to stickiness, when the
reactants are found along the surfaces of the reaction vessel) the kinetic orders for the reactions can
exhibit non-integer values [24] found in power law formalism [23,28,29]. For instance, in intracellular
environments, which are highly structured and characterized by molecular crowding, reactions in
vivo are likely to take place on membranes or channels and as such, reactions follow fractal-like
kinetics [6, 8, 19, 25]. The presence of power law kinetics in reaction systems thus motivated CRN-
based studies on PLK systems ( [9, 13, 20, 27] among others), some of which are extensions or
modifications of existing results on MAK systems.

This contribution specifically shows that the result of Shinar and Feinberg on ACR applies
to a class of PLK system called power law kinetic systems with reactant-determined interactions
(denoted by “PL-RDK”). PL-RDK systems are kinetic systems with power law rate functions whose
kinetic order vectors are identical for reactions with the same reactant complex. Since the kinetic
orders of the mass-action rate functions are precisely the stoichiometric coefficients of the reactant
complex, one can see that MAK is a special case of PL-RDK.

As an application, we employ the theorem to a power law approximation of the ODE system
corresponding to a specific scenario in the pre-industrial carbon cycle model developed by Anderies
et al. [1]. Particulary, for the pre-industrial scenario where there are anthropogenic causes that
reduce the capacity of terrestrial carbon pool to store carbon, the power law approximation leads
to an ACR-possessing PL-RDK system.

The rest of the paper is organized as follows: Section 2 assembles preliminary concepts in
Chemical Reaction Network Theory required in stating and proving the results. Section 3 discusses
the extension of the Shinar-Feinberg Theorem on ACR for PL-RDK systems. Section 4 applies the
main result obtained from the previous section to a carbon cycle model. In Section 5, we summarize
our results and outline some research perspectives.
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2 Fundamentals of Chemical Reaction Networks and Kinetic Sys-
tems

We recall some fundamental notions about chemical reaction networks (CRNs) and chemical ki-
netic systems (CKS) assembled in [5,27]. Some concepts introduced by Feinberg in [11,12] are also
reviewed.

Notation. We denote the real numbers by R, the non-negative real numbers by R≥0 and the
positive real numbers by R>0. Objects in the reaction systems are viewed as members of vector
spaces. Suppose I is a finite index set. By RI , we mean the usual vector space of real-valued
functions with domain I . For x ∈ RI , the ith coordinate of x is denoted by xi, where i ∈ I .
The sets RI

≥0 and RI
>0 are called the non-negative and positive orthants of RI , respectively. Ad-

dition, subtraction, and scalar multiplication in RI are defined in the usual way. If x ∈ RI
>0 and

y ∈ RI , we define xy ∈ R>0 by xy =
∏
i∈I xyii . The vector log x ∈ RI ,where x ∈ RI

>0, is given
by (log x)i = log xi, for all i ∈ I . If x, y ∈ RI , the standard scalar product x · y ∈ R is defined
by x · y =

∑
i∈I xiyi. By the support of x ∈ RI , denoted by supp x, we mean the subset of I

assigned with non-zero values by x. That is, supp x := {i ∈ I |xi 6= 0}.

Definition 1. A chemical reaction network (CRN) N is a triple (S ,C ,R) of three finite sets:

1. a set S = {X1, X2, . . . , Xm} of species;

2. a set C ⊂ RS
≥0 of complexes;

3. a set R = {R1, R2, . . . , Rr} ⊂ C × C of reactions such that (y, y) /∈ R for any y ∈ C , and
for each y ∈ C , there exists y′ ∈ C such that either (y, y′) ∈ R or (y′, y) ∈ R.

We denote the number of species with m, the number of complexes with n and the number of
reactions with r

A CRN can be viewed as a digraph (C ,R) with vertex-labelling. In particular, it is a digraph
where each vertex y ∈ C has positive degree and stoichiometry, i.e., there is a finite set S of species
such that C is a subset of RS

≥0. The vertices are the complexes whose coordinates are in RS
≥0, which

are the stoichiometric coefficients. The arcs are precisely the reactions.
We use the convention that an element Rj = (yj , y

′
j) ∈ R is denoted by Rj : yj → y′j . In

this reaction, we say that yj is the reactant complex and y′j is the product complex. Connected
components of a CRN are called linkage classes, strongly connected components are called strong
linkage classes, and strongly connected components without outgoing arcs are called terminal
strong linkage classes. We denote the number of linkage classes with `, that of the strong linkage
classes with s`, and that of terminal strong linkage classes with t. A complex is called terminal if
it belongs to a terminal strong linkage class; otherwise, the complex is called nonterminal.

With each reaction y → y′, we associate a reaction vector obtained by subtracting the reactant
complex y from the product complex y′. The stoichiometric subspace S of a CRN is the linear
subspace of RS defined by

S := span {y′ − y ∈ RS |y → y′ ∈ R}.

The rank of the CRN, s, is defined as s = dimS.
Many features of CRNs can be examined by working in terms of finite dimensional spaces RS

(species space), RC (complex space), and RR (reaction space). Suppose the set {ωi ∈ RI | i ∈ I }

3



forms the standard basis for RI where I = S ,C or R. We recall four maps relevant in the study
of CRNs: map of complexes, incidence map, stoichiometric map and Laplacian map.

Definition 2. Let N = (S ,C ,R) be a CRN.

1. The map of complexes Y : RC → RS maps the basis vector ωy to the complex y ∈ C .

2. The incidence map Ia : RR → RC is the linear map defined by mapping for each reaction
Rj : yj → y′j ∈ R, the basis vector ωj to the vector ωy′j − ωyj ∈ C .

3. The stoichiometric map N : RR → RS is defined as N = Y ◦ Ia.

4. For each k ∈ RR
>0 , the linear transformation Ak : RC → RC called Laplacian map is the

mapping defined by

Akx :=
∑

y→y′∈R

ky→y′xy(ωy′ − ωy),

where xy refers to the yth component of x ∈ RC relative to the standard basis.

The following result, named as the Structure Theorem of the Laplacian Kernel (STLK) by Arceo
et al. in [5], is crucial in deriving important results in CRNT [11,12].

Proposition 1 (Structure Theorem of the Laplacian Kernel (STLK), Prop. 4.1 [11]). Let N =
(S ,C ,R) be a CRN with terminal strong linkage classes C 1,C 2, . . . ,C t. Let k ∈ RR

>0 and Ak
its associated Laplacian. Then Ker Ak has a basis b1, b2, . . . , bt such that supp bi = C i for all
i = 1, 2, . . . , t.

A non-negative integer, called the deficiency, can be associated to each CRN. The deficiency
of a CRN, denoted by δ, is the integer defined by δ = n − ` − s. This index has been the center
of many studies in CRNT due to its relevance in the dynamic behaviour of the system. In [11],
Feinberg provided a geometric interpretation of deficiency: δ = dim(Ker Y ∩ Im Ia). From this fact
and the STLK, the following result follows.

Corollary 1 (Cor. 4.12 [11]). Let N = (S ,C ,R) be a CRN with deficiency δ and t terminal
strong linkage classes. Then for each k ∈ RR

>0,

dim(Ker Y Ak) ≤ δ + t.

By kinetics of a CRN, we mean the assignment of a rate function to each reaction in the CRN.
It is defined formally as follows.

Definition 3. A kinetics of a CRN N = (S ,C ,R) is an assignment of a rate functionKj : ΩK → R≥0
to each reaction Rj ∈ R, where ΩK is a set such that RS

>0 ⊆ ΩK ⊆ RS
≥0. A kinetics for a network

N is denoted by
K = [K1,K2, ...,Kr]

> : ΩK → RR
≥0.

The pair (N ,K) is called the chemical kinetic system (CKS).

The above definition is adopted from [30]. It is expressed in a more general context than what
one typically finds in CRNT literature. For power law kinetic systems, one sets ΩK = RS

>0. Here,
we focus on the kind of kinetics relevant to our context:

Definition 4. A chemical kinetics is a kinetics K satisfying the positivity condition:

For each reaction Rj : yj → y′j ∈ R, Kj(c) > 0 if and only if supp yj ⊂ supp c.
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Once a kinetics is associated with a CRN, we can determine the rate at which the concentration of
each species evolves at composition c ∈ RS

>0.

Definition 5. The species formation rate function of a chemical kinetic system is the vector
field

f(c) = NK(c) =
∑

yj→y′j∈R

Kj(c)(y
′
j − yj).

The equation dc/dt = f(c) is the ODE or dynamical system of the CKS. A positive equilib-
rium or steady state c∗ is an element of RS

>0 for which f(c∗) = 0. The set of positive equilibria
of a chemical kinetic system is denoted by E+(N ,K).

Power law kinetics is defined by an r ×m matrix F = [Fij ], called the kinetic order matrix,
and vector k ∈ RR , called the rate vector.

Definition 6. A kinetics K : RS
>0 → RR is a power law kinetics (PLK) if

Ki(x) = kix
Fi,· ∀i = 1, . . . , r

with ki ∈ R>0 and Fij ∈ R. A PLK system has reactant-determined kinetics (of type PL-
RDK) if for any two reactions Ri, Rj ∈ R with identical reactant complexes, the corresponding
rows of kinetic orders in F are identical, i.e., Fik = Fjk for k = 1, ...,m.

An example of PL-RDK is the well-known mass-action kinetics (MAK), where the kinetic
order matrix is the transpose of the matrix representation of the map of complexes Y [11]. That
is, a kinetics is a MAK if

Kj(c) = kjx
Y.,j for all Rj : yj → y′j ∈ R

where kj ∈ R>0, called rate constants. Note that Y.,j pertains to the stoichiometric coefficients of
a reactant complex yj ∈ C .

Remark 1. In [5], Arceo et al. discussed several sets of kinetics of a network and drew a “kinetic
landscape”. They identified two main sets: the complex factorizable kinetics and its complement,
the non-complex factorizable kinetics. Complex factorizable kinetics generalize the key structural
property of MAK – that is, the species formation rate function decomposes as

dx

dt
= Y ◦Ak ◦Ψk,

where Y is the map of complexes, Ak is the Laplacian map, and Ψk : RS
≥0 → RC

≥0 such that

Ia ◦K(x) = Ak ◦Ψk(x) for all x ∈ RS
≥0. In the set of power law kinetics, PL-RDK is the subset of

complex-factorizable kinetics.

We recall the definition of the m×n matrix Ỹ from the work of Müller and Regensburger [20,21]:
For each reactant complex, the associated column of Ỹ is the transpose of the kinetic order matrix
row of the complex’s reaction, otherwise (i.e., for non-reactant complexes), the column is 0. We form
the T -matrix of a PL-RDK system by truncating away the columns of the non-reactant complexes
in Ỹ , obtaining an m× nr matrix, where nr denotes the number of reactant complexes [27].
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3 Absolute Concentration Robustness in PL-RDK Systems

To illustrate absolute concentration robustness, we consider the following toy model:

X1 X2 (3.1)

The map depicts a biochemical system involving transfer of material from two pools: X2 to X1 and
X1 to X2, but with X2 regulating the second process. Suppose the system evolves according to the
following set of ODEs:

Ẋ1 = k1X
0.8
2 − k2X0.5

1 X0.8
2

Ẋ2 = −k1X0.8
2 + k2X

0.5
1 X0.8

2

(3.2)

The positive equilibrium of the system is attained when

X1 =

(
k1
k2

)2

and X2 = Γ−
(
k1
k2

)2

. (3.3)

where Γ is the conserved amount of total material. These equations indicate that whenever Γ >
(k1/k2)

2, a positive steady state exists. Furthermore, since X1 has the same value in any steady
state, the system exhibits ACR in X1.

We define absolute concentration robustness in PL-RDK systems as follows:

Definition 7. A PL-RDK system (N ,K) has absolute concentration robustness(ACR) in
species Xi ∈ S if there exists c∗ ∈ E+(N ,K) and for every other c∗∗ ∈ E+(N ,K), we have
c∗∗i = c∗i .

The following proposition adapts Theorem S3.15 found in supplementary online material of the
paper of Shinar and Feinberg [26] to deal with PL-RDK systems.

Proposition 2. Let N = (S ,C ,R) be a deficiency-one CRN. Suppose that (N ,K) is a PL-RDK
system which admits a positive equilibrium c∗. If y, y′ ∈ C are nonterminal complexes, then each
positive equilibrium c∗∗ of the system satisfies the equation

(
T·,y − T·,y′

)
· log

(
c∗∗

c∗

)
= 0. (3.4)

We largely reproduce the proof of Shinar and Feinberg in the said supplementary material of
their paper. Since in their proof, the sums are often taken over all complexes, we use the notation
of Müller and Regensburger in [20,21]:

Ỹ =
[
T 0

]
,

adjoining n − nr zero columns for the non-reactant complexes, where nr denotes the number of
reactant complexes. Furthermore, we write ỹ for Ỹ·,y.

Proof. Assume that c∗ is a positive steady state of the PL-RDK system (N ,K). That is,∑
y→y′∈R

ky→y′(c
∗)ỹ(y′ − y) = 0. (3.5)
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For each y → y′ ∈ R, define the positive number κy→y′ by

κy→y′ := ky→y′(c
∗)ỹ. (3.6)

Thus, we obtain ∑
y→y′∈R

κy→y′(y
′ − y) = 0. (3.7)

Suppose that c∗∗ is also a positive equilibrium of the system. Hence,∑
y→y′∈R

ky→y′(c
∗∗)ỹ(y′ − y) = 0. (3.8)

Define
µ := log c∗∗ − log c∗. (3.9)

With κ ∈ RR
>0 given by Equation (3.6) and µ given by Equation (3.9), it follows from Equation

(3.8) that ∑
y→y′∈R

κy→y′e
ỹ·µ(y′ − y) = 0. (3.10)

Let 1C ∈ RC such that
1C =

∑
y∈C

ωy.

Observe that Equations (3.7) and (3.10) can be respectively written as

Y Aκ1
C = 0, and Y Aκ

∑
y∈C

eỹ·µωy

 = 0.

Equivalently,
1C ∈ Ker Y Aκ, and (3.11)∑
y∈C

eỹ·µωy ∈ Ker Y Aκ. (3.12)

Therefore, c∗ and c∗∗ are positive equilibria of the PL-RDK system (N ,K) if and only if Equations
(3.11) and (3.12) hold. From Corollary 1, we have

dim(Ker Y Aκ) ≤ 1 + t (3.13)

for the CRN under consideration. Let {b1, b2, . . . , bt} ⊂ RC
≥0 be a basis for Ker Aκ as in Propo-

sition 1 (STLK). Since Ker Aκ ⊆ Ker Y Aκ, this basis of Ker Aκ can be extended to form a ba-
sis of Ker Y Aκ. Recall from Equation (3.11) that 1C is in Ker Y Aκ. We assert that the set
{1C , b1, b2, . . . , bt} is a basis for Ker Y Aκ (and hence, equality holds in Equation (3.13)). This
follows if

1C /∈ Span {b1, b2, . . . , bt}. (3.14)

From Proposition 1, every element of Ker Aκ must have its support contained entirely in the set of
terminal complexes. However, the support of 1C consists of all complexes. By assumption, there
are nonterminal complexes and hence, 1C cannot lie in Ker Aκ (i.e., Equation (3.14) holds).
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From Equation (3.12), there exist scalars λ0, λ1, . . . , λt such that

∑
y∈C

eỹ·µωy = λ01
C +

t∑
i=1

λib
i. (3.15)

Observe that each vector bi, i = 0, 1, . . . , t, has its support entirely on terminal complexes. This
fact, along with Equation (3.15), implies that for each pair of nonterminal complexes y ∈ C and
y′ ∈ C , we have

ỹ · µ = ỹ′ · µ. (3.16)

Since y and y′ are nonterminal, they are reactant complexes. Hence, Equation (3.16) may be
written as

T·,y · µ = T·,y′ · µ, (3.17)

which is equivalent to Equation (3.4) in Theorem 2.

The extension of the Shinar-Feinberg Theorem on ACR to PL-RDK systems is stated as follows.

Theorem 1. Let N = (S ,C ,R) be a deficiency-one CRN and suppose that (N ,K) is a PL-RDK
system which admits a positive equilibrium. If y, y′ ∈ C are nonterminal complexes whose kinetic
order vectors differ only in species Xi, then the system has ACR in Xi.

Proof. Suppose c∗ and c∗∗ are positive equilibria of the PL-RDK system (N ,K). Observe that
since y, y′ ∈ C are nonterminal complexes whose kinetic order vectors differ only in species Xi, we
have

T·,y − T·,y′ = aXi

for some nonzero a. Thus Equation (3.4) reduces to

a(log c∗i − log c∗∗i ) = 0.

It follows that
c∗i = c∗∗i .

That is, the system has ACR in species Xi.

The ODE system in Equation (3.2) can be translated into a dynamically equivalent CRN with
associated kinetic order matrix by employing the notion of total CRN representation of Gener-
alized Mass Action (GMA) systems, proposed by Arceo et al. [5]. GMA system is a canonical
framework used in Biochemical Systems Theory (BST) wherein every mass transfer rate is approx-
imated separately with a power law term, and these terms are added together, with a plus sign for
incoming fluxes and a minus sign for outgoing fluxes [28,29]. For BST-related concepts, the reader
may refer to the BST tutorial in the Appendix of Arceo et al. [3].

The total CRN representation of a GMA system allows for the CRN-based analysis of the
dynamical system. Viewed as a GMA system, the set of ODEs in (3.2) has the following total CRN
representation:

R1 : X2
k1−→ X1

R2 : X1 +X2
k2−→ 2X2

(3.18)

8



with associated kinetic order matrix F given by

F =

[ X1 X2

R1 0 0.8
R2 0.5 0.8

]
.

The CRN in (3.18) is a deficiency-one network with nonterminal complexes X1 +X2 and X2 whose
kinetic order rows differ only in X1. The previous theorem indicates ACR in X1, which agrees with
the computation in (3.3).

The following simple proposition provides some examples for the ACR theorem for PL-RDK
systems. As preparation, we recall some notions from [4, 27] which are used in the result. A PL-
RDK is said to be reactant set linear independent (of type PL-RLK) if the columns of T are
linearly independent. We also recall the reactant matrix Yres, which is obtained from the matrix
representation of Y by removing the columns corresponding to non-reactant complexes. Its image
Im Yres is called the reactant subspace R, whose dimension q is called the reactant rank of the
CRN. The reactant deficiency δρ is the difference between the number of reactant complexes nr
and the reactant rank q.

Proposition 3. Let (S ,C ,R) be a deficiency one reaction network, which with PL-RDK, admits a
positive equilibrium. Suppose the network has zero reactant deficiency, two nonterminal complexes
y, y′ ∈ C differing only in Xj and the map

ŷ := T ◦ Y −1res : R→ Im T

is given by
ŷ(X1, . . . , Xj , . . . , Xm) = (a1X1, . . . , ajXj . . . , amXm), ai 6= 0.

Then the system is PL-RLK and has ACR in X.

Proof. Since ŷ is an isomorphism, T = ŷ ◦Yres is also an isomorphism. This implies that the system
is PL-RLK. The kinetic order vector difference of y and y′ is (0, . . . , kaj , . . . , 0) for some nonzero
real k so that Theorem 1’s condition is fulfilled.

4 Application to a Carbon Cycle Model

The pre-industrial carbon cycle model of Anderies et al. [1] is a simple mass balance which involves
three interacting carbon pools: land, atmosphere and ocean. Pictorially, the system can be depicted
using a biochemical map comprised of nodes that represent carbon pools, solid arrows that indicate
transfer of carbon, and dashed arrows that indicate if a pool affects or modulates a process. Figure
4.1 presents the biochemical map of the model of interest.

Figure 4.1: Biochemical map of the pre-industrial carbon cycle model of Anderies et al. [1]

In our previous work [13], we reviewed the model’s design and underlying assumptions and
described the parameters and ODEs present in the pre-industrial state of the carbon cycle model.
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We also approximated all rate processes by products of power law functions in order to obtain a
GMA system approximation of the original system. The resulting ODEs of the approximation is
given in (4.1):

Ȧ1 = k1A
p1
1 A

q1
2 − k2A

p2
1 A

q2
2

Ȧ2 = k2A
p2
1 A

q2
2 − k1A

p1
1 A

q1
2 − amA2 + amβA3

Ȧ3 = amA2 − amβA3,

 . (4.1)

We also obtained in [13], using total CRN representation of [5], the following deficiency-one
CRN representation for the model:

A1 + 2A2 → 2A1 +A2

A1 +A2 → 2A2

A2 � A3

(4.2)

Its associated kinetic order matrix is the transpose of the following T -matrix:

T =

A1 + 2A2 A1 +A2 A2 A3[ ]p1 p2 0 0 A1

q1 q2 1 0 A2

0 0 0 1 A3

. (4.3)

In the Appendix, it is shown that there is a scenario in the pre-industrial state leading to a GMA
system approximation such that the kinetic order vectors of the nonterminal vertices A1 + 2A2 and
A1 + A2 differ only in A2; that is, p1 − p2 = 0 and q1 − q2 6= 0. In particular, this occurs when
the human terrestrial carbon off-take term (which accounts for human activities that reduce the
capacity of terrestrial pool to capture carbon such deforestation and land-use change) vanishes.
Assuming the existence of a steady state, Theorem 1 indicates that the system has ACR in A2. In
fact, when p1 = p2, steady state computation of the system in (4.1) yields the following equilibria
set for the system:

E+(N ,K) =



 A1

A2

A3

 ∈ RS
>0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A2 =

(
k2
k1

) 1
q1−q2

,

A3 =
1

β

(
k2
k1

) 1
q1−q2

, and

A1 = A0 −
(

1 +
1

β

)(
k2
k1

) 1
q1−q2


,

where A0 = total conserved carbon at pre-industrial state.

5 Conclusion and Outlook

In conclusion, we summarize our results and outline some perspectives for further research.

1. We modified the Shinar-Feinberg Theorem on ACR for mass-action systems to include PL-
RDK systems, a kinetic system more general than mass-action systems.

2. The theorem is applied to a power law approximation of Anderies et al.’s Earth’s carbon cycle
in its pre-industrial state. The analysis reveals that there is a scenario in the pre-industrial
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state which yields a power law approximation where there is ACR in the atmospheric carbon
pool. Specifically, the power law approximation leads to an ACR-possessing PL-RDK sys-
tem when the human off-take coefficient, which accounts for the which accounts for human
activities that reduce the capacity of terrestrial pool to sequester carbon, vanishes.

3. The investigation of other forms of “concentration robustness” identified by Dexter et al. [10]
for PL-RDK systems offers a further interesting research perspective.

4. The extension of the stochastic analysis of CRNs with ACR of Anderson et al. [2] for PL-RDK
systems is another promising area for further investigation.
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A Pre-industrial Carbon Cycle Model of Anderies et al.

The complete set of ODEs for the pre-industrial state is given by

Ȧ1 = rtc[P (t)−R(t)]A1

[
1− A1

k

]
− αA1

Ȧ2 = rtc[R(t)− P (t)]A1

[
1− A1

k

]
+ αA1 − amA2 + amβA3

Ȧ3 = amA2 − amβA3.

 (A.1)

where

P (t) = afA2(t)
bf ·
[
ap · (aTA2(t) + bT )bp · e−cp·(aTA2(t)+bT )

]
R(t) =

[
ar · (aTA2(t) + bT )br · e−cr·(aTA2(t)+bT )

]
.

For the description of the parameters, the reader is referred to [1] and the Appendix of [13]. The
parameter values are identical to the values used in [13] but with α = 0. This particular parameter
is assigned as the human terrestrial carbon off-take rate. It is associated to human activities such
as clearing, burning or farming, which reduce the capacity of land to capture carbon.

A power law approximation of the ODE system at an operating point is obtained to generate
a Generalized Mass Action (GMA) System [28, 29]. Mathematically, GMA system approximation
is equivalent to Taylor approximation up to the linear term in logarithmic space. The function
V (X1, X2, . . . , Xm) can be approximated by V = αXp1

1 X
p2
2 · · ·X

pm
m at an operating point where

pi =
∂V

∂Xi
· Xi

V
and α = V (X1, X2, . . . , Xm)X−p11 X−p22 · · ·X−pmm . (A.2)

Table ?? presents the four carbon fluxes present in the pre-industrial state of the Anderies et al.
model, and their corresponding rate functions. Furthermore, the last column lists their respective
target power law approximation. The last two functions, amA2 and amβA3, are already in the
desired format and are thus, kept as is. To compute for the kinetic orders (and rate constants), we
apply (A.2). By taking the parameter values used in [13] but with α = 0, and assuming the initial
values to be A1 = 2850/4500, A2 = 750/4500 and A3 = 900/4500 (as in [1]), the ODE system in
(A.1) reaches the following steady state: A1 = 0.7, A2 = 0.15 and A3 = 0.15.

The algebraic calculations are implemented in Mathematica as shown in Figure A.1. When
α = 0 (i.e., the human off-take term vanishes),

p1 = p2 =
2A1 − k
A1 − k

.

For the power law approximation, we choose values close to the equilibrium point as operating
point: A1 = 0.69, A2 = 0.155 and A3 = 0.155. Consequently, we obtain

p1 = −68, p2 = −68,
q1 = 0.580148, q2 = 0.910864.

(A.3)
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Carbon Flux Function Power law approx.

A2 → A1 K1 = rtcP (t)A1

[
1− A1

k

]
k1A

p1

1 A
q1
2

A1 → A2 K2 = rtcR(t)A1

[
1− A1

k

]
+ αA1 k2A

p2

1 A
q2
2

A2 → A3 K3 = amA2 amA2

A3 → A2 K4 = amβA3 amβA3

Table A.1: Power law approximation of the process rates.

Figure A.1: Mathematica codes.
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