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Abstract—We introduce password strength signaling as a
potential defense against password cracking. Recent breaches
have exposed billions of user passwords to the dangerous threat
of offline password cracking attacks. An offline attacker can
quickly check millions (or sometimes billions/trillions) of pass-
word guesses by comparing their hash value with the stolen hash
from a breached authentication server. The attacker is limited
only by the resources he is willing to invest. We explore the fea-
sibility of applying ideas from Bayesian Persuasion to password
authentication. Our key idea is to have the authentication server
store a (noisy) signal about the strength of each user password
for an offline attacker to find. Surprisingly, we show that the
noise distribution for the signal can often be tuned so that a
rational (profit-maximizing) attacker will crack fewer passwords.
The signaling scheme exploits the fact that password cracking is
not a zero-sum game i.e., the attacker’s profit is given by the value
of the cracked passwords minus the total guessing cost. Thus,
a well-defined signaling strategy will encourage the attacker to
reduce his guessing costs by cracking fewer passwords. We use an
evolutionary algorithm to compute the optimal signaling scheme
for the defender. We evaluate our mechanism on several password
datasets and show that it can reduce the total number of cracked
passwords by up to 12% (resp. 5%) of all users in defending
against offline (resp. online) attacks. While the results of our
empirical analysis are positive we stress that we view the current
solution as a proof-of-concept as there are important societal
concerns that would need to be considered before adopting our
password strength signaling solution.

Index Terms—Bayesian Persuasion, Password Authentication,
Stackelberg Game

I. INTRODUCTION

In the last decade, large scale data-breaches have exposed

billions of user passwords to the dangerous threat of offline

password cracking. An offline attacker who has obtained the

(salted) cryptographic hash (hu = H(saltu, pwu)) of a user

u’s password (pwu) can attempt to crack the password by

comparing this hash value with the hashes of likely password

guesses i.e., by checking if h′
u = H(saltu, pw

′) for each pw′.

The attacker can check as many guesses as he wants offline

— without interacting with the authentication server. The only

limit is the resources that the attacker is willing to invest in

trying to crack the password. A rational password cracker [1],

[2] will choose the number of guesses that maximizes his

utility.
Password hashing serves as a last line of defense against an

offline password attacker. A good password hash function H

should be moderately expensive to compute so that it becomes

prohibitively expensive to check millions or billions of pass-

word guesses. However, we cannot make H too expensive to

compute as the honest authentication server needs to evaluate

H every time a user authenticates. In this paper, we explore

a highly counter-intuitive1 defense against rational attackers

which does not impact hashing costs: password strength

signaling! In particular, we apply Bayesian Persuasion [3]

to password authentication. Specifically, we propose to have

the authentication server store a (noisy) signal sigu which is

correlated with the strength of the user’s password.

Traditionally, an authentication server stores the tuple

(u, saltu, hu) for each user u where saltu is a random

salt value and hu = H(saltu, pwu) is the salted hash. We

propose to have the authentication server instead store the tuple

(u, saltu, sigu, hu), where the (noisy) signal sigu is sampled

based on the strength of the user’s password pwu. The signal

sigu is simply recorded for an offline attacker to find if the

authentication server is breached. In fact, the authentication

server never even uses sigu when the user u authenticates2.

The attacker will only use the signal sigu if it is beneficial —

at minimum the attacker could always choose to ignore the

signal.

It is natural, but incorrect, to imagine that password crack-

ing is a zero-sum game i.e., the attacker’s gain is directly

proportional to the defender’s loss. In a zero-sum game there

would be no benefit from information signaling [4] e.g., in

a zero-sum game like rock-paper-scissors there is no benefit

to leaking information about your action. However, we stress

that password cracking is not a zero-sum game. The defender’s

(the sender of strength signal) utility is inversely proportional

to the fraction of user passwords that are cracked. By contrast,

it is possible that the attacker’s utility is marginal even when

he cracks a password i.e., when guessing costs offset the

reward. In particular, the attacker’s utility is given by the

(expected) value of all of the cracked passwords minus his

(expected) guessing costs. Thus, it is possible that password

strength signaling would persuade the attacker to crack fewer

1The propose may be less counter-intuitive to those familiar with prior work
in the area of Bayesian Persuasion [3].

2If a user u attempts to login with password pw′ the authentication server
will lookup saltu and hu and accept pw′ if and only if hu = H(saltu, pw′).

http://arxiv.org/abs/2009.10060v5


passwords to reduce guessing costs. Indeed, we show that

the signal distribution can be tuned so that a rational (profit-

maximizing) attacker will crack fewer passwords.

To provide some intuition of why information signaling

might be beneficial, we give two examples.

a) Example 1: Suppose that we add a signal sigu = 1
to indicate that user u’s password pwu is uncrackable (e.g.,

the entropy of the password is over 60-bits) and we add the

signal sigu = 0 otherwise. In this case, the attacker will simply

choose to ignore accounts with sigu = 1 to reduce his total

guessing cost. However, the number of cracked user passwords

stays unchanged.

b) Example 2: Suppose that we modify the signaling

scheme above so that even when the user’s password pwu

is not deemed to be uncrackable we still signal sigu = 1 with

probability ǫ and sigu = 0 otherwise. If the user’s password

is uncrackable we always signal sigu = 1. Assuming that ǫ is

not too large a rational attacker might still choose to ignore

any account with sigu = 1 i.e., the attacker’s expected reward

will decrease slightly, but the attacker’s guessing costs will

also be reduced. In this example, the fraction of cracked user

passwords is reduced by up to ǫ i.e., any lucky user u with

sigu = 1 will not have their password cracked.

In this work, we explore the following questions: Can

information signaling be used to protect passwords against

rational attackers? If so, how can we compute the optimal

signaling strategy?

A. Contributions

We introduce password information signaling as a novel,

counter-intuitive, defense against rational password attackers.

We adapt a Stackelberg game-theoretic model of Blocki and

Datta [1] to characterize the behavior of a rational pass-

word adversary and the optimal signaling strategy for an

authentication server (defender). We analyze the performance

of password information signaling using several large pass-

word datasets: Bfield, Brazzers, Clixsense, CSDN, Neopets,

000webhost, RockYou, Yahoo! [5], [6], and LinkedIn [7]. We

analyze our mechanism both in the idealistic setting, where the

defender has perfect knowledge of the user password distribu-

tion P and the attacker’s value v for each cracked password,

as well as in a more realistic setting where the defender only

is given approximations of P and v. In our experiments, we

analyze the fraction xsig(v) (resp. xno−sig(v)) of passwords

that a rational attacker would crack if the authentication server

uses (resp. does not use) password information signaling. We

find that the reduction in the number of cracked passwords can

be substantial e.g., xno−sig(v)−xsig(v) ≈ 8% under empirical

distribution and 13% under Monte Carlo distribution. We also

show that information signaling can be used to help deter

online attacks when CAPTCHAs are used for throttling.

An additional advantage of our information signaling

method is that it is independent of the password hashing

method and requires no additional hashing work. Implementa-

tion involves some determination of which signal to attach to

a certain account, but beyond that, any future authentication

attempts are handled exactly as they were before i.e. the signal

information is ignored.

We conclude by discussing several societal and ethical is-

sues that would need to be addressed before password strength

signaling is used. While password strength signaling decreases

the total number of compromised accounts, there may be a few

users whose accounts are cracked because they were assigned

an “unlucky” signal. One possible solution might be to allow

users to opt-in (resp. opt-out). Another approach might try

to constrain the solution space to ensure that there are no

“unlucky” users.

II. RELATED WORK

The human tendency to pick weaker passwords has been

well documented e.g., [5]. Convincing users to select stronger

passwords is a difficult task [8]–[13]. One line of research

uses password strength meters to nudge users to select strong

passwords [14]–[16] though a common finding is that users

were not persuaded to select a stronger password [15], [16].

Another approach is to require users to follow stringent

guidelines when they create their password. However it has

been shown that these methods also suffer from usability issues

[12], [17]–[19], and in some cases can even lead to users

selecting weaker passwords [9], [20].

Offline password cracking attacks have been around for

decades [21]. There is a large body of research on password

cracking techniques. State of the art cracking methods employ

methods like Probabilistic Context-Free Grammars [22]–[24],

Markov models [25]–[28], and neural networks [29]. Further

work [30] has described methods of retrieving guessing num-

bers from commonly used tools like Hashcat [31] and John

the Ripper [32].

A good password hashing algorithm should be moderately

expensive so that it is prohibitively expensive for an offline

attacker to check billions of password guesses. Password

BCRYPT [33] or PBKDF2 [34] attempt to increase guessing

this by iterating the hash function some number of times.

However, Blocki et al. [2] argued that hash iteration cannot

adequately deter an offline attacker due to the existence of

sophisticated ASICs (e.g., Bitcoin miners) which can compute

the underling hash function trillions of times per second.

Instead, they advocate for the use of Memory Hard Functions

(MHF) for password hashing.

MHFs at their core require some large amount of memory

to compute in addition to longer computation times. Candidate

MHFs include SCRYPT [35], Balloon hashing [36], and

Argon2 [37] (the winner of the Password Hashing Compe-

tition [38]). MHFs can be split into two distinct categories

or modes of operation - data-independent MHFs (iMHFs)

and data-dependent MHFs(dMHFs) (along with the hybrid

idMHF, which runs in both modes). dMHFs like SCRYPT are

maximally memory hard [39], although they have the issue of

possible side-channel attacks. Closely related to the notion of

memory hardness is that of depth-robustness - a property of

directed acyclic graphs (DAG). Alwen and Blocki showed that

a depth robust DAG is both necessary [40] and sufficient [41]



to construct a data-independent memory-hard function. Recent

work has proposed candidate iMHF constructions that show

resistance to currently-known attacks [42]. Harsha and Blocki

introduced a memory-hard KDF which accepts the input pass-

words as a stream so that the hashing algorithm can perform

extra computation while the user is typing the password [43].

Blocki and Datta [1] used a Stackelberg game to model

the behavior of a rational (profit-motivated) attacker against

a cost-asymmetric secure hashing (CASH) scheme. However,

the CASH mechanism is not easily integrated with modern

memory-hard functions. By contrast, information signaling

does not require any changes to the password hashing algo-

rithm.

Distributed hashing methods (e.g. [44]–[47]) offer a method

to distribute storage and/or computation over multiple servers.

Thus, an attacker who only breaches one server would not be

able to mount an offline attack. Juels and Rivest proposed the

inclusion of several false entries per user, with authentication

attempts checked against an independent server to see if the

correct entry was selected [48]. These “Honeyword” pass-

words serve as an alarm that an offline cracking attack is being

attempted. Other methods of slowing down attackers include

requiring some hard (for computers) problem to be solved

after several failed authentication attempts (e.g. by using a

CAPTCHA) [49]–[51]. An orthogonal line of research aims

to protect users against online guessing attacks [52], [53].

A large body of research has focused on alternatives to

text passwords. Alternatives have included one time pass-

words [54]–[56], challenge-response constructions [57], [58],

hardware tokens [59], [60], and biometrics [61]–[63]. While

all of these offer possible alternatives to traditional passwords

it has been noted that none of these strategies outperforms

passwords in all areas [64]. Furthermore, it has been noted

that despite the shortcomings of passwords they remain the

dominant method of authentication even today, and research

should acknowledge this fact and seek to better understand

traditional password use [65].

Password strength signaling is closely related to the litera-

ture on Bayesian Persuasion. Kamenica and Gentzkow [3] first

introduced the notion of Bayesian Persuasion where a person

(sender) chooses a signal to reveal to a receiver in an attempt to

convince the receiver to take an action that positively impacts

the welfare of both parties. Alonso and Camara [66] studied

the (sufficient) conditions under which a sender can benefit

from persuasion. Dughmi et. al [67] and Hoefer et. al [68]

study Bayesian Persuasion from an algorithmic standpoint

in different contexts. There are a few prior results applying

Bayesian Persuasion in security contexts, e.g., patrols [69],

honeypots [70], with the sender (resp. receiver) playing the

roles of defender (resp. attacker). To the best of our knowledge

Bayesian Persuasion has never been applied in the context

of password authentication. In the most general case it is

computationally intractable to compute the sender’s optimal

strategy [67]. Most prior works use linear programming to find

(or approximate) the sender’s optimal signaling strategy. We

stress that there are several unique challenges in the context of

password authentication: (1) the action space of the receiver

(attacker) is exponential in the size of (the support of) the

password distribution, and (2) the sender’s objective function

is non-linear.

III. PRELIMINARIES

A. Password Representation

We use P to denote the set of all passwords that a user might

select and we use P to denote a distribution over user selected

passwords i.e., a new user will select the password pw ∈ P

with probability Prx∼P [x = pw] — we typically write Pr[pw]
for notational simplicity.

1) Password Datasets: Given a set of N users U =
{u1, . . . , uN} the corresponding password dataset Du is given

by the multiset Du = {pwu1 , . . . , pwuN
} where pwui

denotes

the password selected by user ui. Fixing a password dataset

D we let fi denote the number of users who selected the

ith most popular password in the dataset. We note that that

f1 ≥ f2 ≥ . . . and that
∑

i fi = N gives the total number N
of users in the original dataset.

2) Empirical Password Distribution: Viewing our dataset

D as N independent samples from the (unknown) distri-

bution P , we use fi/N as an empirical estimate of the

probability of the ith most common password pwi and

Df = (f1, f2, . . .) as the corresponding frequency list. In

addition, De is used to denoted the corresponding empirical

distribution i.e., Prx∼De
[x = pwi] = fi/N . Because the

real distribution P is unknown we will typically work with

the empirical distribution De. We remark that when fi ≫ 1
the empirical estimate will be close to the actual distribution

i.e., Pr[pwi] ≈ fi/N , but when fi is small the empirical

estimate will likely diverge from the true probability value.

Thus, while the empirical distribution is useful to analyze

the performance of information signaling, when the password

value v is small this analysis will be less accurate for larger

values of v i.e., once the rational attacker has incentive to start

cracking passwords with lower frequency.

3) Monte Carlo Password Distribution: Following [71] we

also use the Monte Carlo Password Distribution Dm to eval-

uate the performance of our password signaling mechanism

when v is large. The Monte Carlo distributions is derived

by subsampling passwords from our dataset D, generating

guessing numbers from state of the art password cracking

models, and fitting a distribution to the resulting guessing

curve. See more details in section VIII.

4) Password Equivalence Set: It is often convenient to

group passwords having (approxmiately) equal probability into

an equivalence set es. Suppose there are N ′ equivalence sets,

we typically have N ′ ≪ N . Thus, an algorithm whose running

time scales with n′ is much faster than an algorithm whose

running time scales with N , see Appendix A.

B. Differential Privacy and Count Sketches

As part of our information signaling, we need a way for

the authentication server to estimate the strength of each user’s

passwords. We propose to do this with a (differentially private)



Count-Sketch data structure, which allows us to approximately

determine how many users have selected each particular

password. As a side-benefit the authentication server could

also use the Count-Sketch data structure to identify/ban overly

popular passwords [72] and to defend against online guessing

attacks [52], [53]. We first introduce the notion of differential

privacy.

1) ǫ-Differential Privacy: ǫ-Differential Privacy [73] is a

mechanism that provides strong information-theoretic privacy

guarantees for all individuals in a dataset. Formally, an algo-

rithm A preserves ǫ-differential privacy iff for all datasets D
and D′ that differ by only one element and all subsets S of

Range(A):

Pr [A(D) ∈ S] ≤ eǫ Pr [A(D′) ∈ S] .

In our context, we can think of D (resp. D′) as a password

dataset which does (resp. does not) include our user u’s

password pwu and we can think of A as a randomized algo-

rithm that outputs a noisy count-sketch algorithm. Intuitively,

differential privacy guarantees that an attacker cannot even tell

if pwu was included when the count-sketch was generated. In

particular, (up to a small multiplicative factor eǫ) the attacker

cannot tell the difference betweenA(D) and A(D′) the count-

sketch we sample when pwu was (resp. was not) included.

Thus, whatever the attacker hopes to know about u’s from

A(D) the attacker could have learned from A(D′).

2) Count-sketch: A count sketch over some domain E is a

probabilistic data structure that stores some information about

the frequency of items seen in a stream of data — in our

password context we will use the domain E = P. A count-

sketch functions as a table T with width ws columns and depth

ds rows. Initially, T [i, j] = 0 for all i ≤ ws and j ≤ ds. Each

row is associated with a hash function Hi : P → [ws], with

each of the hash functions used in the sketch being pairwise

independent.

To insert an element pw ∈ P into the count sketch

we update T [i,Hi(pw)] ← T [i,Hi(pw)] + 1 for

each i ≤ ds
3. To estimate the frequency of pw we

would output f (T [1, H1(pw)], . . . , T [ds, Hds
(pw)]) for

some function f : N
ds → N. In our experiments

we instantiate a Count-Mean-Min Sketch where f =

median

{

T [i,Hi(pw)] −
#total−T [i,Hi(pw)]

dw−1 : i = 1, . . . , ds

}

(#total is the total number of elements being inserted) so

that bias is subtracted from overall estimate. Other options

are available too, e.g., f = min (Count-Min), f = mean

(Count-Mean-Sketch) and f = median (Count-Median) 4.

Oserve that adding a password only alters the value of

T [i, j] at ds locations. Thus, to preserve ǫ-differential privacy

we can initialize each cell T [i, j] by adding Laplace noise with

scaling parameter ds/ǫ [74].

3In some instantiations of count sketch we would instead set
T [i,Hi(pw)] ← T [i,Hi(pw)] + Gi(pw) where the hash function Gi :
P→ {−1, 1}

4Count-Median Sketch uses a different insersion method

C. Other Notation

Given a permutation π over all allowable passwords P we

let λ(π,B) :=
∑B

i=1 Pr [pw
π
i ] denote the probability that a

randomly sampled password pw ∈ P would be cracked by

an attacker who checks the first B guesses according to the

order π — here pwπ
i is the ith password in the sequence π.

Given an randomized algorithm A and a random string r we

use y ← A(x; r) to denote the output when we run A with

input x fixing the outcome of the random coins to be r. We

use y
$
← A(x) to denote a random sample drawn by sampling

the random coins r uniformly at random. Given a randomized

(signaling) algorithm A : P → [0, b − 1] (where b is the

total number of signals) we define the conditional probability

Pr[pw | y] := Prx∼P,r[x = pw | y = A(pw)] and

λ(π,B; y) :=

B
∑

i=1

Pr[pwπ
i | y] .

We remark that Pr[pw | y] can be evaluated using Bayes Law

given knowledge of the signaling algorithm A(x).

IV. INFORMATION SIGNALING AND PASSWORD STORAGE

In this section, we overview our basic signaling mechanism

deferring until later how to optimally tune the parameters of

the mechanism to minimize the number of cracked passwords.

A. Account Creation and Signaling

When users create their accounts they provide a user name

u and password pwu. First, the server runs the canonical

password storage procedure—randomly selecting a salt value

saltu and calculating the hash value hu = H(saltu, pwu).
Next, the server calculates the (estimated) strength stru ←
getStrength(pwu) of password pwu and samples the signal

sigu
$
← getSignal(stu). Finally, the server stores the tuple

(u, saltu, sigu, hu) — later if the user u attempts to login with

a password pw′ the authentication server will accept pw′ if and

only if hu = H(saltu, pw
′). The account creation process is

formally presented in Algorithm 1.

Algorithm 1 Signaling during Account Creation

Input: u, pwu, L, d

1: saltu
$
← {0, 1}L

2: hu ← H(saltu, pwu)
3: stru ← getStrength(pwu)

4: sigu
$
← getSignal(stru)

5: StoreRecord(u, saltu, sigu, hu)

A traditional password hashing solution would simply

store the tuple (u, saltu, hu) i.e., excluding the signal

sigu. Our mechanism requires two additionally subroutines

getStrength() and getSignal() to generate this signal. The

first algorithm is deterministic. It takes the user’s password

pwu as input and outputs stru — (an estimate of) the

password strength. The second randomized algorithm takes

the (estimated) strength parameter stru and outputs a signal



sigu. The whole signaling algorithm is the composition of

these two subroutines i.e., A = getSignal(getStrength(pw)).
We use si,j to denote the probability of observing the signal

sigu = j given that the estimated strength level was stru = i.
Thus, getSignal() can be encoded using a signaling matrix S

of dimension a× b, i.e.,










s0,0 s0,1 · · · s0,b−1

s1,0 s1,1 · · · s1,b−1

...
...

. . .
...

sa−1,0 sa−1,1 · · · sa−1,b−1











,

where a is the number of strength levels that passwords can

be labeled, b is the number of signals the server can generate

and S[i, j] = si,j .

We remark that for some signaling matrices (e.g., if

S[i, 0] = 1 for all i 5) then the actual signal sigu is

uncorrelated with the password pwu. In this case our mecha-

nism is equivalent to the traditional (salted) password storage

mechanism where getSignal() is replaced with a constant/null

function. getStrength() is password strength oracle that out-

puts the actual/estimated strength of a password. We discuss

ways that getStrength() could be implemented in Section VIII.

For now, we omit the implementation details of strength oracle

getStrength() for sake of readability.

B. Generating Signals

We use [a] = 0, 1, . . . , a − 1 (resp. [b] = 0, 1, . . . , b − 1)

to denote the range of getStrength() (resp. getSignal()). For

example, if [a] = {0, 1, 2} then 0 would correspond to

weak passwords, 2 would correspond to strong passwords

and 1 would correspond to medium strength passwords. To

generate signal for pwu, the server first invokes subroutine

getStrength(pwu) to get strength level stru = i ∈ [a]
of pwu, then signals sigu = j ∈ [b] with probability

Pr[getSignal(pwu) = j | getStrength(pwu) = i] = S[i, j] =
si,j .

a) Bayesian Update: An attacker who breaks into the

authentication server will be able to observe the signal sigu
and S. After observing the signal sigu = y and S the

attacker can perform a Bayesian update. In particular, given

any password pw ∈ P with strength i = getStrength(pw) we

have

Pr [pw | y]

=
Pr[pw]S[i, y]

∑

pw′∈P
Pr [getSignal (getStrength(pw′))] · Pr [pw′]

=
Pr[pw]S[i, y]

∑

i′∈[a] Prpw′∼P [getStrength(pw′) = i′] · S[i′, y]

(1)

If the attacker knew the original password distribution

P then s/he can update posterior distribution Py with

Prx∼Py
[x = pw] := Pr [pw | y]. We extend our notation,

let λ(π,B; y) =
∑B

i=1 Pr [pw
π
i | y] where pwπ

i is the ith
password in the ordering π. Intuitively, λ(π,B; y) is the

5The index of matrix elements start from 0

conditional probability of cracking the user’s password by

checking the first B guesses in permutation π.

C. Delayed Signaling

In some instances, the authentication server might imple-

ment the password strength oracle getStrength() by training

a (differentially private) Count-Sketch based on the user-

selected passwords pwu ∼ P . In this case, the strength

estimation will not be accurate until a larger number N of

users have registered. In this case, the authentication server

may want to delay signaling until after the Count-Sketch has

been initialized. In particular, the authentication server will

store the tuple (u, saltu, sigu = ⊥, hu). During the next

(successful) login with the password pwu the server can update

sigu = getSignal (getStrength(pwu)).

V. ADVERSARY MODEL

We adapt the economic model of [1] to capture the behavior

of a rational attacker. We also make several assumptions: (1)

there is a value vu for each password pwu that the attacker

cracks; (2) the attacker is untargeted and that the value vu =
v for each user u ∈ U ; (3) by Kerckhoffs’s principle, the

password distribution P and the signaling matrix are known

to the attacker.

a) Value/Cost Estimates: One can derive a range of

estimates for v based on black market studies e.g., Symantec

reported that passwords generally sell for $4—$30 [75] and

[76] reported that Yahoo! e-mail passwords sold for ≈ $1.

Similarly, we assume that the attacker pays a cost k each time

he evaluates the hash function H to check a password guess.

We remark that one can estimate k ≈ $1× 10−7 if we use a

memory-hard function 6.

A. Adversary Utility: No Signaling

We first discuss how a rational adversary would behave

when is no signal is available (traditional hashing). We defer

the discussion of how the adversary would update his strategy

after observing a signal y to the next section. In the no-

signaling case, the attacker’s strategy (π,B) is given by an

ordering π over passwords P and a threshold B. Intuitively,

this means that the attacker will check the first B guesses in

π and then give up. The expected reward for the attacker is

given by the simple formula v × λ(π,B), i.e., the probability

that the password is cracked times the value v. Similarly, the

expected guessing cost of the attacker is

C(k, π,B) = k

B
∑

i=1

(1 − λ(π, i − 1)), (2)

6The energy cost of transferring 1GB of memory between RAM and cache
is approximately 0.3J on an [77], which translates to an energy cost of ≈
$3 × 10−8 per evaluation. Similarly, if we assume that our MHF can be
evaluated in 1 second [37], [78] then evaluating the hash function 6.3× 107

times will tie up a 1GB RAM chip for 2 years. If it costs $5 to rent a 1GB
RAM chip for 2 years (equivalently purchase the RAM chip which lasts for
2 years for $5) then the capital cost is ≈ $8 × 10−8. Thus, our total cost
would be around $10−7 per password guess.



Intuitively, (1 − λ(π, i − 1)) denotes the probability that the

adversary actually has to check the ith password guess at

cost k. With probability λ(π, i − 1) the attacker will find the

password in the first i− 1 guesses and will not have to check

the ith password guess pwπ
i . Specially, we define λ(π, 0) = 0.

The adversary’s expected utility is the difference of expected

gain and expected cost, namely,

Uadv (v, k, π,B) = v · λ(π,B) − C(k, π,B). (3)

Sometimes we omit parameters in the parenthesis and just

write Uadv for short when the v, k and B are clear from

context.

B. Optimal Attacker Strategy: No Signaling

A rational adversary would choose (π∗, B∗) ∈
argmaxUadv (v, k, π,B). It is easy to verify that the

optimal ordering π∗ is always to check passwords in

descending order of probability. The probability that a

random user’s account is cracked is

Padv = λ(π∗, B∗). (4)

We remark that in practice argmaxUadv (v, k, π,B) usually

returns a singleton set (π∗, B∗). If instead the set contains

multiple strategies then we break ties adversarially i.e.,

Padv = max
(π∗,B∗)∈argmaxUadv(v,k,π,B)

λ(π∗, B∗).

VI. INFORMATION SIGNALING AS A STACKELBERG GAME

We model the interaction between the authentication server

(leader) and the adversary (follower) as a two-stage Stack-

elberg game. In a Stackelberg game, the leader moves first

and then the follower may select its action after observing the

action of the leader.

In our setting the action of the defender is to commit

to a signaling matrix S as well as the implementation of

getStrength() which maps passwords to strength levels. The

attacker responds by selecting a cracking strategy (~π, ~B) =
{(π0, B0), . . . , (πb−1, Bb−1)}. Intuitively, this strategy means

that whenever the attacker observes a signal y he will check

the top By guesses according to the ordering πy .

A. Attacker Utility

If the attacker checks the top By guesses according to

the order πy then the attacker will crack the password with

probability λ(πy , By; y). Recall that λ(πy , By; y) denotes the

probability of the first By passwords in πy according to the

posterior distribution Py obtained by applying Bayes Law

after observing a signal y. Extrapolating from no signal case,

the expected utility of adversary conditioned on observing the

signal y is

Uadv(v, k, πy, By;S, y)

= v · λ(πy , By; y)−

By
∑

i=1

k · (1− λ(πy , i− 1; y)) ,
(5)

where By and πy are now both functions of the signal y.

Intuitively, (1− λ(πy , i− 1; y)) denotes the probability that

the attacker has to pay cost k to make the ith guess. We use

Us
adv

(

v, k, {S, (~π, ~B)}
)

to denote the expected utility of the

adversary with information signaling,

Us
adv

(

v, k, {S, (~π, ~B)}
)

=
∑

y∈[b]

Pr[Sig = y]Uadv(v, k, πy, By;S, y) ,
(6)

where

Pr[Sig = y] =
∑

i∈[b]

Pr
pw∼P

[getStrength(pw) = i] · S[i, y] .

B. Optimal Attacker Strategy

Now we discuss how to find the optimal strategy (~π∗, ~B∗).
Since the attacker’s strategies in reponse to different sig-

nals are independent. It suffices to find (π∗
y , B

∗
y) ∈

argmaxBy,πy
Uadv(v, k, πy , By; y) for each signal y. We first

remark that the adversary can obtain the optimal checking

sequence π∗
y for pwu associated with signal y by sorting all

pw ∈ P in descending order of posterior probability according

to the posterior distribution Py .

Given the optimal guessing order π∗
y , the adversary can

determine the optimal budget B∗
y for signal y such that

B∗
y = argmaxBy

Uadv(v, k, π
∗
y , By; y). Each of the password

distributions we analyze has a compact representation allowing

us to apply techniques from [71] to further speed up the

computation of the attacker’s optimal strategy π∗
y and B∗

y —

see discussion in the appendix.

We observe that an adversary who sets πy = π and By =
B for all y ∈ [b] is effectively ignoring the signal and is

equivalent to an adversary in the no signal case. Thus,

max
~π, ~B

Us
adv

(

v, k, {S, (~π, ~B)}
)

≥ max
π,B

Uadv(v, k, π,B), ∀S,

(7)

implying that adversary’s expected utility will never de-

crease by adapting its strategy according to the signal.

C. Optimal Signaling Strategy

Once the function getStrength() is fixed we want to find

the optimal signaling matrix S. We begin by introducing the

defender’s utility function. Intuitively, the defender wants to

minimize the total number of cracked passwords.

Let P s
adv (v, k,S) denote the expected adversary success

rate with information signaling when playing with his/her

optimal strategy, then

P s
adv (v, k,S) =

∑

y∈SL

Pr[Sig = y]λ(π∗
y , B

∗
y ;S, y), (8)

where (π∗
y , B

∗
y) is the optimal strategy of the adversary when

receiving signal y, namely,

(π∗
y , B

∗
y) = arg max

πy,By

Uadv(v, k, πy, By;S, y).

If argmaxπy,By
Uadv(v, k, πy, By; y) returns a set, we break

ties adversarially.



The objective of the server is to minimize P s
adv (v, k,S),

therefore we define

Us
ser

(

v, k, {S, (~π∗, ~B∗)}
)

= −P s
adv (v, k,S) . (9)

Our focus of this paper is to find the optimal signaling

strategy, namely, the signaling matrix S
∗ such that S

∗ =
argminS P s

adv (v, k,S). Finding the optimal signaling matrix

S
∗ is equivalent to solving the mixed strategy Subgame Perfect

Equilibrium (SPE) of the Stackelberg game. At SPE no player

has the incentive to derivate from his/her strategy. Namely,






Us

ser

(

v, k, {S∗, (~π∗, ~B∗)}
)

≥ Us

ser

(

v, k, {S, (~π∗, ~B∗)}
)

, ∀S,

Us

adv

(

v, k, {S∗, (~π∗, ~B∗)}
)

≥ Us

adv

(

v, k, {S∗, (~π, ~B)}
)

,∀(~π, ~B).

(10)

Notice that a signaling matrix of dimension a × b can be

fully specified by a(b−1) variables since the elements in each

row sum up to 1. Fixing v and k, we define f : Ra(b−1) → R

to be the map from S to P s
adv (v, k,S). Then we can formulate

the optimization problem as

min
S

f(s0,0, . . . s0,(b−2), . . . , s(a−1),0, s(a−1),(b−2))

s.t. 0 ≤ si,j ≤ 1, ∀0 ≤ i ≤ a− 1, 0 ≤ j ≤ b− 2,
b−2
∑

j=0

si,j ≤ 1, ∀0 ≤ i ≤ a− 1.

(11)

The feasible region is a a(b − 1)-dimensional probability
simplex. Notice that in 2-D (a = b = 2), the second

constraint would be equivalent to the first constraint. In our

experiments we will treat f as a black box and use derivative-

free optimization methods to find good signaling matrices S.

VII. THEORETICAL EXAMPLE

Having presented our Stackelberg Game model for informa-

tion signaling we now give an (admittedly contrived) example

of a password distribution where information signaling can

dramatically reduce the percentage of cracked passwords. We

assume that the attacker has value v = 2k+ǫ for each cracked

password where the cost of each password guess is k and ǫ > 0
is a small constant.

a) Password Distribution: Suppose that P = {pwi}i≥1

and that each password pwi has probability 2−i i.e.,

Pr
pw∼P

[pw = i] = 2−i. The weakest password pw1 would be

selected with probability 1/2.

b) Optimal Attacker Strategy without Signaling: By

checking passwords in descending order of probability (the

checking sequence is π) the adversary has an expected cost

C(k, π,B) = k
B
∑

i=1

i× 2−i + 2−B ×B × k = 2k(1− 2−B).

The expression above is equivalent to equation (2), the attacker

succeeds in ith guess with probability 2−i at the cost of ik;

the attacker fails after making B guess with probability 2−B

at the cost of Bk. The the expected gain is

R(v, k, π,B) = v

B
∑

i=1

i2−i = v
(

1− 2−B
)

.

Therefore the expected utility is

Uadv(v, k, π,B) = R(v, k, B)−C(k, π,B) = (v−2k)
(

1− 2−B

)

.

A profit-motivated adversary is interested in calculating

B∗ = argmax
B

Uadv(v, k, π,B). With our sample distribution

we have

B∗ =

{

0, if v < 2k,

∞ if v ≥ 2k.

Since we assume that v = 2k+ǫ > 2k the attackers optimal

strategy is B∗ =∞ meaning that 100% of passwords will be

cracked.

c) Signaling Strategy: Suppose that getStrength is define

such that getStrength(pw1) = 0 and getStrength(pwi) = 1
for each i > 1. Intuitively, the strength level is 0 if and only if

we sampled the weakest password from the distribution. Now

suppose that we select our signaling matrix

S =

[

1/2 1/2
0 1

]

,

such that Pr[Sig = 0 | pw = pw1] =
1
2 = Pr[Sig = 1 | pw =

pw1] and Pr[Sig = 1 | pw 6= pw1] = 1.

d) Optimal Attacker Strategy with Information Signaling:

We now analyze the behavior of a rational attacker under sig-

naling when given this signal matrix and password distribution

assuming that the attacker’s value v = 2k + ǫ is the same.

We first note that attacker observes the signal Sig = 0
we know for sure that the user selected the most common

password as Pr[pw = pw1 | Sig = 0] = 1 so as long as

v ≥ k the attacker will crack the password.

Next we consider the case that the attacker observes the

signal Sig = 1. We have the following posterior probabilities

for each of the passwords in the distribution:

Pr[pw = pw1 | Sig = 1] =
0.5× 0.5

0.75
=

1

3
,

Pr[pw = pwi, i > 1 | Sig = 1] =
1× 2−i

0.75
=

4× 2−i

3
.

Now we compute the attacker’s expected costs conditioned

on Sig = 1.

C(k, π,B;S, 1) = k

(

1

3
+

4

3

B
∑

i=2

i ∗ 2−i

)

+ kB

(

2

3
−

4

3

(

B
∑

i=2

2−i

))

= k

(

7

3
−

23−B

3

)

,

The expected gain of the attacker is

R(v, k, π,B;S, 1) = v

(

1

3
+

4

3

B
∑

i=2

2−i

)

= v

(

1−
22−B

3

)

,

Thus, the attacker’s utility is given by:

Uadv(v, k, π,B;S, 1) = R(v, k, π,B;S, 1)− C(k, π,B;S, 1)

= v

(

1−
22−B

3

)

− k

(

7

3
−

23−B

3

)

.



Assuming that ǫ < 1
3k the attacker will have negative utility

Uadv(2k + ǫ, k, π,B;S, 1) < 0 whenever B > 1. Thus, when

the signal is Sig = 1 the optimal attacker strategy is to select

B∗ = 0 (i.e., don’t attack) to ensure zero utility. In particular,

the attacker cracks the password if and only if Sig = 0
which happens with probability 1 − Pr[Sig = 1] = 0.25
since Pr[Sig = 1] = Pr[pw = pw1] Pr[Sig = 1 | pw =
pw1]+Pr[pw 6= pw1] Pr[Sig = 1 | pw 6= pw1] =

3
4 . Thus, the

attacker will only crack 25% of passwords when v = 2k+ ǫ7.

e) Discussion: In our example an attacker with value

v = 2k + ǫ cracks 100% of passwords when we don’t use

information signaling. However, if our information signaling

mechanism (above) were deployed, the attacker will only crack

25% of passwords — a reduction of 75%! Given this (con-

trived) example it is natural to ask whether or not information

signaling produces similar results for more realistic password

distributions. We explore this question in the next sections.

VIII. EXPERIMENTAL DESIGN

We now describe our empirical experiments to evalu-

ate the performance of information signaling. Fixing the

parameters v, k, a, b, a password distribution D and the

strength oracle getStrength(·) we define a procedure S
∗ ←

genSigMat(v, k, a, b,D) which uses derivate-free optimiza-

tion to solve the optimization problem defined in equation

(11) and find a good generate a signaling matrix S
∗ of

dimension a × b. Similarly, given a signaling matrix S
∗ we

define a procedure evaluate(v, k, a, b,S∗,D) which returns

the percentage of passwords that a rational adversary will

crack given that the value of a cracked password is v, the

cost of checking each password is k. To simulate settings

where the defender has imperfect knowledge of the pass-

word distribution we use different distributions D1 (train-

ing) and D2 (evaluation) to generate the signaling matrix

S
∗ ← genSigMat(v, k, a, b,D1) and evaluate the success

rate of a rational attacker evaluate(v, k, a, b,S∗,D2). We can

also set D1 = D2 to evaluate our mechanism under the

idealized setting in which defender has perfect knowledge of

the distribution.

In the remainder of this section we describe how the

oracle getStrength() is implemented in different experiments,

the password distribution(s) derived from empirical password

datasets and how we implement genSigMat().

A. Password Distribution

We evaluate the performance of our information signaling

mechanism using 9 password datasets: Bfield (0.54 million),

Brazzers (N = 0.93 million), Clixsense (2.2 million), CSDN

(6.4 million), LinkedIn (174 million), Neopets (68.3 million),

RockYou (32.6 million), 000webhost (153 million) and Yahoo!

(69.3 million). The Yahoo! frequency corpus (N ≈ 7 × 107)

was collected and released with permission from Yahoo! using

7If the attacker’s value was increased to v = 4k then the attacker would
crack 100% of passwords since we would have Uadv(4k, k, π, B;S, 1) =

k
(

5

3
− 2

3−B

3

)

which is maximized at B∗ =∞. In this case the defender

would want to look for a different password signaling matrix.

differential privacy [6] and other privacy-preserving measures

[5]. All the other datasets come from server breaches.

a) Empirical Distribution: For all 9 datasets we

can derive an empirical password distribution De where

Prpw∼De
[pwi] = fi/N . Here, N is the number of users in

the dataset and fi is the number of occurences of pwi in the

dataset. We remark that for datasets like Yahoo! and LinkedIn

where the datasets only include frequencies fi without the

original plaintext password we can derive a distribution simply

by generating unique strings for each password. The empirical

distribution is useful to analyze the performance of informa-

tion signaling when the password value v is small this analysis

will be less accurate for larger values of v i.e., once the rational

attacker has incentive to start cracking passwords with lower

frequency. Following an approach taken in [71], we use Good-

Turing frequency estimation to identify and highlight regions

of uncertainty where the CDF for the empirical distribution

might significantly diverge from the real password distribution.

To simulate an attacker with imperfect knowledge of the

distribution we train a differentially private Count-Mean-Min-

Sketch. In turn, the Count-Sketch is used to derive a distri-

bution Dtrain, to implement getStrength() and to generate

the signaling matrix S
∗ ← genSigMat(v, k, a, b,Dtrain) (see

details below).

b) Monte Carlo Distribution: To derive the Monte Carlo

password distribution from a dataset we follow a process from

[71]. In particular, we subsample passwords Ds ⊆ D from

the dataset and derive guessing numbers #guessingm(pw)
for each pw ∈ Ds. Here, #guessingm(pw) denotes the

number of guesses needed to crack pw with a state of the art

password cracking model m e.g., Probabilistic Context-Free

Grammars [22]–[24], Markov models [25]–[28], and neural

networks [29]. We used the password guessing service [28] to

generate the guessing numbers for each dataset. We then fit

our distribution to the guessing curve i.e., fixing thresholds

t0 = 0 < t1 < t2 . . . we assign any password pw with

ti−1 < minm{#guessingm(pw)} ≤ ti to have probability
gi

|Ds|(ti−ti−1)
where gi counts the number of sampled pass-

words in Ds with guessing number between ti−1 and ti.
Intuitively, the Monte Carlo distribution Dm models password

distribution from the attacker’s perspective. One drawback is

that the distribution would change if the attacker were to

develop an improved password cracking model.

We extract Monte Carlo distribution from 6 datasets (Bfield,

Brazzers, Clixsense, CSDN, Neopets, 000webhost) for which

we have plain text passwords so that we can query Password

Guessing Service [28] about password guessing numbers. In

the imperfect knowledge setting we repeated the process above

twice for each dataset with disjoint sub-samples to derive two

distributions Dtrain and Deval.

B. Differentially Private Count-Sketch

When using the empirical distribution De for evaluation we

evaluate the performance of an imperfect knowledge defender

who trains a differentially private Count-Mean-Min-Sketch. As

users register their accounts, the server can feed passwords



into a Count-Mean-Min-Sketch initialized with Laplace noise

to ensure differential privacy.

When working with empirical distributions in an imperfect

knowledge setting we split the original dataset D in half to

obtain D1 and D2. Our noise-initialized Count-Mean-Min-

Sketch is trained with D1. We fix the width dw (resp. depth ds)

of our count sketch to be dw = 108 (resp. ds = 10) and add

Laplace Noise with scaling factor b = ds/ǫpri = 5 to preserve

ǫpri = 2-differential privacy. Since we were not optimizing

for space we set the number of columns dw to be large to

minimize the probability of hash collisions and increase the

accuracy of frequency estimation. Each cell is encoded by an

4-byte int type so the total size of the sketch is 4 GB.

We then use this count sketch along with D2 to extract a

noisy distribution Dtrain. In particular, for every pw ∈ D2 we

query the the count sketch to get f̃pw, a noisy estimate of the

frequency of pw in D2 and set PrDtrain
[pw]

.
=

f̃pw
∑

w∈D2
f̃w

.

We also use the Count-Mean-Min Sketch as a frequency

oracle in our implementation of getStrength() (see details

below). We then use Dtrain to derive frequency thresholds

for getStrength() and to generate the signaling matrix S
∗ =

genSigMat(v, k, a, b,Dtrain). Finally we evaluate results on

the original empirical distribution De for the original dataset

D i.e., P s
adv = evaluate(v, k, a, b,S∗,De).

C. Implementing getStrength()

Given a distribution D and a frequency oracle O which

outputs f(pw) in the perfect knowledge setting and an

estimate of frequency f̂(pw) in the imperfect knowledge

setting, we can specify getStrength() by selecting thresh-

olds x1 > . . . > xa−1 > xa = 1. In particular, if

xi+1 ≤ O(pw) < xi then getStrength(pw) = i and

if O(pw) ≥ x1 then getStrength(pw) = 0. Let Yi
.
=

Prpw∼D[xi ≤ getStrength(pw) < xi−1] for i > 1 and

Y1 = Prpw∼D[getStrength(pw) > x1]. We fix the thresholds

x1 ≥ . . . ≥ xa−1 to (approximately) balance the probability

mass of each strength level i.e., to ensure that Yi ≈ Yj . In im-

perfect (resp. perfect) knowledge settings we use D = Dtrain

(resp. D = Deval) to select the thresholds.

D. Derivative-Free Optimization

Given a value v and hash cost k we want to find a

signaling matrix which optimizes the defenders utility. Recall

that this is equivalent to minimizing the function f(S) =
evaluate(v, k, a, b,S,D) subject to the constraints that S is

a valid signaling matrix. In our experiments we will treat f
as a black box and use derivative-free optimization methods

to find good signaling matrices S
∗.

In our experiment, we choose BITmask Evolution OPTi-

mization (BITEOPT) algorithm [79] to compute the quasi-

optimal signaling matrix S
∗. BITEOPT is a free open-source

stochastic non-linear bound-constrained derivative-free opti-

mization method (heuristic or strategy). BiteOpt took 2nd

place (1st by sum of ranks) in BBComp2018-1OBJ-expensive

competition track [80].

In each experiment we use BITEOPT with 104 iterations

to generate signaling matrix S
∗ for each different v/Cmax

ratio, where Cmax is server’s maximum authentication cost

satisfying k ≤ Cmax. We refer to the procedure as S
∗ ←

genSigMat(v, k, a, b,D1) .

IX. EMPIRICAL ANALYSIS

We describe the results of our experiments. In the first batch

of experiments we evaluate the performance of information

signaling against an offline and an online attacker where the

ratio v/Cmax is typically much smaller.

A. Password Signaling against Offine Attacks

We consider four scenarios using the empirical/Monte

Carlo distribution in a setting where the defender has per-

fect/imperfect knowledge of the distribution.

1) Empirical Distribution: From each password dataset we

derived an empirical distribution De and set Deval = De. In

the perfect knowledge setting we also set Dtrain = De while

in the imperfect knowledge setting we used a Count-Min-Mean

Sketch to derive Dtrain (see details in the previous section).

We fix dimension of signaling matrix to be 11 by 3 (the

server issues 3 signals for 11 password strength levels) and

compute attacker’s success rate for different value-to-cost

ratios v/Cmax ∈ {i × 10j : 1 ≤ i ≤ 9, 3 ≤ j ≤
7} ∪ {(i + 0.5) × 10j : 1 ≤ i ≤ 9, 6 ≤ j ≤ 7} .

In particular, for each value-to-cost ratio v/Cmax we run

S
∗ ← genSigMat(v, k, a, b,De) to generate a signaling matrix

and then run evaluate(v, k, a, b,S∗,De) to get the attacker’s

success rate. The same experiment is repeated for all 9

password datasets. We plot the attacker’s success rate vs.

v/Cmax in Fig. 1. Due to space limitations Fig. 1 only shows

results for 6 datasets — additional plots can be found in Fig

5 in the Appendix.

We follow the approach of [71], highlighting the uncertain

regions of the plot where the cumulative density function of the

empirical distribution might diverge from the real distribution.

In particular, the red (resp. yellow) region indicates E > 0.1
(resp. E > 0.01) where E can be interpreted as an upper

bound on the difference between the two CDFs.

Fig. 1 demonstrates that information signaling reduces the

fraction of cracked passwords. The mechanism performs best

when the defender has perfect knowledge of the distribution

(blue curve), but even with imperfect knowledge there is

still a large advantage. For example, for the neopets dataset

when v/Cmax = 5 × 106 the percentage of cracked pass-

words is reduced from 44.6% to 36.9% (resp. 39.1%) when

the defender has perfect (resp. imperfect) knowledge of the

password distribution. Similar results hold for other datasets.

The green curve (signaling with imperfect knowledge) curve

generally lies in between the black curve (no signaling) and the

blue curve (signaling with perfect knowledge), but sometimes

has an adverse affect affect when v/Cmax is large. This is

because the noisy distribution will be less accurate for stronger

passwords that were sampled only once.
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(c) Clixsense
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(e) Linkedin
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(f) Neopets

Fig. 1. Adversary Success Rate vs v/Cmax for Empirical Distributions

the red (resp. yellow) shaded areas denote unconfident regions where the the empirical distribution might diverges from the real

distribution E ≥ 0.1 (resp. E ≥ 0.01).

a) Which accounts are cracked?: As Fig 1 demonstrates

information signaling can substantially reduce the overall

fraction of cracked passwords i.e., many previously cracked

passwords are now protected. It is natural to ask whether

there are any unlucky users u whose password is cracked

after information signaling even though their account was safe

before signaling. Let Xu (resp. Lu) denote the event that

user u is unlucky (resp. lucky) i.e., a rational attacker would

originally not crack pwu, but after information signaling the

account is cracked. We measure E[Xu] and E[Lu] (See Fig.

2) for various v/Cmax values under each dataset. Generally,

we find that the fraction of unlucky users E[Xu] is small in

most cases e.g. ≤ 0.04. For example, when v/k = 2 × 107

we have that E[Xu] ≈ 0.03% and E[Lu] ≈ 6% for LinkedIn.

In all instances the net advantage E[Lu] − E[Xu] remains

positive. We remark that the reduction in cracked passwords

does not come from persuading the attacker to crack weak

passwords though the attacker might shift his attention. The

shift of attacker’s attention is directionless, not necessarily

towards weaker passwords. The contribution of attention shift

to reduction in cracked passwords is very small since the

passwords ordering of posterior distribution upon receiving

a signal is very close to that of prior distribution, which

means the attacker cracks passwords (almost) in the same

order whether given the signal or not. Strength signaling works

mainly because the attacker would like to save cost by making

less futile guesses.

b) Robustness: We also evaluated the robustness of the

signaling matrix when the defender’s estimate of the ratio

v/Cmax is inaccurate. In particular, for each dataset we

generated the signaling matrix S(105) (resp. S(106)) which

was optimized with respect to the ratio v/Cmax = 105

(resp. v/Cmax = 106) and evaluated the performance of both

signaling matrices against an attacker with different v/Cmax

ratios. We find that password signaling is tolerant even if our

estimate of v/k is off by a small multiplicative constant factor

e.g., 2. For example, in Fig. 1f the signaling matrix S(106)
outperforms the no-signaling case even when the real v/Cmax

ratio is as large as 2×106. In the “downhill” direction, even if

the estimation of v/k deviates from its true value up to 5×105

at anchor point 106 it is still advantageous for the server to

deploy password signaling.

2) Monte Carlo Distribution: We use the Monte Carlo

distribution to evaluate information signaling when v/Cmax

is large. In particular, we subsample 25k passwords from

each datast for which we have plain text passwords (ex-

cluding Yahoo! and LinkedIn) and obtain guessing numbers

from the Password Guessing Service. Then we split our 25k

subsamples in half to obtain two guessing curves and we

extract two Monte Carlo distributions Dtrain and Deval from

these curves (see details in the last section). In the perfect

knowledge setting the signaling matrix is both optimized

and tested on Deval i.e., S∗ = genSigMat(v, k, a, b,Deval),
P s
adv = evaluate(v, k, a, b,S∗,Deval). In the imperfect knowl-

edge setting the signaling matrix is tuned on Dtrain while the
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Fig. 2. Proportion of Unlucky Users for Various Datasets (E [Xu])

attacker’s success rate is evaluated on Deval. One advantage

of simulating Monte Carlo distribution is that it allows us to

evaluate the performance of information signaling against state

of the art password cracking models when the v/Cmax is large.

We consider v/Cmax ∈ {i ∗ 10
j : 1 ≤ i ≤ 9, 5 ≤ j ≤ 10}

in performance evaluation for Monte Carlo distribution. As

before we set a = 11 and b = 3 so that the signaling matrix

is in dimension of 11× 3. We present our results in Fig. 3.

Fig. 3 shows that information signaling can significantly

reduce the number of cracked passwords. In particular, for

the neopets dataset when v/Cmax = 6 × 107 the num-

ber of cracked passwords is reduced from 52.2% to 40%
(resp. 43.8%) when the defender has perfect (resp. imperfect)

knowledge of the distribution. The green curve (signaling

with imperfect knowledge) generally lies between the black

curve (no signaling) and the blue curve (signaling with perfect

information) though we occasionally find points where the

green curve lies slightly above the black curve.

B. Password Signaling against Online Attacks

We can extend the experiment from password signaling

with perfect knowledge to an online attack scenario. One

common way to throttle online attackers is to require the

attacker to solve a CAPTCHA challenge [81], or provide

some other proof of work (PoW), after each incorrect login

attempt [82]. One advantage of this approach is that a mali-

cious attacker cannot lockout an honest user by repeatedly

submitting incorrect passwords [83]. However, the solution

also allows an attacker to continue trying to crack the password

as long as s/he is willing to continue paying the cost to solve

the CAPTCHA/PoW challenges. Thus, information signaling

could be a useful tool to mitigate the risk of online attacks.

When modeling a rational online password we will assume

that v/Cmax ≤ 105 since the cost to pay a human to solve

a CAPTCHA challenge (e.g., $10−3 to 102 [84]) is typically

much larger than the cost to evaluate a memory-hard cryp-

tographic hash function (e.g., $10−7). Since v/Cmax ≤ 105

we use the empirical distribution to evaluate the performance

of information signaling against an online attacker. In the

previous subsection we found that the uncertain regions of

the curve started when v/Cmax ≫ 105 so the empirical

distribution is guaranteed to closely match the real one.

Since an online attacker will be primarily focused on the

most common passwords (e.g., top 103 to 104) we modify

getStrength() accordingly. We consider two modifications of

getStrength() which split passwords in the top 103 (resp.

104) passwords into 11 strength levels. By contrast, our prior

implementation of getStrength() would have placed most of

the top 103 passwords in the bottom two strength levels. As

before we fix the signaling matrix dimension to be 11 × 3.

Our results are shown in Fig. 4. Due to space limitations the

results for 6 datasets are in Fig. 6 in the appendix.

Our results demonstrate that information signaling can be an

effective defense against online attackers as well. For example,

in Fig. 4b, when v/Cmax = 9× 104, our mechanism reduces

the fraction of cracked passwords from 20.4% to just 15.3%.

Similar, observations hold true for other datasets.

We observe that the red curve (partitioning the top 103

passwords into 11 strength levels) performs better than the

blue curve (partitioning the top 103 passwords into 11 strength

levels) when v/k is small e.g., v/Cmax < 2 × 104 in Fig.

4b). The blue curve performs better when v/Cmax is larger.

Intuitively, this is because we want to have a fine-grained

partition for the weaker (top 103) passwords that the adversary

might target when v/Cmax is small.

a) Implementing Password Signaling: One naive way to

implement password signaling in an online would simply be

to explicitly send back the signal noisy signal sigu in response

to any incorrect login attempt. As an alternative we propose a

solution where users with a weaker signal sigu are throttled

more aggressively. For example, if sigu indicates that the

password is strong then it might be reasonable to allow for

10 consecutive incorrect login attempts before throttling the

account by requiring the user to solve a CAPTCHA challenge

before every login attempt. On the other hand if the signal

sigu indicates that the password is weak the server might begin

throttling after just 3 incorrect login attempts. The attacker can

indirectly infer the signal sigu by measuring how many login

attempts s/he gets before throttling begins. This solution might

also provide motivation for users to pick stronger passwords.

C. Discussion

While our experimental results are positive, we stress that

there are several questions that would need to be addressed
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Fig. 4. Adversary Success Rate vs v/Cmax in Defense of Online Attacks

before we recommend deploying information signaling to

protect against offline attacks.

• Can we accurately predict the value to cost ratio v/Cmax?

Our results suggest that information signaling is use-

ful even when our estimates deviate by a factor of 2.

However, if our estimates are wildly off then information

signaling could be harmful.

• While information signaling reduced the total number

of cracked passwords a few unlucky users might be

harmed i.e., instead of being deterred the unlucky signal

helps the rational attacker to crack a password that they

would not otherwise have cracked. The usage of password

signaling raises important ethical and societal questions.

How would users react to such a solution knowing that

they could be one of the unlucky users? One possible

way to address these concerns would be to allow user’s to

opt in/out of information signaling. However, each user

u would need to make this decision without observing

their signal. Otherwise the decision to opt in/out might be

strongly correlated with the signal allowing the attacker

to perform another Bayesian update. Another possible

way to address these concerns would be to modify the

objective function (eq 11) to penalize solutions with

unlucky users.

• Can we analyze the behavior of rational targeted attack-

ers? We only consider an untargeted attacker. In some

settings, an attacker might place a higher value on some

passwords e.g., celebrity accounts. Can we predict how a

targeted attacker would behave if the value vu varied from

user to user? Similarly, a targeted adversary could exploit

demographic and/or biographical knowledge to improve

password guessing attacks e.g., see [85].



X. CONCLUSIONS

We introduced password strength signaling as a novel, yet

counter-intuitive defense against rational password attackers.

We use Stackelberg game to model the interaction between

the defender and attacker, and present an algorithm for the

server to optimize its signaling matrix. We ran experiments to

empirically evaluate the effectiveness of information signaling

on 9 password datasets. When testing on the empirical (resp.

Monte Carlo) password distribution distribution we find that

information signaling reduces the number of passwords that

would have been cracked by up to 8% (resp. 12%). Addition-

ally, we find that information signaling can help to dissuade

an online attacker by saving 5% of all user accounts. We view

our positive experimental results as a proof of concept which

motivates further exploration of password strength signaling.
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APPENDIX

COMPRESSED PASSWORD DISTRIBUTIONS

Given a distribution over N passwords with corresponding

probabilities p1 ≥ p2 ≥ . . . pN we can often encode the

probabilities in compressed form by grouping passwords with

equal probability. Viewed in this way we can encode the distri-

bution as a sequence of N ′ ≤ N tuples (p1, c1), . . . , (pN ′ , c′N )
where p1 > p2 > . . . > pN ′ and ci denotes the number of

passwords with probability exactly pi in the distribution. In

all of the distributions we analyze we have N ′ ≪ N e.g.,

for the RockYou empirical we have N ≥ 3.2 × 107 while

N ′ ≤ 2.3 × 103. Thus, it is desirable to ensure that our

optimization algorithms scale with N ′ instead of N . Similar

observations were used by Blocki and Datta [86] and Bai and

Blocki [71].

Bai and Blocki [71, Lemma 1] showed that a rational ad-

versary never splits equivalence sets i.e., if Pr[pwi] = Pr[pwj ]
then the attacker will either check both passwords or neither.

Thus, a rational attacker’s optimal strategy will be to check

the B∗ most popular passwords where B∗ is guaranteed to be

in the set {0, c1, c1 + c2, . . . ,
∑N ′

i=1 ci}. When the distribution

is compact this substantially narrows down the search space

in comparison to a brute-force search over all possible choices

of B∗ ∈ [N ].
We observe that if the original password distribution has a

compact representation (p1, c1), . . . , (pN ′ , c′N) with N ′ equiv-

alence sets then, after observing the password signaling y ∈
[b], the posterior distribution has a compact representation with

at most aN ′ equivalence sets where the dimension of the

signaling matrix is a × b i.e., S ∈ R
a×b. To see this notice

that we can partition all passwords pw in equivalence set i
into a groups based on the value getStrength(pw) ∈ [a]. If

Pr[pw] = Pr[pw′] and getStrength(pw) = getStrength(pw)
then the posterior probabilities are also equal i.e., Pr[pw|y] =
Pr[pw′|y].

Thus, given a signaling matrix S and a signal y ∈ [b] and

we can compute the adversaries optimal response (π∗
b , B

∗
y) to

the signal y by 1) computing the compact representation of

the posterior distribution, and 2) checking all aN ′ possible

values of B∗
y to find the budget that maximizes the attacker’s

expected utility conditioning on the signal y. After pre-

processing the original dataset the first step only requires time

O(aN ′ log aN ′) for each new signaling matrix S and y ∈ [b].

EXTRA PLOTS
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Fig. 5. Adversary Success Rate vs v/Cmax for Empirical Distributions

the red (resp. yellow) shaded areas denote unconfident regions where the the empirical distribution might diverges from the real

distribution E ≥ 0.1 (resp. E ≥ 0.01).
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Fig. 6. Adversary Success Rate vs v/Cmax in Defense of Online Attacks
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