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Abstract. Cyber operations are increasingly automated processes that can occur 
at computational speed with the intent of reducing, or denying time for good de-
cision making or time to ground communication between human agents. There is 
a lack of performance measures and metrics in cyber operation settings. One po-
tential setting describing human performance could be emotional stability under 
stress. Measures of higher individual affective variability indicate more emo-
tional adaptability and allows for measuring individuals as dynamic systems. Pre-
vious research in other security-sensitive high-stake situations has shown that in-
dividuals with less emotional adaptability display maladaptive behaviors while 
individuals with more emotional adaptability can adapt more efficiently to chang-
ing situations, show more confidence in their own abilities and skills, and display 
better performance. We hypothesized that measurements of affective variability 
during a cyber defense exercise will be associated with team workload demands. 
Data was collected from 13 cadets during the Norwegian Defence Cyber Acad-
emy’s annual Cyber Defense Exercise. Three indicators of individual affective 
variability were measured daily with the Self-Assessment Manikin and compared 
to scores on the Team Workload Questionnaire. We found that affective varia-
bility was negatively associated with team workload demands. Participants with 
higher affective variability, as measured by the Self-Assessment Manikin, will 
impose less workload demands on the team, which can lead to better outcomes. 
This is the first study to assess how individual emotional adaptability affects team 
dynamics in a cyber defense setting. Future research should include variable 
measurements as they may have better explanatory power for performance meas-
urements. 
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1 Introduction 

Cyber operations are increasingly automated processes that can occur at computational 
speed with the intent of reducing, or denying time for good decision making or time to 
ground communication between human agents. One of the most persistent issues in 
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studying cyber defense individuals and teams is that there is a general lack of perfor-
mance metrics and measures in such a setting. In recent years, there has been an increase 
in research evaluating the performance of cyber defenders in teams, but few studies 
have looked at individual aspects that may influence team performance [1].  

Cyber operations are high-stake situations and COs are under heavy cognitive load 
for prolonged periods of time. Security Operations Centers (SOCs) consist of teams 
that work around the clock to prevent, detect, and respond to cyber threats and incidents 
[2]. SOC teams monitor large and continuous streams of network data to detect poten-
tial threats. Operative cyber personnel (Cyber Operators; COs) make up the technical 
staff of SOC teams and are responsible for threat detection, data analysis, digital foren-
sics, network security and cyber intelligence, as well as communicating with SOC de-
cision-makers and clients. Thus, the task-environment that COs are working within 
spans the cyber, physical, and social domain [3] and creates a complex socio-technical 
system (STS)[4] where humans and machines interact to maintain cyber resilience in 
civil and military sectors.  

The cognitive challenges SOC teams face while operating in a STS span a wide 
range of domains from complex problem-solving, to asset prioritization and protection, 
intra- and inter-team communication, decision-making based on high uncertainty, lead-
ership efficiency, collaboration and coordination efficiency, constant acquisition of 
technical and threat competence, updating situational awareness, risk management, 
problem detection, and information seeking, and more [3]. Developing applicable so-
lutions to these challenges such that SOC team performance can be improved will re-
quire scientific approaches at both the team- [3] and individual level [3, 5]. 

Communication problems are listed as one of the main challenges facing SOC teams 
[6] but individual factors that affect communication and coordination in cyber teams 
are poorly understood. Due to the cognitive load associated with cyber operations, the 
ability to adaptively regulate stress and emotions may serve as relevant individual level 
indicators of performance. 

 
1.1 The relationship between affective states and adaptive performance 

Higher affective variability (RMSSD)[7] is defined as “relatively short-term changes 
that are construed as more or less reversible and that occur more rapidly” [8]. Indices 
of affective variability allows for the measurement of individuals as dynamic systems 
where neither trait nor state measurements are able to access changes during specific 
situations [9] and has been shown to predict higher maladaptive behaviors [10] and 
higher variability in perceived control predicted earlier mortality [11]. 

Interpreting stress reactions and tension has effects on perceiving one’s state and 
adaptation ability [12, 13]. Research has shown that positive moods improved confi-
dence [14], while despondent moods decreased feelings of self-efficacy [15, 16]. Re-
search on affective states and their influence on behaviors in cyber security is scarce. 
Research in other domains has shown that affective states can influence performance 
[17, 18] and this could lead to targeted interventions to help learning [18]. 

Situational stressors, whether environmental, emotional, or cognitive, increase phys-
iological arousal to prepare the individual to adapt to the environment, and all stressor 
categories essentially work on the same biological systems to activate the individual 
for action. Theories for optimal arousal suggest that there is an individual sweet spot 
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for every person where arousal levels matched to a task maximizes performance, and 
arousal levels below or above this sweet spot is an impediment to performance (Yerkes-
Dodson law [19, 20]). Arousal levels change with shifts in attention but are dependent 
on the emotional valence of stimuli [21] and optimal attention-allocation for task-re-
lated performance appears to be associated with proxies for regulation of arousal that 
are also associated with affective variability [22]. This suggests that the neural compo-
nents responsible for regulating affective states are intertwined with performance-re-
lated factors associated with attention and arousal. Cognitive- and behavioral neurosci-
ence approaches to problems facing the field of cybersecurity are currently under-ex-
plored. To fully appreciate why the regulation of affective states can be important for 
cyber team performance, it is necessary to first understand the central and peripheral 
psychophysiological correlates of affective regulation, communication and coordina-
tion, and complex problem solving, and how these abilities rely on the same neural 
systems. Thus, in the three following sections we will detail the underlying neural com-
ponents of these abilities and how they are related.     

 
1.2 Neural correlates of affective control and variability and relationships 

with regulation of physiological arousal  

The primary neural structure that is responsible for an individual’s ability to regulate 
their own affective states is the prefrontal cortex (PFC). The PFC exerts top-down con-
trol on emotional states in part via a prefrontal sub-structure called the dorsolateral PFC 
(DLPFC) which is involved in regulating both neutral and negative emotions [23]. In 
addition to affective regulation, the DLPFC also plays an important role in other exec-
utive functions such as planning and attention control. During conscious regulation of 
one’s own affective states, activity in the DLPFC increases while activity in the Amyg-
dala, a structure associated with arousal and negative affect, decreases along with self-
reports of negative affect [23, 24].  

For an individual to consciously regulate their own affective states, the DLPFC must 
first be engaged to allocate attention to the individual’s emotional state then decide how 
to regulate it. The role of the DLPFC in affective regulation is lateralized, with the left 
DLPFC (lDLPFC) being involved in affective regulation while increased right DLPFC 
(rDLPFC) activity is associated with affective dysregulation and deficits in emotional 
attention regulation [25, 26]. The PFC receives signals about emotional- and physio-
logical arousal through a process called interoception (sensing the activity in your or-
gans; gut feelings)[27] and the PFC integrates this information when deciding how to 
regulate affective states. 

The DLPFC regulates physiological- and emotional arousal in part by (1) increasing 
activity in the vagal branch of the autonomic nervous system (ANS), and (2) inhibiting 
activity in the sympathetic branch of the ANS [28-30]. Both branches of the ANS in-
nervate all the organs of the body, and this DLPFC-to-ANS pathway of stimulation will 
lead to reduced arousal, characterized by decreased activity in organs such as the heart 
and lower heart rate. As opposed to the constant and high heart rate resulting from 
sympathetic input to the heart, the increased DLPFC modulated vagal input to the heart 
causes the length and variations in the intervals between each heart beat to increase, 
increasing heart rate variability (HRV). This mechanism is what allows the DLPFC to 
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aid the individual in adapting their emotional and stress responses to situations with 
varying levels of stress [31]. Higher vagally mediated HRV (vmHRV) reflects higher 
vagal input to the heart at rest, lower heart rate, and higher affective variability, while 
lower vmHRV reflects lower vagal input to the heart at rest, higher heart rate, and lower 
affective variability. Higher affective variability means higher regulatory range thus 
higher capacity for adaptive emotional responding, while lower affective variability 
means lower regulatory range thus lower capacity for adaptive emotional responding. 

Evidence for top-down control of the PFC on stress- and emotional arousal was 
found in a study where transcranial direct current stimulation (tDCS) to the left DLPFC 
reduced was associated with increased vmHRV, higher mood scores, and reduced lev-
els of cortisol, the latter being a hormonal biomarker of stress [28]. Further evidence 
for the coupling of cognitive function, affective variability, and physiological adaptive 
ability was demonstrated in a study showing that cognitive flexibility along with higher 
vmHRV predicted ability to regulate arousal during prolonged stressors [32]. As COs 
operating in teams can be exposed to heavy stress and cognitive load for long periods 
of time [5, 33] it suggests that affective regulation capacity can be vital to cyber team 
performance. Furthermore, affective regulation ability is related to the degree individ-
uals can emotionally detach from work-related stress, with lower affective regulation 
ability being associated with lower ability to detach, indicated by higher levels of work-
related perseverative cognitions [34]. The temporal intensity of affective states may 
increase allocation of attentional resources to attentional states resulting in persevera-
tive cognition [35]. Given the tendency for SOC team members to work 12-hour shifts 
[2], the ability to detach from work may be important to reduce work-stress load on 
COs, although our previous research show that indicators of affective intensity are not 
related to perseverative cognitions in cyber officer cadets [36]. This may suggest that 
the selection process for COs result in cognitive and emotional profiles that differ from 
the general population, which in turn could downplay the effect of affective variability 
on cyber team dynamics.    

 
1.3 Neural correlates of affective variability and control overlaps with neural 

correlates of social coherence, coordination, and communication 

vmHRV and its relation to affective regulation is suggested to be important for inter-
personal functioning [37] arguing for its relevance in collaborative settings such as cy-
bersecurity. Studies on socio-emotional problems in children suggest that they co-occur 
with communication problems [38] and continuous measures of vmHRV suggest that 
reduced affective and arousal regulation is associated with communication problems in 
adults [39]. Moreover, vmHRV is associated with proxies of social cognitions. This 
includes personal indicators of ability to adapt to the environment in the face of adverse 
conditions such as feelings of trust and social relatedness among adolescents and young 
adults [40] as well as social orientation values in male adults such as preference for 
cooperation [41]. Being able to regulate one’s own affective states during social inter-
actions may result in experiencing social interactions as low-stress, thus, for individuals 
working in high-stress social settings and in teams, affective regulatory capacity could 
possibly aid cooperation by facilitating pro-social cognitions. 
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A wide range of data from various settings suggest that for humans to coordinate and 
communicate successfully in dyads and in groups, it requires the synchronization of 
various physiological systems in both the central and peripheral nervous system [42-
51]. One simple example of how disruptive asynchrony can be to communication is if 
you are trying to maintain a conversation with someone who is shouting when you are 
talking calmly or if they are not walking at your pace. The same is true for affective 
states and physiological arousal, indicated by studies assessing vmHRV synchrony with 
respect to social coherence and communication [39, 48]. Coordinating and communi-
cating with an individual that is in a different and perhaps unpredictable affective state 
compared to one’s own can be challenging during exposure to prolonged stressors.  

Communication is a complex social interaction, with contextually guided predictions 
and mental models of speakers and listeners contributing to message comprehension as 
much as the actual words that are shared. In studies using functional magnetic reso-
nance imaging, spatial and temporal neural coupling (brain-to-brain synchrony) be-
tween speaker and listener is important for the success of communication with respect 
to whether the listener comprehends what the speaker is trying to convey [47, 51]. Both 
mirroring and predictive synchronous activity was observed in the listener with respect 
to the brain activity of the speaker, with greater neural coupling being related to greater 
understanding of the conveyed message. In naturalistic studies of groups of high-school 
students, attentional effort appears to be a determinant of brain-to-brain synchrony [44]. 
A recent review found that optimizing attentional efforts for task-related processing is 
positively associated with vmHRV [22]. 

The pupil of the eye has been used as a physiological system to study synchrony 
with respect to communication [52]. Pupil dilation is under control of the sympathetic 
nervous system, with reduced sympathetic activity resulting in wider pupil diameter 
[53, 54]. Under constant luminance conditions, pupil dilation is positively associated 
with emotional arousal, cognitive load, mental effort, conflict processing, and emotion 
regulation efforts [55-57]. tDCS of the DLPFC during processing of emotional stimuli 
has opposite effects on pupil diameter depending on whether the lDLPFC or rDLPFC 
is stimulated, with tDCS of the lDLPFC being associated with increased pupil diameter 
[58]. Similarly, chronic vagus nerve stimulation, a safe treatment for affective dysreg-
ulation, increases resting pupil diameter without affecting light reflexes [59]. Sponta-
neously synchronized pupil dilation patterns across individuals (speaker-and-listener 
dyads) has been shown to be a marker of joint attention, with higher pupillary syn-
chrony occurring during emotional peaks in communication [52]. Individual factors 
such as level of expressiveness in the speaker and level of empathy in the listener is 
positively associated with degree of synchrony, thus greater brain-to-brain coupling. 
For high-school students, silent gazing into a randomized peer’s eyes for 2 minutes 
prior to class predicted greater brain-to-brain synchrony during class, as measured with 
electroencephalogram [44]. Together, the above data suggest that the neural mecha-
nisms responsible for successful affective regulation is, at least in part, responsible for 
successful coordination and communication. 
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1.4 Neural correlates of affective variability and control overlaps with neural 
correlates of complex problem-solving 

Being involved in executive functioning, the DLPFC is also a central structure involved 
in working memory [60, 61] which is a resource with limited capacity that individuals 
use for problem solving. In line with this notion, complex problem solving is dependent 
brain networks where the DLPFC is a central component in breaking the problem up in 
individual tasks [62-64], representing contextual task-demands [65], and cognitive con-
trol of perceptual information during loss of situational awareness [66]. Taken together 
with the fact that optimal allocation of attention to task-related stimuli is associated 
with psychophysiological proxies of DLPFC functioning and affective variability [22], 
this can potentially have important implications for cyber operations. If cybersecurity 
personnel are simultaneously exposed to (1) complex technical problem solving, (2) 
stressors that require conscious regulation of affective states, and (3) challenges related 
to communication, this will arguably tax the DLPFC and plausibly result in a conflict 
of information processing that can affect priorities and be detrimental to team perfor-
mance. 

Together, the above studies suggest that there is a significant overlap in the neural 
substrates that affect success in both communication and affective control as well as 
problem solving. If DLPFC task-load reaches an individual’s capacity threshold in one 
domain (e.g. affective regulation), functioning in the other domains (problems solving 
or communication) may break down. Thus, measures of indicators of affective varia-
bility at the level of the individual may provide important performance metrics related 
to inter-individual cooperation and coordination in collaborative settings such as cyber 
defense. 

 
1.5 How affective states may relate to the Hybrid Space framework and the 

Orienting, Locating, Bridging (OLB) model 

As the challenges that COs face span the cyber, physical, and social realm, COs must 
skillfully apply a wide range of cognitive abilities to flexibly transition between these 
contexts. To conceptualize the cognitive complexity and communicative challenges 
that COs face, work conducted in collaboration with our lab proposed the Hybrid Space 
(HS) framework [3]. The HS framework is based on cognitive engineering and focuses 
on the interconnectedness between cyber- and physical space, and the tension between 
tactical and strategic goals in decision-making to illustrate the cognitive landscape that 
COs must navigate (Figure 1, a). Knowing where you are in the HS requires the ability 
to observe your own mental state, termed metacognitive awareness, and to move within 
the HS requires cognitive agility (Figure 1, b)[5]. When individuals such as team mem-
bers or superordinates and subordinates are located in different quadrants of the HS, 
competencies, goals, and proximity to situational stressors may differ between them, 
making the nature of communication more difficult thus increasing the cognitive load 
on COs (Figure 1, c)[33]. When information is relayed back and forth across individuals 
with different locations in the HS, cognitive complexity increases (Figure 1, d)[33] and 
may require constant re-adjustment of message content and mental representation of 
the recipient. During prolonged high-stress cyber threat situations, increased efforts to 
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regulate affective arousal may also be necessary. Knowing how to navigate and com-
municate in hierarchical social structures requires an accurate model of one’s own po-
sition in the social network relative to others. Recent fMRI studies on accurate neural 
representation of social network position (e.g. social distance between individuals) 
show that these representations occur spontaneously in the brain when an individual 
enters a social context (e.g. is shown a picture of a peer) [67] and that this encoding 
rely on prefrontal structures involved in affective regulation [30]. If affective variability 
is an indicator of prefrontal cortical function, then lower affective variability may indi-
cate reduced prefrontal functioning thus ability to accurately represent one’s own posi-
tion in a social setting which may be detrimental to social cohesion. 
      To accurately locate other individuals in the HS requires perspective taking [68, 
69]. Taking the perspective of other individuals is partly dependent on empathy. Em-
pathy is reliant on PFC structures [70], is positively associated with psychophysiologi-
cal proxies of affective regulation such as vmHRV [41] and may in part explain some 
of the ways the PFC aids the individual in navigating a social network. 

 
Fig. 1. The Hybrid Space framework conceptualizing the cognitive and communicative chal-
lenges of cyber operations [3, 5, 33]. a The Hybrid Space. Created with BioRender.com. b Cog-
nitive agility. c Hierarchical structure, complicated relations. d Hierarchical structure, complex 
relations. 

Our lab recently proposed the Orienting, Locating, Bridging (OLB) model [68], a 
three-stage pedagogic tool to foster metacognitive awareness for improved communi-
cation flow in the HS. The OLB model explicates the steps an individual must take to 
facilitate communication and coordination across levels of expertise, hierarchical lay-
ers, and professional backgrounds. First, an individual must apply metacognition to find 
their own location in the HS (Orienting), then the individual must apply perspective 
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taking to find the communication partner’s location in the HS (Locating), then the in-
dividual must adapt their communication style and content to the partner depending on 
their own and the partner’s location in the HS (Bridging).    

Affective dysregulation could potentially prevent successful OLB-ing, either by 
forcing the individual to allocate attentional resources to their own affective states thus 
preventing them from engaging in model application (or communication in general), or 
at individual stages of the model depending on the timing of situational and affective 
challenges. For example, affective dysregulation could lead to problems with: 

1.  Orienting, via conflicts or deficits in shared mechanisms that relate affective 
regulation to metacognition [71] or deficits in neurocognitive processing re-
lated to self-regulation such as being aware of and aligning emotional re-
sponses, cognitions, and behaviors to goals [72]. If you are not aware of 
whether your mental state is aligned with your goals then, arguably, you may 
not successfully self-locate in the HS. Your goals may be oriented towards the 
cyber operation, but your affective and cognitive states and behaviors may be 
focused on your arousal levels in the physical and social domains. 

2.  Locating, for example by disturbances in perspective taking due to suboptimal 
development of self-other representations [73-75] or via reduced capacity for 
maintaining a stable model of other people’s mental states and emotions with 
empathy [41]. 

3.  Bridging, via affective mechanisms related to communication and coordina-
tion through social coherence [39, 48, 52]. 

      Although numerous studies link affective variability to cooperative proxies and op-
timal social interactions, how this translates to collaboration in a cyber operation setting 
has yet to be explored. 

 
1.6 Aim 

We argue that multiple affective measurements taken during an exercise would be as-
sociated with team workload demands. Being able to measure how individual variable 
affective states influence team performance would give a better understanding of how 
to develop better interventions to increase metacognition, thus having better situational 
awareness and helping team performance. Research has shown that metacognition has 
positive influences on situational awareness and performance [76]. Thus, in this paper 
we examine the relationship between affective variability and team workload demands. 

2 Methods 

2.1 Participants and Procedure 

Data was collected during the Norwegian Defense Cyber Academy’s (NDCA) annual 
Cyber Defense Exercise (CDX). This arena facilitates the opportunity for students to 
train in tactics, techniques and procedures for handling various types of cyberattacks. 
The exercise contributes to improving appreciation for the human and technical com-
petences necessary to establish, manage and defend a military digital information in-
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frastructure under simulated operational conditions. The exercise lasted five days. Be-
fore each day, the participants were asked to rate their affective states. At the end of the 
day the participants were asked to assess team performance. A total of 13 cadets par-
ticipated in the research. 

 
2.2 Measurements 

The Self-assessment Manikin (SAM;[77]) was used to measure affective states. The 
SAM is a 3-item 9-point Likert-scale (1 to 9) that measures mood (negative to positive), 
physiological activation (PA; little to much), and control (little to much). The SAM is 
a validated culture- and language independent visual scale that is used in performance 
[18] research in different domains and populations including cyber environments [77-
79]. 

Both mean and variability scores were computed. Affective variability was com-
puted for the three aspects of the SAM using the formula: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1

(𝑁𝑁 − 1)��𝑅𝑅𝑅𝑅𝑗𝑗+1 − 𝑅𝑅𝑅𝑅�����
𝑛𝑛

𝑗𝑗=0

 

where N is the total number of R peaks, RR j is the jth RR interval, RR is the mean of 
the RR intervals, j denotes the average of the RR intervals up to the jth. This resulted in 
three independent variables: Mood, Activation and Control. Higher mood indicates 
more positive mood, higher activation indicates more arousal, and higher control indi-
cates higher self-efficacy. 
      For this study, the SAM showed good reliability for each subscale (Mood 
Cronbach’s a= .633; Activation Cronbach’s a = .891; Control Cronbach’s a = .928). 

The Team Workload Questionnaire (TWLQ)[80] was used to assess the workload 
demand in team tasks. Items are scored on an 11-point Likert scale (range: very low – 
very high) with high scores indicating higher levels of subjective workload. Average 
scores for team workload performance were computed on the subscales of the two di-
mensions, the Teamwork component (communication, coordination, team performance 
monitoring) and Task-Team component (time-share, team emotion, team support). 

The TWLQ has shown good reliability on all subscales (Cronbach’s a >.70) [80] and 
also for this research (Teamwork Cronbach’s a = .847; Task-team Cronbach’s a = .624). 

 
2.3 Ethical considerations 

The study conformed to institutional guidelines and was eligible for automatic approval 
by the Norwegian Social Science Data Services’ (NSD) ethical guidelines for experi-
mental studies. Participants gave their informed consent verbally prior to the study and 
were informed that they could withdraw from participation at any time and without any 
consequences. 
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2.4 Data Analysis 

Statistical analysis was done with JASP version .14.1 [81]. All variables were centered 
and standardized for analysis. Alpha levels for hypothesis testing were set at the 0.05 
level. A multiple linear regression was computed with affective state measures (SAM) 
entered as predictors and the subscales of the TWLQ as criterion variables.  

3 Results 

Descriptive statistics and correlations among the variables are given in Table 1. From 
the initial correlation analysis, separate regressions were computed on each of the rele-
vant TWLQ subscales.   



 
Table 1: Descriptive Statistics and Correlations (N=13) 

  Scale M SD 1 2 3 4 5 6 7 8 9 10 11 12 
1 Mood 6.38 .75 —            
2 Activation 4.36 1.44 -.428 —           
3 Control 5.65 1.31 .238 -.412 —          
4 R-Mood 1.38 .54 -.569** .241 .245 —         
5 R-Activation 1.37 .73 -.460 .158 -.202 .251 —        
6 R-Control 1.07 .44 -.019 -.300 .334 .132 .301 —       
7 TWLS Communication 5.60 .70 .010 .133 -.195 .144 .274 .237 —      
8 TWLS Coordination 5.16 .92 .367 .364 -.036 -.117 .046 -.082 .675* —     
9 TWLS TPM 4.04 1.06 -.161 .828*** -.337 .124 -.056 -.558** -.114 .218 —    

10 TWLS TSD 4.12 1.26 .366 -.019 -.295 -.450 -.592* -.290 .187 .346 .067 —   
11 TWLS Team Emotion 2.91 1.08 -.315 .295 -.163 -.187 .118 -.374 -.320 .066 .193 .177 —  
12 TWLS Team Support 3.86 1.24 .201 -.331 -.372 -.538** -.488* -.473 -.144 -.264 -.050 .604* .128 — 
R: RMSSD (variability); TWLQ: Team Workload Questionnaire; TPM: Team Performance Monitoring; TSD: Time Share Demand 
*p <.1, ** p < .05, *** p < .01,               



Only the SAM Activation average score had any association with teamwork compo-
nents of the TWLQ (Team Performance Monitoring; r = .828, p < .01) but not with any 
of the Team-task components. 
      For calculated variability SAM scores for workload demands focusing on Team-
work aspects; communication, coordination and performance monitoring workloads, 
only higher variable control was associated with less team performance monitoring (β 
= -.558, p =.048, R2 = .311, F = 4.96). 
      For calculated variability SAM scores for team workload demands focusing on 
Tasks-team workloads, higher mood variability (β = -.322) and higher activation (more 
aroused; β =-.511) predicted less team support demands (R2 = .448, F = 4.058, p = .026 
1-tailed). 
      Higher variability for mood (β = -.423), activation (β = -.282), and control (β = -
.323) predicted less team support demands (R2 = .523, F = 3.29, p = .036 1-tailed). 
For team emotional support, higher variable control was associated with lower team 
emotional support but this was not significant (r = -.473, p = .051 1-tailed) 

4 Discussion and Conclusion 

Recent research indicated that there is a scarcity of studies in cybersecurity that simul-
taneously assess team and individual factors [1]. In this study, we set out to assess the 
association between individual measurements of affective variability (Mood, Physio-
logical Activation, and Control) on team workload demands (teamwork demands, task-
team demands).  
      We found that higher affective variability could predict better teamwork behaviors 
(team performance monitoring) as well as decreasing the task-team workload demands. 
Participants with higher affective variability, as measured by the Self-Assessment Man-
ikin, will impose less workload demands on the team, which can lead to better outcomes 
[7, 82]. Previous studies showed that more flexible intra-individual psychological pro-
cesses (i.e. variable self-efficacy) could predict better team outcomes [82].  

On a neurological level, while being important for regulating affective states [23], 
the DLPFC is also important for complex and technical problem solving such as under-
standing computer code [63, 64] and perceptual tasks such as sorting through perceptual 
stimuli [83, 84]. Moreover, psychophysiological proxies for DLPFC functioning are 
associated with a sense of mastery as an adaptive individual trait [40]. In our study, we 
found that higher variable Control, an indicator of self-efficacy, was associated with 
less performance monitoring and less team support demands. In previous research, we 
showed that interoceptive ability, an indicator related to the cognitive perceptions of 
emotions and arousal, was moderated by self-efficacy during counterintuitive decision-
making in officer cadets [85]. Self-efficacy may facilitate better cyber oriented deci-
sion-making in certain situations [86] and is negatively associated with stress arousal 
during task-engagement [87]. Higher Control variability in our sample may be indica-
tive of the level of expertise among COs, and recent research seems to suggest that 
cybersecurity experts need less intra-team communication and coordination compared 
to novices [88, 89]. 
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A previous study suggested that increasing cybersecurity alerts were associated with 

drops in team performance [90]. The authors suggested that team dynamics were af-
fected at the structural level with communication breaking down due to cognitive fa-
tigue. As lower affective variability is due to limited capacity of prefrontal structures 
such as the DLPFC to exert top-down control on emotional states [23] then it is possible 
that the (1) arousal was higher than participants were comfortable with (i.e. past optimal 
arousal levels) such that attention was focused inwards, (2) that affective states were 
competing with problem solving (3) and sorting between task-related perceptual stimuli 
to maintain situation awareness [66]. Thus, lower affective variability in our sample 
may reflect reduced capacity for situational load thus higher team support demands.  
      Inability to regulate one’s own affective states will also affect the capacity to help 
regulate other individual’s affective states due to low tolerance for cognitive-emotional 
load [91, 92]. If an individual must spend cognitive effort on regulating their own stress- 
and affective arousal, less cognitive capacity can be allocated to help handle other peo-
ple’s stress levels. If communication dyads are significantly stressed without capacity 
to down-regulate their own arousal, this may result in a positive feedback loop elevating 
arousal-related conflict levels during communication [39]. A recent preliminary report 
on US army computer network defense teams participating in a CDX reported that ar-
guing in cyber defense teams was negatively associated with team performance [93]. 
The authors reported that frequent arguing was negatively associated with two perfor-
mance measures: (1) the time between start of an inject to returned rapport approval by 
team controller, and (2) the percentage of category of injects correctly identified by the 
blue team. The study did, however, not report p-values for this relationship. This can 
have major consequences in high-stress, high time-pressure social settings such as 
cyber threat situations. The relationship between affective variability, characteristics of 
communication among cyber team members, and performance in a CDX should be as-
sessed in future studies.       

This is the first study to assess how individual emotional adaptability affects team 
dynamics in a cyber defense setting. Our findings suggest avenues for metacognitive 
training on self-regulation strategies as well as advocating the need for neuroergonomic 
approaches to understanding how the interrelatedness between different domains of 
challenge to individual CO performance might affect team performance in cybersecu-
rity. 

4.1 Limitations 

There are several limitations for the study. An a priori power analysis (G*Power [94]) 
showed that the minimum number of participants needed (N = 17) to achieve medium 
effect sizes (f2 = .25), our study only had 13, but was the full cohort of the group. This, 
alongside that the study is correlational in nature and all variables are self-reported, 
meaning the results need to be interpreted with caution as type I and II error may occur 
since several results were near significance levels. 
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4.2 Conclusion 

Future research on team performance in cybersecurity should include variable meas-
urements of individual factors as they are more sensitive and may have better explana-
tory power for performance measurements than team-level measures alone. 

5 Funding 

This study was conducted as part of the Advancing Cyber Defense by Improved Com-
munication of Recognized Cyber Threat Situations (ACDICOM; #302941) project. 
ACDICOM is funded by the Norwegian Research Council. 
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