
Bet and Attack: Incentive Compatible
Collaborative Attacks Using Smart Contracts

Zahra Motaqy1∗, Ghada Almashaqbeh2, Behnam Bahrak3, and Naser Yazdani4

1 University of Connecticut, raha@uconn.edu
2 University of Connecticut, ghada.almashaqbeh@uconn.edu

3 University of Tehran, bahrak@ut.ac.ir
4 University of Tehran, yazdani@ut.ac.ir

Abstract. Smart contract-enabled blockchains allow building decen-
tralized applications in which mutually-distrusted parties can work to-
gether. Recently, oracle services emerged to provide these applications
with real-world data feeds. Unfortunately, these capabilities have been
used for malicious purposes under what is called criminal smart con-
tracts. A few works explored this dark side and showed a variety of such
attacks. However, none of them considered collaborative attacks against
targets that reside outside the blockchain ecosystem.
In this paper, we bridge this gap and introduce a smart contract-based
framework that allows a sponsor to orchestrate a collaborative attack
among (pseudo)anonymous attackers and reward them for that. While all
previous works required a technique to quantify an attacker’s individual
contribution, which could be infeasible with respect to real-world targets,
our framework avoids that. This is done by developing a novel scheme
for trustless collaboration through betting. That is, attackers bet on
an event (i.e., the attack takes place) and then work on making that
event happen (i.e., perform the attack). By taking DDoS as a usecase,
we formulate attackers’ interaction as a game, and formally prove that
these attackers will collaborate in proportion to the amount of their bets
in the game’s unique equilibrium. We also model our framework and
its reward function as an incentive mechanism and prove that it is a
strategy-proof and budget-balanced one. Finally, we conduct numerical
simulations to demonstrate the equilibrium behavior of our framework.

Keywords: Collaborative attacks · Mechanism design · Criminal smart con-
tracts · Blockchain model

1 Introduction

Cryptocurrencies and blockchain technology continue to build innovative com-
puting models and economic tools that can reshape the services and systems
around us. Fueled by the huge interest this technology received, researchers and
practitioners alike are racing to build new applications and improve existing

∗Most work done while at University of Tehran.

ar
X

iv
:2

01
0.

12
28

0v
4

 [
cs

.G
T

]
 2

3
Se

p
20

21

2 Z. Motaqy et al.

ones. Smart contracts facilitate this process; individuals can deploy arbitrary
code on a blockchain, allowing for trustless collaboration between participants
under terms enforced by the contract execution. More recently, and to achieve
the quest of allowing blockchain to react to real-world events, the concept of
oracles has been introduced [1,3,9]. These are external services that supplement
a smart contract with information about specific real-world events.

However, these new capabilities have been used for malicious purposes as well.
This falls under what is called criminal smart contracts (CSCs), a term that was
first coined by Juels et al. [17]. They showed that CSCs can be used for crypto-
graphic key theft, leakage of confidential information, and real-world crimes such
as murder. Since then, several studies have proposed new smart contract-based
attacks mainly related to bribery to disrupt the mining process [12, 15, 18, 25].
Nonetheless, these works were limited to (collaborative) attacks on the cryp-
tocurrency/blockchain itself rather than outsider real-world targets. Juels et
al. [17] considered real-world targets, but only for solo attackers.

Collaborative attacks are known to be more devastating [4–6, 19, 26, 27, 29].
This raises the question of whether CSCs can facilitate such attacks in the real
world. Addressing this question is challenging; (pseudo)anonymity of blockchain
users leads to incomplete information about the attackers. Also, dealing with at-
tackers in the real world makes it hard to measure and verify their contribution.
Attackers are represented by random-looking public keys in a CSC who tend
to hide their involvement in a given attack to avoid legal consequences. This is
different from attacks with targets within the blockchain ecosystem itself, where
usually cryptographic primitives comes for the rescue to prove a claimed contri-
bution [15]. This is even easier in the context of a solo attacker; the fact that
an attack took place at the promised time/location implies that the work has
been done [17]. Verifying contribution is essential to ensure that self-interested
parties cannot collect their rewards without doing the required work.

Contributions. In this paper, we bridge this gap by showing how smart con-
tracts can be used to perform collaborative attacks against real-world targets.
We develop an incentive compatible framework that allows a sponsor to orches-
trate a collaborative attack among (pseudo)anonymous attackers and reward
them for that. Our framework mitigates the requirement of quantifying attack-
ers’ individual contributions by introducing a betting-based technique to allow
trustless collaboration. In particular, attackers bet on an event (i.e., the attack
takes place) and then work on making that event happen (i.e., perform the at-
tack). By designing an incentive-compatible reward mechanism, these attackers
will be motivated to deliver the work represented by the value of their bets, and
hence, obtain their rewards. To the best of our knowledge, our work is the first
generic CSC-based collaborative attack framework against real-work targets.

As a use case, we consider distributed denial of service (DDoS) attacks.5 We
design a smart contract to perform this attack, and we formulate attackers’ in-

5We note that [22] dealt with smart contract-based DDoS, but the work is very
high level and lacks many important details, making it hard to assess its feasibility.

Bet and Attack 3

teraction as a game. Then we formally prove that these attackers will collaborate
in proportion to the amount of their bets in the game’s unique equilibrium. We
also model our framework and its reward function as an incentive mechanism and
prove that it is strategy-proof (i.e., attackers will not misrepresent the amounts
of their bets) and that it is budget-balanced (i.e., the total rewards allocated to
the attackers doesn’t exceed the deposited attack rewards). Through numerical
simulations, we study the impact of several parameters, including the reward
function, total amount of bets, and attack cost, on the attack outcome. We show
that in a typical scenario, the proposed incentive mechanism provides individual
rationality and fairness for the collaborating attackers.

We argue that showing feasibility of collaborative attacks using CSCs is es-
sential to identifying such threats, and devising secure countermeasures. More-
over, and although our focus is on attacks in this paper, we believe that our
framework can facilitate benign collaboration between users. For example, it
can be employed in blockchain-based decentralized systems offering digital ser-
vices, such as content delivery [8] and file storage [7], to incentivize peers to
act honestly while serving others. Such a feature has a huge impact on system
efficiency. That is, incentive compatibility mechanisms (when applicable) can
be used to defend against potential threats instead of (usually computationally-
heavy) cryptographic mechanisms.

Related work. Many incidents were reported on cybercriminals collaboration
in the context of malware and massive DDoS attacks [4–6, 19]. Attackers trade
goods, services, and money through the phishing marketplace and even advertise
their demands [10]. Moreover, botnets can be even rented for spam campaigns
and DDoS attacks [2].

Usually these attacks involve some trust assumption that a sponsor will re-
ward attackers for participation. CSCs can replace such assumption by providing
an automated and transparent way for coordination and sponsorship [11,17,20].
As mentioned before, this observation was first investigated by Juel et al. [17].
They proved how the CSCs they developed can be commission fair, meaning that
neither the sponsor nor the attackers can cheat. Another work that considered
real world targets is [14] who proposed a semi-autonomous (file) ransomware
architecture using CSCs. Their scheme allows paying for individual files or reim-
bursing the victim if decryption is invalid. Despite handling real-world targets,
these works focused only on solo attackers.

Another line of work on CSCs focused on bribery to attack the cryptocur-
rency or blockchain itself. [25] showed an attack to allow a mining pool manager
to destroy competing mining pools, and [15,18] showed how a sponsor can bribe
miners to pursue a mining strategy that benefits him (e.g., to allow him to re-
vert a transaction or to double spend). CSC-based attacks on mining have been
systematically analyzed in [16] under the umbrella of algorithmic incentive ma-
nipulation attacks. On the game theoretic front, Chen et al. [12] introduced a
game modeling of a bribery contract. They showed that in any Nash equilibrium,
a sponsor cannot win the majority of the votes unless he/she controls more than
20% of the total bribing budget. Although the aforementioned bribery attacks

4 Z. Motaqy et al.

consider collaborative attackers, their target is the blockchain/cryptocurrency
itself. Also, these works implement techniques to enable attackers to provide
cryptographic proofs that the desired mining strategy has been performed. As
we mentioned before, such aspect is hard to achieve when the target resides
outside the blockchain ecosystem. Our work handles these issues by showing the
feasibility of CSC-based collaborative attacks against real-world targets without
measuring the individual contribution of attackers.

2 A Model for a CSC-based Collaborative Attack

In this section, we present the blockchain and threat models we adopt in this
work, along with a security notion for CSCs. After that, we introduce the pro-
posed CSC-based collaborative attack model with DDoS attacks as a usecase.

2.1 Blockchain Model

We deal with permissionless public blockchains that support smart contracts,
such as Ethereum [28]. Hence, the code of the smart contract, its state, and
all messages (or transactions) sent to this contract are logged in the clear on
the blockchain. Any party needs an account in order to interact with a smart
contract, referred to as externally owned account (EOA) in Ethereum. This
account is identified by the public key of its owner, and has a public state that
is mainly concerned with the account currency balance. Anyone can create any
number of EOAs and participate in a CSC, and no real identities are required.
Although we consider Ethereum in our CSC model, any other smart contract
infrastructure can be used given that its scripting language can represent the
CSC functionality.

We require the blockchain to have access to oracles that provide authenticated
real-world data feeds. A popular example of such oracle services is Provable [9].
In the context of a CSC, the attack sponsor (who is also the CSC creator) will
specify the metrics that the CSC will query from the oracle that will quantify
the outcome of the attack. For example, in our DDoS usecase, we use the re-
sponse delay as the attack outcome metric, where excessive delays means an
overwhelmed (or a down) server. Provable can measure this metric by sending
http requests to the target server and report the response to the CSC for which
parameters like delay can be measured.

2.2 Threat Model

We adopt the following threat model in this paper:

– The blockchain is secure in the sense that the majority of the mining power
is honest. So the confirmed state of the blockchain contains only valid trans-
actions, and that any attempt to rewrite the blockchain will fail with over-
whelming probability. We also assume liveness, meaning that messages can-
not be blocked or delayed beyond some bounded duration, and availability
in the sense that the blockchain records are accessible at anytime.

Bet and Attack 5

Fig. 1: A model for a CSC-based collaborative attack.

– The oracle service is secure (i.e., provide valid digitally signed data), al-
ways available, and capable of measuring the attack result in terms of some
predefined metrics.6

– No trusted party of any type exists. Also, attackers involved in any CSC are
mutually-distrusted and rational so they will act based on what maximizes
their individual profits. Moreover, these attackers are regarded as indepen-
dent risk-neutral decision-makers; they will be interested in maximizing the
expected value of their utility.7

A fully successful attack in our model is defined as meeting the desired attack
result set by the CSC sponsor. The difference between the actual and desired
attack result denote the success level of an attack. It should be noted that in
some attacks such success level is not applicable; it is either the attack has been
done or not (e.g., steal a cryptographic key).

For security, we adopt the notions of correctness and commission-fairness
proposed in [17]. A correct CSC is one that implements the attack protocol as
designed by the sponsor. And a commission-fair CSC is one that guarantees that
neither the sponsor nor the perpetrator of the crime can cheat; attack sponsor
cannot avoid paying attackers for the work they have done, and attackers cannot
collect rewards for work they have not done. Note that work here refers to
pursuing the attack as per the sponsor’s desired metrics.

2.3 Attack Model

At a high level, and as shown in Figure 1, a CSC-based collaborative attack is
composed of three phases: a CSC design and deployment phase, an attack phase,
and a reward allocation phase. In order to make the discussion easier to follow,
we present these phases with a running example. In particular, we consider one
of the devastating cybersecurity attacks, namely, DDoS attacks. The sequence
diagram of this attack is captured by Figure 2, while the following paragraphs
elaborate on the attack protocol according to our framework phases.

6It is the responsibility of the attack sponsor to pick metrics for which there is a
secure oracle service that cam measure and report them.

7While it is true that attackers are not always risk-neutral, we assume that is the
case here for simplicity. For an analysis of non-risk neutral attackers, see [21].

6 Z. Motaqy et al.

Fig. 2: Sequence diagram for a DDoS attack using CSC

Phase 1. Design and deployment of CSC. In this phase, an attack spon-
sor designs the CSC functionality. This includes defining all APIs and methods
needed to orchestrate the attack and distribute the rewards. This in addition to
attack parameters such as attack target, duration (measured in rounds, where a
round is the time needed to mine a block on the blockchain), the metrics used
to measure the attack result, and the reward allocation function. For DDoS, the
target can be a specific server, and the metric that we use is response delay. The
oracle service Provable can measure such quantity by simply sending HTTP re-
quests to the specified target and report the response back to the CSC for which
parameters like delay can be measured [9].

The sponsor then creates a smart contract implementing the CSC function-
ality and publishes it on the Ethereum blockchain. He will also deposit an award
for the attackers in the CSC account. Once published, and since the contract
code is public on the blockchain, interested attackers can evaluate the terms
and assess if it is feasible for them to participate in the attack. For example,
they check their availability during the attack duration and whether they have
the resources required to achieve the attack goal. If feasible, each attacker will
submit a bet to the CSC’s account during the betting period. This period starts
when the contract is confirmed on the blockchain until the attack starting time.

In terms of DDoS, an attacker checks if he can reaches the target server, and
that he can afford sending traffic to overwhelm the server. In this context, this
attacker can, for example, rent botnets to achieve that [2]. Based on the amount
of traffic this attacker can afford, which represents his amount of contribution
in the attack, the attacker will choose his bet value and deposit in the DDoS CSC.

Phase 2. The attack. The second phase of our framework is the attack phase.
Once the deposits are made by both the sponsor and the attackers, and the attack
period starts, these attackers will launch the attack. Each attacker may choose
any strategy given that it achieves the attack goal set by the sponsor. For DDoS,
an attacker sends appropriate traffic to overwhelm the target.8 Since all attack-

8While it is common that the target defends itself by identifying and filtering the
attack traffic, for simplicity we assume that attackers generate effective attack traffic
(traffic that passes the defense walls and gets to the target server).

Bet and Attack 7

ers are sending traffic during this period, and although they do not know and do
not trust each other, they are collaborating against the same target. CSC allows
this automated collaboration coordination without placing trust in anyone. The
attack phase continue until the end of the attack period specified in the contract.

Phase 3. Reward allocation. In the third phase, the CSC queries the oracle
to obtain the attack result. This can be done by having the sponsor send a
transaction to invoke a function in CSC that sends a request to the oracle.
The oracle then fetches the attack result and return it by executing a callback
function in CSC. Based on the attack goal, this can happen either when the
specified attack duration is over (e.g., check that the target server is down) or
during that period (i.e., check that the server response delay is long enough).
If multiple measures are reported, then the average, minimum or maximum can
be computed (recall this is part of the terms that the sponsor specifies).

After that, the CSC computes the total currency value of the sponsor award
and the attackers’ bets. Then, it distributes this amount among the sponsor and
the attackers based on the reward allocation function and the attack result. If
the attack is fully successful, the total currency will be distributed among the
attackers. If the attack is unsuccessful, then this currency will go to the sponsor
(i.e., attackers are punished by taking away their bets). For attacks where there is
a success level some where in between, as in DDoS, both attackers and sponsors
will get part of the total currency. The distribution of this amount will be based
on a reward allocation function that the sponsor chooses. In Sections 3 and 4 we
thoroughly discuss the details of the reward allocation mechanism.

At the end, the CSC sends payment transactions to the sponsor and/or
attackers’ accounts (these accounts are defined by the attackers public keys used
when registering the bets).

We note that despite advances in devising countermeasures against DDoS [23],
these attacks cannot be fully prevented. Nonetheless, it is important to point out
that given that the CSC is public on the blockchain, the target could be aware
of the attack (assuming he is inspecting the blockchain regularly). Hence, the
target can employ defense strategies during the specified attack period. This will
increase the cost of performing the attack as we will show in Section 5.

The contract. The CSC contract for the above collaborative DDoS attack is
outlined in Figure 3. We model a data feed (oracle) as a sequence of pairs (m,σ).
Where m is the attack result reported by the oracle, and σ is the oracle’s digital
signature over m. Thus, the oracle has an private/public key pair (pkO, skO)
used to sign/verify signatures. In the figure, bal[X] denotes the balance of users’
account X on the blockchain.

3 Game Theoretic Model and Analysis

Dealing with self-interested attackers is problematic; they do not care about the
sponsor’s goals, and they would lie to collect more rewards if they can. Attacking
real world targets complicates the problem since attackers will tend to hide such

8 Z. Motaqy et al.

Upon Deploying CSC by an Attack Sponsor S

Init: award, target serverurl, start time, attack duration, betmin,
Sponsoraddress := [S], pkO
Create:

– Profile of each attacker: Struct Attacker {account, bet, reward}
– List of all bets placed: Attacker [] public Bets

Deposit Award:
Assert bal[S] ≥ award
Transfer award coins from S to CSC’s account

Upon Submitting a Bet by an Attacker A

Input: bet = msg.value
Description:
If: (current time < start time) and (bet > betmin)
Then:
Assert bal[A] ≥ bet
Transfer bet coins from A to CSC’s account
Bets.push(

– Attacker.account : msg.sender,
– Attacker.bet : bet,
– Attacker.reward : 0)

Upon End of Attack Duration

Description:
Assert current time > start time+ attack duration
(m,σ) := requestMeasure(oracle, target serverurl)
Assert sigVer(pkO,m, σ)
\∗ Update the Attacker.reward property for all attackers in Betts list based on
the reward allocation function ∗\
ComputePayments(award,Bets,m)
\∗ Pay attackers their reward and transfer the rest of the deposited money, if any,
to the sponsor’s account ∗\
TransferPayments(Bets, Sponsoraddress)

Fig. 3: CSC pseudocode

information to avoid any legal consequences. This raises the question of how a
CSC can measure the individual contribution of each attacker. Our goal is to
identify and analyze factors that influence the attacker’s behavior and use that to
configure incentives properly and encourage faithful collaboration. Towards this
goal, in this section, we formulate our framework for CSC-based collaborative
attacks as an incomplete information game, and we show that it has a strong
dominant strategy equilibrium. For simplicity, we present this modeling and
analysis in the context of DDoS attack, but it can be generalized to any other
attack type using the proper metrics.

Bet and Attack 9

3.1 Attackers Contribution

Our solution utilizes betting to avoid direct measuring of individual contribu-
tions. The attack sponsor places an initial award and each attacker places a bet,
all deposited in the CSC account. An attacker is supposed to contribute in the
attack in proportion to his bet value. Based on how successful the attack is (as
reported by the oracle), the total amount of currency in the CSC account will be
distributed among the attackers and/or the sponsor (the sponsor gets a refund
only if the attack is not fully successful).

Recall that all CSC information is public on the blockchain as part of the
CSC code and state. However, and given that attackers are known only by their
random-looking public keys, we cannot guarantee that each attacker will place
only one bet. In fact, an attacker may use that to gain privacy, as well as increase
his utility (if possible), by dividing the bet into multiple smaller bets, then post
these bets using several accounts all controlled by this attacker. Thus, each
attacker privately knows his true bet (consisted of several smaller bets), even
though all the transactions are public.

Therefore, in our framework, attackers have to decide on two actions. First,
before the attack phase starts, they should decide on a betting strategy: each
attacker can submit multiple bets that sum to his true bet or one bet that is
equal to his true bet. We call the latter truthful betting. Afterward, in the attack
phase, each attacker should decide on the amount of contribution to the attack.

Later in this section, we show that each attacker’s relative contribution is
independent of others’ contributions and bets and is a function of his own bet
value. In the next section, we also show that truthful betting is the best strategy
for an attacker.

3.2 Interdependent Attackers Game (IAG)

We study the interaction among a set of interdependent strategic attackers as
a game with independent private values and strict incomplete information. In-
dependent private values means the utility of an attacker depends entirely on
his own private information. Strict incomplete information means we have no
probabilistic information in the model, i.e., we consider a worst-case scenario for
missing information.

In this game, let N represent the attackers set such that |N | = n, ωS be the
award of the sponsor, beti be the true bet value of the ith attacker such that
0 < beti < ωS , and ti = beti

ωS
be the private information that this attacker has

and it represents his type.9 Let eth represent an estimation of the total traffic
needed to satisfy the desired DDoS attack result set by the sponsor, and ei be
the relative contribution of the ith attacker in this amount, i.e., 0 ≤ ei ≤ 1. Thus,
if attacker i is a free-rider and makes no effort to contribute in the attack, then
ei = 0. While if ei = 1, this means that attacker i has launched a fully successful

9We assume dealing with homogeneous agents in terms of the cost of contributing
to the attack (all have same α in equation 3). Also, we show later that an attacker’s
bet value represents his actual contribution in the attack, and hence, his cost.

10 Z. Motaqy et al.

attack on his own. Let T denote the set of all type profiles t̂ = (t1, . . . , tn) and E
denote the set of all action profile ê = (e1, . . . , en). Based on his type ti, attacker
i chooses the action ei ∈ [0, 1]. The strategy function S : T → E maps each
attacker type to an action ei. Rational attackers will select a strategy that will
maximize their own utility as possible.

The reward allocation function is one of the mechanism rules that has a
significant impact on the attacker’s preferred strategies and attack result. In
our framework, the sponsor defines the reward allocation function R : [0, 1] ×
[0, 1] → R in the smart contract. We propose a simple allocation function that
allots reward to attackers according to the amount of their bets and the their
total relative contributions in the attack denoted as etot, i.e., etot =

∑
i∈N ei.

10

Let M be the total money amount deposited in the CSC’s account, so M =
ωS +

∑
i∈N beti. After the attack phase ends, the CSC distributes M among the

attackers and the sponsor, and automatically generate payment transactions to
transfer the allocated rewards to their accounts.

We consider the following reward allocation function (where bettot =
∑
i∈N

beti):

R(beti, etot) = M · etot ·
beti
bettot

(1)

That is, the share of each attacker from M is proportional to his bet value.
As noted, if etot < 1, meaning that the attack is not fully successful, then
the residual of M will go back to the sponsor. For our analysis, we want the
formulation of R to depend on the attacker type ti. As such, equation 1 can be
converted into an equivalent formulation as follows:

R(ti, etot) = M · ti · etot ·
(bettot
ωS

)−1
(2)

In order to compute the utility of an attacker, we need also to characterize the
cost of preforming an attack. Let C : [0, 1]→ R+ be a cost function that maps a
value ei to the cost expended in achieving the attack contribution profile ei. We
assume that C is strictly increasing and convex on its domain. In particular, we
use the following general form cost function:

C(ei) = α · exp (ei)− 1

emax − ei
∀i = 1, . . . , n (3)

where emax is the max possible attack traffic (the one beyond any attacker
capability), such that the cost of generating attack traffic will approach infinity
when ei approaches emax. And α is the average cost factor for generating attack
traffic, where its value depends on the type of attack, the target’s defensive
power, and attackers’ resources. The resulting utility function U : [0, 1]× [0, 1]→
R for the ith attacker can be computed as U (beti, ei, etot) = R(ti, etot)−C(ei)−
beti, which again we convert in terms of ti as follows:

10Note that in reality we cannot compute ei. Hence, etot is computed by using a
suitable function to convert the delay reported by the oracle into the proper total
traffic relative value. For example, if the measured delay meets the desired value, i.e.,
fully successful attack, then etot = 1. If it is 50% the value of the desired attack result,
then etot = 0.5, and so on.

Bet and Attack 11

U (ti, ei, etot) = R(ti, etot)− C(ei)− ti · ωS (4)

Let ê−i denotes the vector components consisting of elements of ê other than
the ith element, so ei+ê−i = etot. Based on that, we can write the utility function
as U(ti, ei, ê−i), which emphasizes that the ith attacker only has control over his
own attack effort, ei. A static strict incomplete information game is then defined
by a tuple IAG =< N, E, T, U >. In the IAG, each attacker (aka player)
maximizes its own utility in a distributed fashion. Formally, the non-cooperative
IAG is expressed as:

max
ei∈[0,1]

U (ti, ei, ê−i) ∀ i ∈ N (5)

3.3 Equilibrium Analysis

It is necessary to characterize a set of attack efforts where each player is satis-
fied with the utility he receives (which maximizes his utility), given the attack
efforts of other players. Such an operating point is called an equilibrium. The
equilibrium concept offers a predictable, stable outcome of a game where mul-
tiple players with conflicting interests compete through self-optimization and
reach a point where no player wishes to deviate. The condition for stability we
aim for here is that of strong dominant strategy equilibrium. Note that rules
of the game, including the utilities of all players, are public knowledge but not
their private information, namely, ti and ei.

First, we derive the best-response strategy of a player in IAG. Then we
prove that the described game among attackers in this setting has a dominant
strategy equilibrium. The ith attacker’s best response strategy S∗(ti, ê−i) to a
given strategy profile ê−i is given as the unconstrained maximizer of his utility,
where AW , bettot and eth are fixed:

S∗(ti, ê−i) = arg max
ei∈[0,1]

U (ti, ei, ê−i) (6)

To find the maximizing S∗(ti), we take the first derivative of U with respect
to ei and equate it to 0:

− α · exp (ei)

emax − ei
− c · exp (ei)− 1

(emax − ei)2
+
ωS · ti · (ωS + bettot)

bettot
= 0 (7)

So, the best response strategy S∗(ti, ê−i) of the ith player (with a value de-
noted as e∗i) does not depend on the attack efforts of the other players ê−i.
Therefore, we can represent the best response strategy function by S∗ (ti). Fur-
thermore, the only parameters (other than ti) that determine S∗ (ti) = e∗i are
the cost of the required attack traffic α and the quantity bettot

ωS
.

Definition 1. Given an incomplete information game Γ =< N,E, T, U >, a
strategy S∗(ti) is a strongly dominant strategy, if for every ti we have that the
strategy S∗(ti) is a strongly dominant strategy in the full information game de-
fined by ti. Formally, for all ti, all ê−i, and all possible values for ei (denoted as
e′i) such that e′i 6= S∗(ti), we have

U(ti, S
∗(ti), ê−i) > U(ti, e

′
i, ê−i) (8)

12 Z. Motaqy et al.

Definition 2. Given an incomplete information game Γ =< N,E, T, U >, a
strong dominant strategy equilibrium is an action profile ê∗ = (S∗(t1), . . . , S∗(tn))
in which each S∗(ti) is a strongly dominant strategy. The notion of strongly dom-
inant strategy requires that S∗(ti) is the unique best response to all possible ê−i,
i.e., without knowing anything about t̂−i (the type of other attackers).

Theorem 1. IAG defined above has a strong dominant strategy equilibrium.

Proof. For each player i and for fixed ti and e−i, the reward function R : T ×
E → R is linear, and cost function C : E → R is convex with respect to ei.
So U(ti, ei, ê−i) is concave and has a unique maximum. S∗(ti) is the unique
maximizer of U(ti, ei, ê−i)

11 and is a strongly dominant strategy that is the best
response regardless of ê−i. So for any i ∈ N and all ti, all ê−i and all e′i, we have
U(ti, S

∗(ti), ê−i) > U(ti, e
′
i, ê−i) and strategy profile ê = (S∗(t1), . . . , S∗(tn)) is

the strong dominant strategy equilibrium of the game. ut

4 Exploring Incentive Compatibility

As discussed earlier, due to the anonymity characteristic of blockchain users, we
can not determine the number of attackers n and the amount of their individ-
ual bets beti. In fact, knowing these bets allows predicting the attack result in
the equilibrium of the game, i.e.,

∑
i∈N S∗(ti) = e∗tot. In this section, we model

the rules that govern the interactions in the CSC as a mechanism. By applying
mechanism design theory, we prove that despite private information and pure
selfish behavior, we can predict the attack result and the conditions that impact
it. In addition, we show that under certain reasonable conditions, our mecha-
nism satisfies the necessary constraints of mechanism design, namely, incentive
compatibility, individual rationality, budget balance, and fairness.

4.1 Mechanism Formulation

As we showed in the previous section, the IAG game modeling players’ interac-
tions in a CSC has a strong dominant strategy equilibrium. As such, in equilib-
rium, the contribution of the ith attacker with type ti will be S∗(ti) = e∗i , and
it is independent of other attackers’ types and strategies. Based on that, for an
attacker type profile t̂ ∈ T , we define the attack result function AR : T → E as:

AR(t̂) =
∑
i∈N

S∗(ti) =
∑
i∈N

e∗i = e∗tot (9)

We consider the ith attacker’s bet beti as his payment to CSC, and the
reward R(ti, AR(t̂)) is what the mechanism pays him. Accordingly, this attacker
receives a payment amount pi, or makes it if pi is negative, expressed as (note
that ti · ωS = beti):

pi(t̂) = R(ti, AR(t̂))− ti · ωS (10)

11Note that the utility function is increasing at ei = 0 and decreasing at ei = 1, so
the maximum can not occur at end points

Bet and Attack 13

Let G(t̂) = (S(t̂), P (t̂)) be the outcome function that maps each type profile
t̂ ∈ T to an outcome o = (e∗tot, p̂) where the payment rule P (.) defines a profile
of attackers’ payments p̂ = (p0, p1, . . . , pn), and the set of possible outcomes is
denoted by O.

The attack result e∗tot is the non-monetary part in the outcome. To monetize
it, we introduce a valuation function V : R+×T → R (in terms of some currency)
to represent an attackers’ preference for a given attack result. In other words,
the valuation function expresses the cost that an attacker is willing to tolerate
when contributing to the attack (based on his dominant strategy), in addition
to the transaction fee paid to post his bets on the CSC (i.e., fees for Ethereum
miners). So, if this attacker post his true bet in k small bets, each of which will
require δ transaction fee (since each will be sent in a separate transaction), the
total fee will be k · δ. Based on that, V can be expressed as follows:

V (e?tot, ti) = −(C(S?(ti)) + k · δ), ∀i ∈ N, ∀ti ∈ [0, 1] (11)

Recall that attacker i’s contribution depends only on his type ti, and so is the
valuation function shown in equation 11. Thus, we can express it as V (e?tot, ti) =
V (ti). As a result, this valuation function can be used to represent the type of
attacker, and announcing a type is similar to reporting the attacker’s valuation
function.

Since we have money/incentive transfer between agents (aka attackers), we
work in quasi-linear setting. Each agent has a utility that is the motivating factor
behind the selection of his strategy. The preference of attacker i can be captured
using his utility function that can be redefined as follows (this is equivalent to
the one defined in equation 4):

U(ti, o) = V (ti) + pi (12)

We formalize the incentive mechanism for strategic attackers in the proposed
collaborative attack as a direct mechanism.12 In this setup, each attacker i an-
nounces a type t′i to the mechanism, which is not necessarily equal to his true
type ti ∈ [0, 1], such that it will lead to an outcome that maximizes his utility.
We also have a social choice function F : T → O that maps each agents’ type
profile to an optimal outcome, which is the same as the outcome function.

Definition 3. A direct mechanism in a quasi-linear setting is defined by D =
(T,G(t̂)). The mechanism defines the set of allowable types T that each agent
can choose and an outcome function G which specifies an outcome o for each
possible type profile t̂ = (t1, . . . , tn) ∈ T .

4.2 Incentive Compatible Property

Direct mechanisms extract information from agents by motivating them to tell
the truth. If the best response for all attackers to report their private informa-
tion truthfully to the CSC-driven mechanism, we say the contract is incentive

12This mechanism suits our model since we have the space of possible actions is
equal to the space of possible types, so an attacker type (which is defined when he
bets) is the same as his act (the amount of attack contribution).

14 Z. Motaqy et al.

compatible. Here we prove that the proposed mechanism is cheat-proof, which
means that all attackers are motivated to submit their bet truthfully, and any
deviation will lead to a utility loss.

Definition 4. The social choice function F (·) is a dominant strategy incentive
compatible (DSIC) (aka strategy-proof or cheat-proof) if and only if

U(ti, o) ≥ U(t′i, o
′) ∀i ∈ N, ∀t̂ ∈ T, ∀t′i ∈ [0, 1] (13)

where o = G(ti, t̂−i) and o′ = G(t′i, t̂−i).

Thus, if the SCF is DSIC, then the best response for agent i is to bet truth-
fully, i.e., beti = ti · ωS , regardless of other attackers’ bets. By calling a direct
mechanism DSIC or strategy-proof, we mean that the mechanism implements
an incentive-compatible or strategy-proof social choice function.

Theorem 2. The proposed direct mechanism (or social choice function) model-
ing our CSC-based collaborative attacks is DSIC.

Proof. We need to show that the utility of attacker i, is maximized when he
bet truthfully. We use proof by contradiction. Without loss of generality, assume
that the true type of attacker i is ti, but he tries to misrepresent his type and
submit his bet with two distinct blockchain addresses in two transactions (k = 2)
containing two bets beti,1 and beti,2, such that beti,1 + beti,2 = beti and beti =
ti · ωS . We denote the incorrect types by ti,1 and ti,2, so we have ti = ti,1 + ti,2.
We assume that he benefits from this untruthful act which means ∃ti,1, ti,2 ∈ T ,
where ti = ti,1 + ti,2, and ∃t̂−i ∈ Tn−1 such that

U(o′, ti,1) + U(o′, ti,2) > U(o, ti) (14)

where G(ti,1 + ti,2, t̂−i) and G(ti, t̂−i) are the values of o′ and o, respectively.
Note that, from each attacker i’s perspective, his dominant strategy S∗(ti)

is a function of his true type ti, which he knows, and so he can calculate his
dominant strategy as S∗(ti) = S∗(ti,1 + ti,2). Thus:

AR(ti,1 + ti,2, t̂−i) = S∗(ti,1 + ti,2) +
∑

j∈N,i6=j

S∗(tj) (15)

= S∗(ti) +
∑

j∈N,i6=j

S∗(tj) = AR(ti, t̂−i)

And for the rewards, we have:

R(ti,1, etot) +R(ti,2, etot) = (ti,1 + ti,2) · (bettot + ωS) ·
(bettot
ωS

)−1
· etot (16)

= ti · (bettot + ωS) ·
(bettot
ωS

)−1
· etot = R(ti, etot)

So the attacker’s reward does not increase by hiding his type (i.e., hiding his
bet). Therefore, from the mechanism point of view, the payments are the same
as if the attacker would announce his true type, so:

Bet and Attack 15

pi(ti, t̂−i) = pi(ti,1, t̂−i) + pi(ti,2, t̂−i) (17)

As we see, rewards and payments are identical in both cases. So the only
way for an attacker to obtain a higher utility when lying, is to have a higher
valuation than the one for the betting truthfully. This means that we have:

V (ti,1) + V (ti,2) > V (ti) (18)

Which means that:

C(S∗(ti)) + 2δ < C(S∗(ti)) + δ (19)

This inequality cannot hold since this means that a transaction fee δ is negative,
which is not the case. Thus, we a get a contradiction, meaning that an attacker
will not get a higher utility by submitting multiple bets instead of the a single
one (i.e., his true bet). ut

Note that we assumed attackers do not trust each other, so each attacker at
least needs one transaction to submit his bet or he can submit multiple bets that
sum to his true bet. However, let’s assume that two attackers do trust each other
and want to collude and fool the mechanism to increase their profit. The only
possible misbehavior is to submit one bet that its amount is equal to the sum of
their bets. In this case, the mechanism considers them as one identity (i.e., one
attacker) and based on the proposed reward allocation function, this will not
increase their reward. The only effect of this collusion is that the actual attack
result would be higher than the pre-calculated attack result. This is because
the same amount of contribution costs less for two attackers than one attacker
(recall that the cost function is convex) and when two attackers assumed as one,
their contribution will be considered less.

4.3 Budget Constraint

To be economically feasible, an incentive mechanism must be budget constrained.
In our framework, the total rewards allocated to the attackers should not exceed
M =

∑
i∈N beti + ωS , which is the total deposit made to the CSC account.

In terms of payments, this means that the total attackers payment should not
exceed the sponsor award ωS .

Definition 5. (Budget Constraint for CSC). A reward mechanism is budget
constrained if for ∀t̂ ∈ T we have

∑
i∈N pi(t̂) ≤ ωS.

Theorem 3. The proposed direct mechanism is budget constrained.

Proof. The total attackers payments can be expressed as:∑
i∈N

pi(t̂) =
∑
i∈N

(
R(ti, S(t̂))− ti · ωS

)
=
∑
i∈N

(
(bettot + ωS) · ti ·

(bettot
ωS

)−1
· S(t̂)− ti · ωS

)
(20)

= (bettot + ωS) ·AR(t̂)− bettot

16 Z. Motaqy et al.

where AR : T → E is as given in equation 9 and E = [0, 1]. So for any type
profile t̂ ∈ T we have:

− bettot ≤ (bettot + ωS) · S(t̂)− bettot ≤ ωS (21)

From equations 20 and 21, we get
∑

i∈N pi(t̂) ≤ ωS , completing the proof. ut

4.4 Voluntary Participation Constraint

Individual rationality or voluntary participation property of a social choice func-
tion means that each attacker gains a non-negative utility by participating in
the mechanism that implements the social choice function. There are two stages
at which individual rationality can be examined. First, when the amount of bet
(types) of other attackers t̂−i is unknown to attacker i, and therefore predicting
attack result (i.e. outcome) is impossible. Second, when before the attack phase
(ex-post stage), a choice to withdraw from the mechanism is given to all at-
tackers. That is when all the attackers have announced their bet, and an attack
result can be calculated. Note that a truthful attacker who submits his bet in
one transaction incurs two transaction fees, 2δ, to withdraw from the mechanism
(and if an attacker submits k smaller bets, his cost to withdraw will 2kδ). This
property of ex-post individual rationality is stated as follows.

Definition 6. (Ex-post Individual Rationality). The utility an attacker i with
type ti receives by withdrawing from a CSC is equal to −2kδ. To ensure attacker
i’s participation when withdrawal is allowed at the ex-post stage, we must satisfy
the following ex-post Individual Rationality (or participation) constraint

U(G(t̂), ti) ≥ −2kδ ∀t̂ ∈ T (22)

A mechanism satisfies ex-post individual rationality if it implements a social
choice function that satisfies ex-post individual rationality. In the next section,
through numerical analysis, we show that under mild conditions the proposed
mechanism satisfies this constraint. Note that these conditions can be encoded
as rules in CSC by the sponsor. For instance, he can condition the attack on a
specified amount of total bets, or he can restrict attackers’ type by specifying
upper bound and lower bound on acceptable bets.

4.5 Fairness

Different definitions for fairness have been proposed in the literature including
proportional fairness, max-min fairness, α−fairness [24]. To measure the fairness
of the proposed incentive mechanism, we need a metric that captures how close
the payment obtained by this mechanism is to fair payment. By fair payment,
we mean reward allocation based on the contribution of attackers (instead of
the amount of their bets). In other words, if attackers could prove their contri-
bution, then the reward allocation function would simply be a function of their
contribution and the attack result.

Bet and Attack 17

We denote the fair payment by p′i and can be computed as:

p′i(ê) = ωS · ei · etot (23)

Similar to [13], we consider a metric, which we call the fairness-score, based on
the root mean square (RMS) of the difference between the mechanism payment
and the fair payment. The fairness-score is defined as

Drms =

√
1

n

∑
i∈N

(pi(t̂)− p′i(ê))2 (24)

where pi(t̂) is given by equation 10. A value of zero for Drms indicates that the
mechanism payment equals to the fair payment, which discourages free-riders
and rewards contributors. As the value increases, the fairness of the reward
allocation function decreases. In the next section, using numerical simulation for
two reward functions, we show that under some mild conditions, the fairness
score drops for both rewarding schemes after hitting the desired attack result.

5 Numerical Simulations and Discussion

Based on our game model, there are four key parameters that impact the attack
outcome (in terms of payment and attack result). These factors are bettot, ωS ,
C(eth), and type profile t̂ = (t1, . . . , tn). Furthermore, the reward allocation
function has a significant impact on the attack result and other properties, such
as fairness and individual rationality.

In this section, we conduct simulations for a typical DDoS scenario to analyze
how various system parameters impact attack outcome. The parameter values
used in this study are n = 30, betmax

betmin
= 1

10 , beti ∼ Uniform(betmin, betmax),
and the results are averaged over 50 randomly chosen attackers’ bets. In our
simulations, we consider two reward allocation functions: linear and quadratic
(in the bet amount). The former is the one given by equation 2 and denoted by
R, while the latter is expressed as:13

R′(t̂, etot) = M · etot ·
t2i∑
i∈N t2i

(25)

As for the attack result, it will have an upper bound based on the contract
terms. That is, putting more effort beyond what is needed to reach the desired
attack result will not increase the rewards for the attackers. Thus, rational at-
tacker will stop when the measured attack result reaches the desired value.

We define two parameters: θ = bettot
ωS

, and γ = C(eth)
ωS

. Here, θ gives an
indication of the total amount of bets with respect to the sponsor award, and γ
is an indicator of the cost of performing the attack with respect to this award.
We use these parameters in our simulations to study the impact of total bet and
cost on the attack result.

13Note that the theoretical (game and mechanism) analysis conducted for R holds
for R′, too.

18 Z. Motaqy et al.

(a) (b) (c)

Fig. 4: The impact of increasing θ for fixed γ = 0.35 on (a) attack result (b)
proportion of allocated award to attackers, and (c) fairness-score of payment.

Comparing the impact of reward allocation functions, as Figure 4(a) shows
the quadratic scheme attracts significantly more contribution than the linear
reward scheme with the same value of θ. In this scheme, having θ = 1, one can
estimate that the expected attack result e∗tot would be around 90% of the desired
attack result eth. On the other hand, we observe that the linear reward allocation
function takes θ ≈ 1.7 to attract such contribution however this scheme allocate
the rewards fairer compared to the quadratic scheme. Moreover, Figure 4(b)
shows that at that point the quadratic reward scheme pays 75% of the considered
award while it costs attackers around 80% of the total cost of a successful attack.
The remaining 25% of the award will be paid for reaching the desired attack
result eth. As expected, the attack result, the allocated reward to award ratio,
and fairness score increase with the increase of θ. Therefore, the attack sponsor
can condition the attack on a minimum amount of total bet to ensure the success
of the attack and a given fairness score. Also, Figure 4(c) demonstrates that
after hitting the desired attack result, in both rewarding schemes, the fairness-
score drops which means after this point, the more the total bet, the fairer the
allocation will be.

As Figure 5(a) shows, the required θ for providing the incentive of launching
a successful attack increases as the cost factor γ increases. Therefore, as the
attack cost goes higher, a larger value of bettot is needed to provide the required
incentives to launch a successful attack. Accordingly, knowing the total amount
of the bets, the number of attackers, and the award, the target server can es-
timate and change the attack result through increasing the cost of that attack
(be deploying proper defenses against DDoS).

As discussed in section 4.4, attackers are incentivized to participate when a
non-negative utility is expected. Figure 5(b) shows that under some mild con-
ditions, in terms of θ and γ, the proposed mechanism satisfies the desirable
property of individual rationality. The red region denotes the situations that the
average attackers’ profit is positive. That is knowing the cost of the desired attack
and the minimum total bet, the attack sponsor or the attack target can adjust
the award or the cost to incentivize or deincentivize attackers to participate.

As shown in Figure 5(c), the larger the number of attackers the larger bettot
required for launching a successful attack. In other words, increasing the number

Bet and Attack 19

(a) (b) (c)

Fig. 5: The impact of θ and γ on (a) the attack-result, and (b) ratio of average
profit over average bet size, with fixed number of attackers n = 30. (c) the
impact of θ and number of attackers on attack result (γ = 0.35)

of attackers alone would not lead to more collaboration rather they should be
incentivized enough to collaborate. Therefore accepting small bets decreases the
attack result and a rule of minimum acceptable bet in the CSC can be helpful.

6 Conclusion

In this paper, we introduced a framework for employing CSCs to orchestrate
real-world targeted attacks. These attacks are launched by several collaborating
attackers without any knowledge of each other or any trust between them. To
study the feasibility of this idea, we considered DDoS attack as a usecase. By
using thorough game theoretic analysis and mechanism design, we showed that
the attack sponsor can design a cheat-proof and budget-balanced mechanism to
encourage collaboration of selfish rational attackers. Furthermore, the sponsor
can predict and adapt the attack result, i.e., determine under what conditions
attackers will participate in the attack. Simulation results show that, under some
mild conditions on the attack cost and total amount of bets, the proposed in-
centive mechanism provides individual rationality and fair allocation of rewards.
Being the first to study CSC-based collaborative attacks against real-work tar-
gets, we believe that our work will contribute in promoting the foundational
understanding of these attacks, an important step towards developing effective
countermeasures.

References

1. Aeternity oracles. https://aeternity.com/documentation-hub/protocol/

oracles/oracles/

2. Botnet economy runs wild. https://www.networkworld.com, accessed: 2020-09-18
3. Chainlink. https://chain.link/
4. Cyber criminal collaboration intensifies. https://www.computerweekly.com, ac-

cessed: 2020-09-18

https://aeternity.com/documentation-hub/protocol/oracles/oracles/
https://aeternity.com/documentation-hub/protocol/oracles/oracles/
https://www.networkworld.com
https://chain.link/
https://www.computerweekly.com

20 Z. Motaqy et al.

5. Cybercriminals are increasing efficiency with coordinated attacks. https://www.
enisa.europa.eu, accessed: 2020-09-18

6. evidence found of malware families collaborating. http://www.darkreading.com,
accessed: 2020-09-18

7. Filecoin, https://filecoin.io/
8. Noia. https://noia.network/
9. Provable. https://provable.xyz/

10. Abad, C.: The economy of phishing: A survey of the operations of the phishing
market. First Monday 10(9), 1–11 (2005)

11. Brunoni, L., Beaudet-Labrecque, O.: Smart contracts and cybercrime: a game
changer. Mathematical structures and modeling (4), 136–142 (2017)

12. Chen, L., Xu, L., Gao, Z., Shah, N., Le, T.C., Lu, Y., Shi, W.: The game among
bribers in a smart contract system. In: Financial Cryptography & Data Security.
pp. 294–307 (2018)

13. Da, B., Ko, C.C.: Resource allocation in downlink mimo-ofdma with proportional
fairness. Journal of Communications 4(1), 8–13 (2009)

14. Delgado-Mohatar, O., Sierra-Cámara, J.M., Anguiano, E.: Blockchain-based semi-
autonomous ransomware. Future Generation Computer Systems 112 (2020)

15. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gazi, P., Meiklejohn,
S., Weippl, E.: Pay to win: Cheap, crowdfundable, cross-chain algorithmic incentive
manipulation attacks on pow cryptocurrencies. In: Workshop on Trusted Smart
Contracts (2021)

16. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gazi, P., Meiklejohn,
S., Weippl, E.R.: Sok: Algorithmic incentive manipulation attacks on permission-
less pow cryptocurrencies. In: Workshop on Trusted Smart Contracts (2021)

17. Juels, A., Kosba, A., Shi, E.: The ring of gyges: Investigating the future of criminal
smart contracts. In: ACM CCS. pp. 283–295 (2016)

18. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In:
Financial Cryptography and Data Security. pp. 3–18 (2018)

19. Nazario, J.: Politically motivated denial of service attacks. The virtual battlefield:
Perspectives on cyber warfare pp. 163–181 (2009)

20. O’hara, K.: Smart contracts - dumb idea. Internet Computing 21(2), 97–101 (2017)
21. Qian, Y., Haskell, W.B., Tambe, M.: Robust strategy against unknown risk-averse

attackers in security games. In: AAMAS (2015)
22. Rodrigues, B., Trendafilov, S., Scheid, E., Stiller, B.: Sc-flare: Cooperative ddos

signaling based on smart contracts. In: IEEE ICBC. pp. 1–3 (2020)
23. Saman Taghavi Zargar, J.J.: A survey of defense mechanisms against distributed

denial of service (ddos) flooding attacks. EEE Communications Surveys & Tutori-
als, vol. 15, no. 4, pp. 2046-2069 (Fourth Quarter 2013)

24. Trichakis, N.K.: Fairness in operations: from theory to practice. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2011)

25. Velner, Y., Teutsch, J., Luu, L.: Smart contracts make bitcoin mining pools vul-
nerable. In: Financial Cryptography and Data Security. pp. 298–316 (2017)

26. Vogt, R., Aycock, J.: Attack of the 50 foot botnet. Technical report, Department
of Computer Science, University of Calgary (2006)

27. Vogt, R., Aycock, J., Jacobson Jr, M.J.: Army of botnets. In: NDSS (2007)
28. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger (2014)
29. Xu, S.: Collaborative attack vs. collaborative defense. In: EAI CollaborateCom

(2008)

https://www.enisa.europa.eu
https://www.enisa.europa.eu
http://www.darkreading.com
https://filecoin.io/
https://noia.network/
https://provable.xyz/

	Bet and Attack: Incentive Compatible Collaborative Attacks Using Smart Contracts

