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1 Introduction

Non-cooperative game theory has become a popular method for modeling strate-
gic interactions between decision makers, commonly referred to as “players”.
While originally applied to strategic interactions in games and economics, game
theory is now gaining popularity in the fields of social and political sciences.
Today, it is not uncommon to find game theory applied in diverse fields such as
traffic engineering [13,10,23], online advertising [5,4], cyber-security [20,8], and
many others.

While game theory has been a widely used modeling technique, efficient com-
putation of a solution to a game has been difficult. In 1950, John Nash defined
Nash equilibrium (NE) as a solution concept in non-cooperative games, in which
each player’s expected payoff is maximized with the knowledge of other play-
ers’ strategies. Moreover, each player will receive less expected payoff if he/she
deviates from the NE. Nash proved that there exists an equilibrium in every
finite-action finite-player non-cooperative game [18] using Brouwer’s Fixed Point
Theorem. However, there is currently no known efficient algorithm for comput-
ing NE in general non zero-sum games, and it has remained an open problem
for over 70 years. In a series of works, [7,6], Daskalakis et al. showed that finite
games with more than three players is Polynomial Parity Arguments on Directed
graphs (PPAD)-complete. While the computation of NE may seem simpler in
two player games, Chen et al. showed the hardness results for this case a short
time later [3].

With these hardness results established, one could hope to come up with an
efficient algorithm to compute an approximate NE, which is also referred to as
an ε-NE in two player games. For an ε-NE solution, any deviations from the
ε-NE can gain either player at most an additional payoff of ε. In [16], Lipton et
al. proposed a quasipolynomial time algorithm for computing an approximate
NE for any fixed ε. The current “best” polynomial time algorithm for a fixed ε is
due to [21], where Tsaknakis and Spirakis proposed an algorithm for ε = 0.3393.
However, computation of ε-NE is still PPAD-complete if ε is inversely polynomial
in the size of the game [2].

A more demanding notion of an approximate solution is the ε-well supported
approximate Nash equilibrium (ε-WSNE) [6]. In an ε-WSNE, players only place
positive probability on strategies that have a payoff within ε of the pure best
response. ε-WSNE is a more restrictive approximation than ε-NE, as every ε-
WSNE is an ε-NE, while the converse is not true [6].

There is significantly less literature studying ε-WSNE compared to ε-NE. For
the case of ε-WSNE, the first and most well-known polynomial time algorithm
for a fixed ε is 2

3 -WSNE as published in [15]. Fearney et al. [9] made improvement
to the previous algorithm, which resulted in ε = 2

3 − 0.005913759. For random
bimatrix games, Panagopoulo and Spirakis [19] found that the uniform mixed

strategy profile is, with high probability, a
√

3 lnn
n -WSNE.

In our work, we first devise an efficient algorithm for computing strategically
equivalent zero-sum games using simple algebraic manipulations. Then, we pro-
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pose a polynomial time algorithm for computing an ε-WSNE. To determine the
latter algorithm, we define a certain affine game transformation to that leads
to a simple linear program that outputs a zero-sum game that is “close” to the
original nonzero-sum game. We show that any NE of this zero-sum game is an
ε-WSNE of the original game.

1.1 Notation

In this paper, all vectors are column vectors and are written in bold font. We
denote 1n and 0n as the ones and zeros vector of length n and denote ej , j ∈
{1, 2, ..., n}, as a vector with 1 at the j th position and 0’s elsewhere. We denote
∆n ⊂ Rn as the set of probability distributions over {1, ..., n}, i.e., ∆n =

{
p |

pi ≥ 0,∀i ∈ {1, . . . , n},
∑n

i=1 pi = 1
}

. For a matrix A ∈ Rm×n, we use ai,j to
denote the entry on i-th row and j-th column of A. Moreover, we define A(i)

as the i-th row of A, and A(j) as the j-th column of A. We define the max
norm of matrix A as ‖A‖max = maxi,j |ai,j |. Define ColSpan(A) as the subspace
spanned by the columns of matrix A. We define Dn ⊆ Rn×n as the set of all
diagonal matrices with n rows and n columns with positive diagonal entries. For
a diagonal matrix D ∈ Dn, we use dj to denote the (j, j)-th element in matrix
D and note that dj > 0 for all j ∈ {1, . . . , n}.

1.2 Outline of the paper

In Section 2, we begin by introducing some preliminary concepts related to this
paper. In Section 3, we propose necessary and sufficient conditions of existence
of a strategically equivalent zero-sum game, then we devise an algorithm that
efficiently computes the strategically equivalent zero-sum game and provide a
complexity analysis. We will also run an experiment evaluate the performance.
Then, in Section 4, we propose another efficient algorithm to compute approx-
imate Nash equilibrium if the conditions in Section 3 are not satisfied. The
auxillary theorems for the proof in Section 3 are provided in Appendix A.

2 Preliminaries

In this section, we recall the definitions of Nash equilibrium and approximate
Nash equilibrium. We focus on bimatrix games (2-player games) in this paper.
Every bimatrix game can be defined by a tuple (m,n,A,B), where player 1 has m
actions, player 2 has n actions, and A,B ∈ Rm×n are the payoff matrices of player
1 and 2. Both players can choose to use pure strategies, that is, they can choose
a single action from its own set of pure strategies denoted by S1 = {1, ...,m}
and S2 = {1, ..., n}. If the players play pure strategies (i, j) ∈ S1 × S2, player 1
and player 2 will receive payoffs ai,j and bi,j , respectively. Players may also play
mixed strategies in bimatrix games. Player 1 and player 2 can choose probability
distributions p ∈ ∆m over S1 and q ∈ ∆n over S2. Then, player 1 has expected
payoff pTAq and player 2 has expected payoff pTBq.
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We state the definition of best response condition and best response corre-
spondence in order to define Nash equilibrium. The best response is the mixed
strategy that gives the best outcome for one player, given the mixed strategy of
the other player. This is made precise in the following definition.

Definition 1 (Best response condition [18]). Let p and q be mixed strate-
gies of player 1 and player 2. Then p is a best response to q if and only if for
all i ∈ S1,

pi > 0 =⇒ (Aq)i = u = max
k∈S1

(Aq)k,

and q is a best response to p if and only if for all j ∈ S2,

qj > 0 =⇒ (BTp)j = v = max
k∈S2

(BTp)k.

Definition 2 (Best response correspondence). For the payoff matrices A
and B, define the best response correspondences ΓA : ∆n ⇒ ∆m and ΓB : ∆m ⇒
∆n as

ΓA(q) = {p ∈ ∆m : pTAq = max
i

[Aq]i},

ΓB(p) = {q ∈ ∆n : pTBq = max
j

[pTB]j}.

When each player’s mixed strategy is a best response to the other player’s
strategy, their strategies form a Nash Equilibrium. This is made precise in the
following definition.

Definition 3 (Nash equilibrium [18]). A pair (p,q) of mixed strategies is a
Nash Equilibrium (NE) if and only if p ∈ ΓA(q) and q ∈ ΓB(p).

In zero-sum games, we usually call the Nash equilibrium between two players
as a saddle point equilibrium (SPE).

2.1 Strategically Equivalent Games

We focus on a bimatrix game (m,n,A,B) as defined above. We define the Nash
equilibrium correspondence as Φ(A,B) : Rm×n × Rm×n ⇒ ∆m × ∆n. It was
proved in [18] that every bimatrix game with a finite set of pure strategies has
at least one NE in mixed strategies. Thus, the image Φ(A,B) is nonempty for
any (A,B) ∈ Rm×n × Rm×n. We say two games are strategically equivalent
when both games have the same set of players, the same set of strategies, and
the same set of NE. An equivalent definition of strategic equivalence based on
the preference ordering for all mixed strategies p ∈ ∆m and q ∈ ∆n was given
by Moulin and Vial [17], which is stated below.

Definition 4 (Strategically equivalence). Two bimatrix games (m,n,A,B)
and (m,n, Ā, B̄) are strategically equivalent if and only if for any p̄,p ∈ ∆m and
q̄,q ∈ ∆n, we have

p̄TAq ≥ pTAq ⇐⇒ p̄T Āq ≥ pT Āq,

pTBq̄ ≥ pTBq ⇐⇒ pT B̄q̄ ≥ pT B̄q.
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Proving that two games are strategically equivalent in Definition 4 is diffi-
cult since all p̄,p ∈ ∆m and q̄,q ∈ ∆n need to be checked to satisfy the above
conditions. However, there are several classes of transformations such that strate-
gically equivalence is naturally conserved. Positive affine transformations (PAT)
ensure the strategically equivalence of two games; that is, if two games have a
PAT correspondence, then they are strategically equivalent. We define the PAT
correspondence Υ as follows:

Definition 5 (PAT Correspondence [11]). The game (m,n, Ā, B̄) is a PAT
of (m,n,A,B) if and only if there exists α1, α2 ∈ R>0, u ∈ Rn, and v ∈ Rm

such that Ā = α1A+1muT and B̄ = α2B+v1T
n . The map Υ : Rm×n×Rm×n ⇒

Rm×n × Rm×n is a PAT correspondence if

Υ (A,B) =
{

(Ā, B̄) ∈ Rm×n × Rm×n : (Ā, B̄) is a PAT of (A,B)
}
.

It is obvious that PAT preserves the preference orderings given in Definition
4. Thus, two games are strategically equivalent if the two games have a PAT
correspondence. Moreover, [17] also showed that the converse also holds. With
the results above, we have the following lemma.

Lemma 1 ([17]). Two games (m,n,A,B) and (m,n, Ā, B̄) are strategically
equivalent if and only if (Ā, B̄) ∈ Υ (A,B).

We say two games are strategically equivalent via a PAT if they have a PAT
correspondence. In a special case where α1 = α2 = 1, we say that those two
games are strategically equivalent via a 1-PAT.

2.2 Approximate Nash Equilibrium

While [18] showed that NE exists in all finite games, it remains an open problem
to find an algorithm to compute NE efficiently in general bimatrix games [6]. On
the other hand, there exists some efficient algorithms to compute approximate
NE.

Definition 6 (ε-well-supported Nash Equilibrium). We refer to the pair
of strategies (p̃, q̃) as an epsilon-well-supported Nash Equilibrium (ε-WSNE) of
game (m,n,A,B) if and only if:

for all i ∈ S1, k ∈ S1, p̃i > 0 =⇒ (Aq̃)i ≥ (Aq̃)k − ε,
for all j ∈ S2, l ∈ S2 q̃j > 0 =⇒ (BTp̃)j ≥ (BTp̃)l − ε.

We also define the ε-approximation of payoff matrices as follows.

Definition 7. For matrices Ã, R ∈ Rm×n, Ã is an ε-approximation of R if
Ã = R+ E, where ε ≥ ‖E‖max.

Inspired by [14, Theorem 1], we have the following lemma on the connection
between the approximation of the payoff matrices in a game and approximate
Nash equilibrium of that game.
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Lemma 2. Given the game (m,n, Ã, B̃), let Ã be an ε̃1-approximation of R and
B̃ be an ε̃2-approximation of C. If (p̃, q̃) is an NE of the game (m,n, Ã, B̃), then
(p̃, q̃) is a 2ε̃-WSNE of the game (m,n,R,C), where ε̃ = max{ε̃1, ε̃2}.

Proof. Applying Definitions 1 and 7, let Ã = R + E, where ‖E‖max ≤ ε̃. For
player 1 we have that:

For all i, k ∈ S1, p̄i > 0 =⇒ (Ãq̄)i ≥ (Ãq̄)k,

⇐⇒ (Rq̄ + Eq̄)i ≥ (Rq̄ + Eq̄)k,

⇐⇒ (Rq̄)i ≥ (Rq̄)k + (Eq̄)k − (Eq̄)i.

Since ε1 ≥ maxi,j |ei,j | and q̄ ∈ ∆m,

For all i, k ∈ S1, (Eq̄)k − (Eq̄)i ≥ −2ε1.

Therefore,

For all i, k ∈ S1, p̄i > 0 =⇒ (Rq̄)i ≥ (Rq̄)k − 2ε1.

The proof for player 2 is similar and thus omitted.

In [14] the authors show that additive transformations have no effect on the
set of WSNE. Formally, we have the following lemma.

Lemma 3. Consider the games (m,n,A,B) and (m,n,R,C) which are strate-
gically equivalent via 1-PAT. The strategy pair (p̃, q̃) is an ε̃-WSNE of the game
(m,n,A,B) if and only if (p̃, q̃) is an ε̃-WSNE of the game (m,n,R,C).

Proof. Suppose (p̃, q̃) is an ε̃-WSNE of the game (m,n,R,C). Applying Defini-
tion 6 for player 1, we have that:

For all i, k ∈ S1, p̃i > 0 =⇒ (Rq̃)i ≥ (Rq̃)k − ε̃,
⇐⇒ (Aq̃)i + (1muTq̃)i ≥ (Aq̃)k + (1muTq̃)k − ε̃,
⇐⇒ (Aq̃)i ≥ (Aq̃)k − ε̃.

The final step of this proof relies on the fact that (1muTq̃)i = (1muTq̃)k for any
i, k ∈ S1. The proof for player 2 is similar and thus omitted.

In the next section, we will introduce an efficient algorithm to compute Nash
equilibria for general bi-matrix games.

3 A Fast Algorithm to Compute Strategically Equivalent
Zero-Sum Games

In this section, we devise an algorithm that determines a strategically equiva-
lent zero-sum game (m,n, Ā, B̄) given a non-zero-sum game (m,n,A,B) with



Two Algorithms for Computing Exact and Approximate NE 7

(Ā, B̄) ∈ Υ (A,B) (and Ā + B̄ = 0). This section is based on Chapter 3 of the
second author’s PhD dissertation [12].

We first introduce some notations. Define the set Mm×n ⊆ Rm×n as

Mm×n(R) ={
M ∈ Rm×n | there exists u ∈ Rn,v ∈ Rm s.t. M = 1muT + v1T

n

}
.

Note that Mm×n(R) is a linear space over field R, hence Mm×n(R) is closed
under addition and scalar multiplication. Moreover, for matrix Ā ∈ Rm×n, we
define the set WZ(Ā) as

WZ(Ā) :=
{

(w, z) ∈ Rm × Rn | wTĀz 6= 0,1T
mw = 1T

nz = 0
}
.

Then, given a nonzero-sum game (m,n,A,B), the following theorem provides
a necessary and sufficient condition to the existence of strategic equivalent zero
sum game to the original game.

Theorem 1. Consider a nonzero-sum game (m,n,A,B), where A,B 6∈ Mm×n(R).
The nonzero-sum game (m,n,A,B) is strategically equivalent to a zero-sum
game (m,n, Ā, B̄) (where B̄ = −Ā) if and only if the following conditions are
satisfied:

1. For any (w, z) ∈ Rm × Rn such that 1T
mw = 1T

nz = 0, and wTBz 6= 0,

γ := −wTAz

wTBz
> 0.

2. M := A+ γB ∈Mm×n(R).

Proof. We start by proving the reverse direction. Suppose the two conditions
are satisfied. Note that as M = A + γB ∈ Mm×n(R), rank(M) ≤ 2. Next, we
consider the three cases when rank(M) is 2, 1 and 0.

1. Case 1: rank(M) = 2. We can write M as a summation of 2 rank-1 ma-
trices, so 1m ∈ ColSpan(M) and 1n ∈ ColSpan(MT). Hence, there exists
x1 ∈ Rn such that Mx1 = 1m. Moreover, there exists y1 ∈ Rm such that
yT
1M 6= 0m and 1T

my1 6= 0. Let w1 = yT
1Mx1 6= 0 and let û := (w−11 yT

1M)T.

Then, w−11 Mx1y
T
1M = M−1mûT. By applying Wedderburn rank reduction

formula [22, p.69], we have

M2 = M − w−11 Mx1y
T
1M = M − 1mûT.

Next, we show the existence of v̂ ∈ Rm such that M2 = v̂1T
n. Indeed,

M ∈ Mm×n(R) and 1mûT ∈ Mm×n(R). As Mm×n(R) is closed under
addition, we have M2 ∈ Mm×n(R). In addition, by Wedderburn [22, p.
69], rank(M2) = 1. By Theorem 6, 1m 6∈ ColSpan(M2) implies there ex-
ists v̂ ∈ Rm such that M2 = v̂1T

n. Finally, letting Ā := A − 1mûT and
B̄ := γB −M2, we have

Ā+ B̄ = A+ γB − 1mûT −M2 = 0m×n.

Since γ > 0, we conclude that (m,n, Ā, B̄) is strategically equivalent to
(m,n,A,B) via a PAT.
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2. Case 2: rank(M) = 1. As rank(M) = 1, either 1m ∈ ColSpan(M) or
1n ∈ ColSpan(MT). We first assume 1m ∈ ColSpan(M). Let M = 1mûT.
Then we can let Ā = A−M , and B̄ = γB and we have Ā+ B̄ = 0m×n.

The proof of the case 1n ∈ ColSpan(MT) is similar and therefore omitted.
Hence, we have found Ā, B̄ such that (m,n,A,B) is strategically equivalent
to (m,n, Ā, B̄) via a PAT.

3. Case 3: rank(M) = 0. Let Ā = A and B̄ = γB. Since M = A+γB = 0m×n,
(m,n, Ā, B̄) is zero-sum and strategically equivalent to (m,n,A,B) via a
PAT.

Next, we prove the forward direction and assume that the nonzero-sum game
(m,n,A,B) is strategically equivalent to a zero sum game (m,n, Ā, B̄) via PAT.
Since B 6∈ Mm×n(R), Theorem 7 in Appendix A implies WZ(B) 6= ∅. Pick
(w, z) ∈ WZ(B), we have the following

(a) wTAz = α1w
TĀz + wT1muTz = α1w

TĀz,

(b) wTBz = −α2w
TĀz + wTv1T

nz = −α2w
TĀz.

Since (w, z) ∈ WZ(B), wTBz 6= 0, hence γ is well-defined. As α1 > 0 and
α2 > 0, we conclude that

γ = −wTAz

wTBz
=
α1w

TĀz

α2wTĀz
=
α1

α2
> 0.

Note it is straightforward to show that WZ(A) =WZ(Ā) =WZ(B̄). The fact
that M := A+ γB is inMm×n(R) follows from simple algebraic manipulations.
The proof is thus complete.

To turn the above theorem into a fast algorithm, we need to solve two specific
problems. The first one is to determine whether or not the payoff matrices are
in Mm×n(R) and the second one is to compute (w, z) ∈ WZ(B). In the next
section, we derive two results that immediately yield linear time algorithms to
solve these two problems.

3.1 Algorithmic Implications for Matrices in Mm×n(R)

We first derive a fast approach to determine whether or not a matrix is in
Mm×n(R) in the next theorem.

Theorem 2. Given a matrix F ∈ Rm×n, select any (i, j) ∈ {1 . . .m}×{1 . . . n}
and let

F̄ := 1mF(i) + (F (j) − 1mfi,j)1
T
n. (1)

Then F is in Mm×n(R) if and only if F = F̄ .
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Proof. To begin with, notice that 1mF(i) ∈ Mm×n(R) and (F (j) − 1mfi,j)1
T
n ∈

Mm×n(R). Let F̂ := F−F̄ = F−1mF(i)−(F (j)−1mfi,j)1
T
n, then F̂ ∈Mm×n(R)

if and only if F ∈ Mm×n(R), as Mm×n(R) is closed under addition. We will
show that F̂ is in Mm×n(R) if and only if F̂ = 0m×n. We have that

F̂ = F − 1mF(i) − (F (j) − 1mfi,j)1
T
n

=


f1,1 − fi,1 − f1,j + fi,j , . . . f1,n − fi,n − f1,j + fi,j
f2,1 − fi,1 − f2,j + fi,j , . . . f2,n − fi,n − f2,j + fi,j

...
. . .

...
fm,1 − fi,1 − fm,j + fi,j , . . . fm,n − fi,n − fm,j + fi,j

 .

In this form, it is clear that F̂(i) = 0T
n and F̂ (j) = 0m. Since F̂(i) = 0T

n and

F̂ (j) = 0m, from Lemma 6 F̂ is in Mm×n(R) if and only if F̂ = 0m×n.

The matrix F̂ constructed in Theorem 2 depends on which indices (i, j)
were used to construct it, and the proper notation should be F̂ (i, j). However,
since in all of our results that require similar notation the selection of (i, j) is
arbitrary, in an abuse of notation we drop (i, j) and simply use F̂ . An algorithm
for determining if a matrix is in Mm×n(Q) is shown in Algorithm 1.

We now turn our attention to an efficient manner to calculate z ∈
{
z ∈ Rn |

1T
nz = 0

}
and w ∈

{
w ∈ Rm | 1T

mw = 0
}

such that (w, z) ∈ WZ(F ). This
is used to compute a candidate parameter γ in Theorem 1. The next corollary
derives a computationally efficient method for computing z and w for F /∈
Mm×n(R).

Corollary 1. Given matrix F ∈ Rm×n, F /∈ Mm×n(R), construct F̂ as in

Theorem 2. Choose any (l, k) such that f̂l,k 6= 0, let w = el−ei, and z = ek−ej.
Then z ∈

{
z ∈ Rn | 1T

nz = 0
}

, w ∈
{
w ∈ Rm | 1T

mw = 0
}

, and

wTFz = wTF̂z = f̂l,k 6= 0.

Proof. Clearly w and z are constructed such that z ∈
{
z ∈ Rn | 1T

nz = 0
}

,

w ∈
{
w ∈ Rm | 1T

mw = 0
}

. From Theorem 2 we have that:

F̂ = F − 1mF(i) − (F (j) − 1mfi,j)1
T
n.

Then we have:

wTF̂z = wTFz−wT1mF(i)z−wT(F (j) − 1mfi,j)1
T
nz = wTFz.
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Algorithm 1 Algorithm for determining if a matrix is in Mm×n(Q)

1: function IsMatrixInM(F )
2: Select any (i, j) ∈ {1 . . .m} × {1 . . . n}
3: for s← 1,m do
4: R(s) ← F(i)

5: end for
6: for t← 1, n do
7: C(t) ← F (j) − 1mfi,j
8: end for
9: F̂ ← F −R− C

10: MatrixInM← 1
11: for l← 1,m do
12: for k ← 1, n do
13: if f̂l,k 6= 0 then
14: MatrixInM← 0
15: break
16: end if
17: end for
18: if MatrixInM= 0 then
19: break
20: end if
21: end for
22: return (MatrixInM)
23: end function

Since F̂ was constructed such that F̂(i) = 0T
n and F̂ (j) = 0m, we have that:

wTF̂z = (el − ei)
TF̂ (ek − ej)

= (el − ei)
T(F̂ek − F̂ej)

= (el − ei)
T(F̂ek − 0m)

= eT
l F̂ek − eT

i F̂ek

= eT
l F̂ek − 0T

nek

= eT
l F̂ek

= f̂l,k.

Finally, f̂l,k was selected such that f̂l,k 6= 0. This completes the proof.

3.2 A Simple Example: Rock-Paper-Scissors

Consider the game matrix given in Figure 1a and let us represent this game as
(m,n,A,−A). This is the classic Rock-Paper-Scissors (R-P-S) with well known
NE strategies p∗ = q∗ = [ 13 ,

1
3 ,

1
3 ]T. The game in Figure 1b is a positive affine

transformation of (m,n,C,−C). Let us represent this game as (m,n,A,B).
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Clearly, (m,n,A,B) is neither zero-sum nor constant-sum. However, by apply-
ing the process outlined above one can obtain the game in Figure 1c, which is a
zero-sum game and strategically equivalent to (m,n,A,B).

R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

(a) R-P-S

R P S
R −5, 8 −6, 10 10, 6
P −1,−5 −2,−3 2,−1
S −9, 13 2, 9 6, 11

(b) A PAT of R-P-S

R P S
R −16, 16 −20, 20 −12, 12
P −12, 12 −16, 16 −20, 20
S −20, 20 −12, 12 −16, 16

(c) Zero-Sum Game equiva-
lent to (b)

Fig. 1: (a) The classic zero-sum game Rock-Paper-Scissors. (b) A nonzero-sum
game that is strategically equivalent to Rock-Paper-Scissors through a PAT. (c)
A zero-sum game that is strategically equivalent to the PAT of Rock-Paper-
Scissors.

By letting w = [−1, 1, 0]T, z = [−1, 0, 1]T, we have γ = −wTAz
wTBz

= −−126 = 2.
Then let (i, j) = (1, 1) to obtain the strategically zero-sum game:

Ā = A− 1m

[
11 14 22

]
, B̄ = 2B −

 0
−22

6

1T
n.

The result of these calculations is the zero-sum game (m,n, Ā, B̄) which is dis-
played in Figure 1c and, as expected, has the NE strategies p∗ = q∗ = [ 13 ,

1
3 ,

1
3 ]T.

3.3 Algorithm and Simulations

We have shown that given the game (m,n,A,B), one can determine if the game
is strategically equivalent to the zero sum game (m,n, Ā, B̄) through a PAT. If
so, then it is possible to construct a rank-0 game which is strategically equivalent
to the original game. One can then efficiently solve the strategically equivalent
zero-sum game via linear programming. We state the key steps in our algorithm
below and show that both the determination of strategic equivalence and the
computation of the strategically equivalent zero-sum game can be done in time
O(mn).

The analytical results and discussions throughout this paper apply to real bi-
matrix games, with (A,B) ∈ Rm×n×Rm×n. However, for computational reasons,
when discussing the algorithmic implementations we focus on rational bimatrix
games, with (A,B) ∈ Qm×n × Qm×n.

Theorem 3. The SER0 algorithm determines if a game (m,n,A,B) is strate-
gically equivalent to a rank-0 game and returns the strategically equivalent zero-
sum game in time O(mn).
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Algorithm 2 Condensed algorithm for solving a strategically rank-0 game

1: procedure ShortSER0(A,B)
2: if A and/or B ∈Mm×n(Q) then
3: Calculate pure strategy NE and exit
4: else
5: γ ← −wTAz

wTBz
6: if γ < 0 then
7: Not strategically equivalent via PAT. exit
8: else
9: M ← A+ γB

10: if M not in Mm×n(Q) then
11: Not strategically equivalent via PAT. exit
12: else
13: choose (i, j) ∈ (m× n)
14: Ā← A− 1mM(i)

15: B̄ ← γB − (M (j) − 1mmi,j)1
T
n

16: Solve (m,n, Ā, B̄) via LP
17: end if
18: end if
19: end if
20: end procedure

We now turn our attention to the computational complexity of Algorithm 2.
First, testing whether or not a matrix is in Mm×n(R) is equivalent to imple-
menting (1) and then comparing two matrices F and F̄ . Both these operations
take time O(mn). Next, for any matrix F ∈Mm×n(R), calculating wTFz takes
time O(m2) +O(n) < O(mn) for m ≤ n. So, calculating γ can be done in time
O(mn) if one has candidate vectors (w, z). Corollary 1 gives an algorithm for
determining such (w, z) that runs in time O(mn).

Forming the D matrix takes mn multiplications and mn additions, and there-
fore has time O(mn). Finally, calculating Ā, B̄ for the case rank(M) = 2 consists
of scalar-matrix multiplication, vector outer product, and matrix subtraction.
Therefore, it has time O(mn).

This shows that overall the algorithm can both identify whether a game
is strategically equivalent to a zero-sum game through a PAT and, if so, can
determine the equivalent game in time O(mn).

3.4 Numerical Results

To evaluate the performance of the SER0 algorithm we ran the following exper-
iment. We fixed m at m = 1000 and varied n with n ∈ [2000, 10000]. Each entry
in the payoff matrices are uniformly distributed. We ran SER0 on 1000 different
game instances for each value of n.

All experiments were conducted on a standard desktop computer running
Windows 7 with 16GB of RAM and an Intel Xeon E5-1603 processor with 4
cores running at 2.8GHz.
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Fig. 2: Average running time and standard deviation of the SER0 algorithm for
strategically equivalent games, games that are not strategically equivalent, and
games that are guaranteed to have at least one pure strategy NE. For each value
of mn, we ran the algorithm on 1000 such games.

For each set of experiments, we created instances (m,n,A,B) that were
strategically equivalent to a zero-sum game (m,n, Ā, B̄). In all cases tested,
the SER0 algorithm correctly identified the games as strategically zero-sum and
calculated the equivalent game (m,n, Ā, B̄). As expected, one can observe from
Figure 2 that there is a clear linear relationship between the runtime of SER0
and the size of the game instance. In addition, for very large games of size
(1000 × 10000) SER0 found the equivalent game in an average time of 3.6 sec-
onds.

We then created games which were guaranteed to have a pure strategy NE.
In other words, at least one of A or B were in Mm×n(Q). Again, the SER0
algorithm correctly identified all of these cases as having a pure strategy NE.
Again, we observe that SER0’s runtime is linear in this case. As expected, this
case is much faster than the strategically equivalent case as there is no need to
calculate Ā, B̄,M nor test for M ∈Mm×n(Q).

Finally, we conducted experiments on games that were not strategically
equivalent to a zero-sum game via a PAT. Similar to the other two cases, the
SER0 algorithm correctly identified these games as not strategically equivalent
to a zero-sum game. As Figure 2 show, this case also exhibits a linear relation-
ship between runtime and the game size, although with a much higher standard
deviation compared to the other two sets of experiments. This higher standard
deviation is readily explainable by examining the SER0 algorithm. When testing
whether or not a game is strategically equivalent, the test can return a negative
result if either γ ≤ 0 or M /∈Mm×n(Q). For cases of γ ≤ 0, the algorithm termi-
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nates and returns a negative result in much less time than it takes to calculate
the M matrix and test for M ∈Mm×n(Q).

4 Approximate Nash Equilibrium Through an Affine
Transformation

Thus far we have introduced sufficient and necessary conditions of the existence
of strategically equivalent zero-sum games via PAT. Then, we proposed an algo-
rithm to compute a Nash equilibrium in time O(mn), given that the conditions
in Theorem 1 hold. Now, we introduce another algorithm that efficiently com-
putes an approximate Nash equilibrium when conditions in Theorem 1 are not
satisfied.

There are two key insights that drive the second algorithm. Given a bimatrix
game (m,n,A,B), we can determine a strategically equivalent (not necessarily
zero-sum) game (m,n,R,C) via PAT. Let E = R + C. Consider the zero-sum
game (m,n, Ã, B̃), where Ã = R − 1

2E and B̃ = C − 1
2E. One may want the

zero-sum game (m,n, Ã, B̃) to be, in some sense, ‘close’ to (m,n,R,C). One
approach is to determine matrices R and C to reduce the max norm of E, by
which the error of the approximate NE can be controlled.

The second insight is about the nature of the game transformation itself.
From Definition 4, we conclude that when the two games are strategically equiv-
alent, then for every player, the best response correspondence is the same in
both games. We identify an affine game transformations below that bijectively
transforms the best response correspondence. In other words, the best response
correspondence of each player in the transformed game can be bijectively mapped
to the best response correspondence of the original game.

Theorem 4. Let D1 ∈ Dn and D2 ∈ Dm be positive definite diagonal matrices
and cosndier the two games (m,n,A,B) and (m,n,AD1, D2B). We have

ΓA(q) = ΓAD1

(
D−11 q

1T
n(D−11 q)

)
, ΓB(p) = ΓD2B

(
D−12 p

1T
m(D−12 p)

)
.

Proof. Since D1 is positive definite diagonal matrix, we have 1T
n(D−11 q) > 0.

This yields

p ∈ ΓA(q) ⇐⇒ pTAq = max
i

[Aq]i,

⇐⇒ pTAD1D
−1
1 q

1T
n(D−11 q)

= max
i

[
AD1D

−1
1 q

1T
n(D−11 q)

]
i

,

⇐⇒ p ∈ ΓAD1

(
D−11 q

1T
n(D−11 q)

)
.

Hence the first equation is proved. The proof of the second equation is similar
and therefore omitted.
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While the affine game transformation described above is simple and a straight-
forward extension of PAT, we are unable to find any reference in the literature
on such an affine transformation. We next show that the Nash equilibria and
approximate Nash equilibria of the transformed game can be mapped to that of
the original game.

Lemma 4. Consider games (m,n,A,B) and (m,n,AD1, D2B), where D1, D2

are diagonal, positive definite matrices. Let p̃∗ =
D−1

2 p∗

1T
m(D−1

2 p∗)
, q̃∗ =

D−1
1 q∗

1T
n(D

−1
1 q∗)

.

Then,

(a) (p∗,q∗) is an ε-WSNE of the game (m,n,A,B) if and only if the strat-
egy pair (p̃∗, q̃∗) is an ε̃-WSNE of the game (m,n,AD1, D2B), where ε =
ε̃/max{‖D1‖max, ‖D2‖max}

(b) (p∗,q∗) is a NE of the game (m,n,A,B) if and only if the strategy pair
(p̃∗, q̃∗) is a NE of the game (m,n,AD1, D2B).

Proof. We start by proving (a). Suppose (p̃∗, q̃∗) is an ε̃-WSNE of the game
(m,n,AD1, D2B). From Definition 6 we have

∀i, k ∈ S1, p̃
∗
i > 0 =⇒ (AD1q̃

∗)i ≥ (AD1q̃
∗)k − ε̃.

Denote d2,j as the (j, j)th entry of matrix D2. Since d2,j > 0 ∀j ∈ S1, we have

p̃∗i > 0 ⇐⇒
(

D2p̃
∗

1T
m(D2p̃∗)

)
i

= p̃∗i > 0. This yields

(AD1q̃
∗)i ≥ (AD1q̃

∗)k − ε̃

=⇒
(
AD1D

−1
1 q∗

1T
n(D−11 q∗)

)
i

≥
(
AD1D

−1
1 q∗

1T
n(D−11 q∗)

)
k

− ε̃

1T
n(D−11 q∗)

,

⇐⇒ (AD1D
−1
1 q∗)i ≥ (AD1D

−1
1 q∗)k − ε,

⇐⇒ (Aq∗)i ≥ (Aq∗)k − ε.

The proof of the other player is similar and thus omitted. The proof of (b) is
straightforward by setting ε = 0.

4.1 Approximate Nash Equilibrium

We have shown in Lemma 2 that additive transformations only affect ε of the
set of WSNE. Lemma 4 shows the set of NE is preserved via affine transforma-
tions. Now we propose a theorem that establishes the connection (in terms of
approximate WSNE) between a bimatrix game and the approximated zero-sum
game.

Theorem 5. Let D1 ∈ Dn, D2 ∈ Dm, u ∈ Rn, v ∈ Rm. Consider games
(m,n,A,B) and (m,n,R− 1

2E,C −
1
2E), where R = AD1−1muT , C = D2B−

v1T
n , E = R+ C, and define ε̃ := ‖E‖max. Let

p∗ =
D2p̃

∗

1T
m(D2p̃

∗)
, q∗ =

D1q̃
∗

1T
n(D1q̃∗)

, ε =
ε̃

max{‖D1‖max, ‖D2‖max}
.
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If (p̃∗, q̃∗) is a saddle point equilibrium of the zero sum game (m,n,R− 1
2E,C−

1
2E), then the strategy pair (p∗,q∗) is a ε-WSNE of the game (m,n,A,B).

Proof. Suppose (p̃∗, q̃∗) is a saddle point equilibrium of the game (m,n,R −
1
2E,C−

1
2E). From Lemma 2 we have (p̃∗, q̃∗) is an ε̃-WSNE of game (m,n,R,C).

From Lemma 3, (p̃∗, q̃∗) is an ε̃-WSNE of game (m,n,AD1, D2B). Finally,
Lemma 4 implies that (p∗,q∗) is a ε-WSNE of the original game (m,n,A,B).

4.2 Algorithmic Implementation

In the sequel, we formulate an optimization problem to compute D1 ∈ Dn, D2 ∈
Dm, u ∈ Rn, v ∈ Rm given (A,B). This problem is equivalent to minimizing the
max norm of the matrix E = R + C = AD1 − 1muT + D2B − v1T

n, which is
formulated as the optimization problem:

min
u,v,D1,D2

∥∥AD1 − 1muT +D2B − v1T
n

∥∥
max

s.t. u ∈ Rn, v ∈ Rm, D1 � In, D2 � Im, D1 ∈ Dn, D2 ∈ Dm.
(CP1)

It is well known (see, for example [1, pg. 150]) that problems similar to CP1 can
be equivalently written in the epigraph form as:

min
u,v,D1,D2,t

t

s.t. − d1,jai,j − d2,ibi,j − t+ uj + vi ≤ 0, i = 1, . . . ,m, j = 1, . . . , n

d1,jai,j + d2,ibi,j − t− uj − vi ≤ 0, i = 1, . . . ,m, j = 1, . . . , n

u ∈ Rn, v ∈ Rm, d1,j ≥ 1, d2,i ≥ 1, t ≥ 0.
(LP1)

The program in LP1 is a linear program and can be solved in polynomial time.
Thus, what we have shown is that given a nonzero-sum game (m,n,A,B), we
can, in polynomial time, find the zero-sum game (m,n,R− 1

2E,C−
1
2E) such that

ε̃ = ‖E‖max is minimized. Then, by Theorem 5, we can compute an ε-WSNE
of game (m,n,A,B) by calculating the saddle point equilibrium (p̃∗, q̃∗) of the
zero-sum game. As a result, the algorithm finds an ε-WSNE of (m,n,A,B) in
polynomial time using two calls of a linear program. The algorithm is shown in
Algorithm 3.

4.3 Numerical Simulation

To evaluate the performance of Algorithm 3, we ran an experiment to evalu-
ate the theoretical and actual error ε. We generated games with square payoff
matrices with n ∈ [5, 50] and uniformly distributed payoff values. We generated
10,000 different pairs of payoff matrices on each value of n.

For each game (m,n,A,B), we first ran Algorithm 3 to get an approximate
WSNE (p̃, q̃). Then, we ran Lemke-Howson Algorithm to compute the exact
Nash equilibrium (p,q). Finally, we computed the exact and theoretical ε. For
each game size, we calculated the mean and variance of ε. In all cases tested,
the actual error of (p̃, q̃) is less than the theoretical ε. The results are shown in
Figure 5.
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Algorithm 3 Algorithm for computing ε-Nash equilibrium of the game
(m,n,A,B).

1: procedure ApproximateNE(m,n,A,B)
2: Solve LP1 to get D1, D2,u,v, ε̃
3: R← AD1 − 1muT, C ← D2B − v1T

n, E ← R+ C
4: Calculate saddle point equilibrium (p̃∗, q̃∗) of (m,n,R− 1

2
E,C − 1

2
E)

5: Set p∗ ← D2p̃
∗

1T
m(D2p̃∗)

, q∗ ← D1q̃
∗

1T
n(D1q̃∗)

, ε← ε̃/max{‖D1‖max, ‖D2‖max}
6: end procedure
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Fig. 3: Actual and theoretical ε with
game sizes 5, 10, ..., 50
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Fig. 4: Actual and theoretical variance
of ε with game sizes 5, 10, ..., 50

Fig. 5: The results of Algorithm 3.

5 Conclusion

In this paper, we proposed two algorithms to determine a strategically equiv-
alent zero-sum game given a non-zero-sum game. In this process, we proposed
a new result on best response bijection, by which we can compute the NE of a
bimatrix game by computation of the fixed point of the transformed function.
The algorithms to determine the strategically equivalent zero-sum games run in
polynomial time in the size of the game. Consequently, we showed that a class
of non-zero sum games can be solved in polynomial time.

In the cases where our second algorithm does not output a strategically
equivalent zero-sum game, we show that it is a new algorithm for computing an
ε-WSNE in polynomial time. Finally, we conducted numerical studies to show
the efficacy of our algorithms.

A Some Auxiliary Results on Mm×n(R)

This appendix is based on Appendix A.1.1 of the second author’s PhD disserta-
tion [12].
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Theorem 6. For matrix M ∈ Rm×n with rank(M) = r. Let M1 = M , and

Mk+1 := Mk − w−1k MkxkyT
kMk, k ∈ {1, . . . , r}. (2)

Define rank 1 matrices Wk := vkuT
k = w−1k MkxkyT

kMk. Then, for any j > k,
vk 6∈ ColSpan(Mj) and uk 6∈ ColSpan(MT

j ).

Proof. By (2), we have Mk+1 = M −
∑k

i=1Wi =
∑r

i=k+1Wi. Then, [22, p. 69]
implies rank(Mk+1) = rank(Mk)− 1. Hence the result is proved.

Theorem 7. If a matrix A ∈ Rm×n and A 6∈ Mm×n(R), then WZ(A) 6= ∅

Proof. We can write A = M +
∑k

i=1 viu
T
i , where

(a) k = rank(A)− rank(M),
(b) M = 1muT

o + v01
T
n ∈Mm×n(R), so rank(M) ≤ 2,

(c) For any i ∈ {1, . . . , k}, vi 6∈ ColSpan(M) and ui 6∈ ColSpan(MT),

(d) {vi}ki=1 and {ui}ki=1 are linearly independent.

Let w0 = 1m and z0 = 1n, and construct orthogonal vectors such that

wi = vi −
i∑

j=0

vT
i wj

wT
j wj

wj ∀i ∈ {1, . . . , k}

zi = ui −
i∑

j=0

uT
i zj

zTj zj
zj ∀i ∈ {1, . . . , k}

1T
mwi = 1T

nzi = 0 ∀i ∈ {1, . . . , k}
wT

i vj = uT
j zi = 0 ∀j < i

wT
i vi 6= 0 and uT

i zi 6= 0 ∀i ∈ {1, . . . , k}

After the iteration, we have that

wT
kAzk = wT

kMzk + wT
k

k∑
i=1

viu
T
i zk = wT

kMzk + wT
k

k−1∑
i=1

viu
T
i zk + wT

kvkuT
kzk

= wT
kvkuT

kzk 6= 0.

The last step is because wT
i vj = uT

j zi = 0 for any j < i.

Lemma 5. For any matrix M ∈Mm×n(R):

1. If rank(M) = 2, then 1m ∈ ColSpan(M) and 1n ∈ ColSpan(MT). In addi-
tion, for all x,y such that Mx = 1m,MTy = 1n,1T

nx = 0,1T
my = 0.

2. If rank(M) = 1, then either 1m ∈ ColSpan(M), or 1n ∈ ColSpan(MT) or
both 1m ∈ ColSpan(M) and 1n ∈ ColSpan(MT).
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Proof. For claim 1, 1m ∈ ColSpan(M) and 1n ∈ ColSpan(MT) follows directly
from rank(M) = 2. In addition, M ∈ Mm×n(R) and rank(M) = 2 implies
that there exists v 6= 0n and u 6= 0m such that M = 1muT + v1T

n. Also since
rank(M) = 2, we have that for all a ∈ R, v 6= a1m since v and 1m must be
linearly independent. Then, for all x such that Mx = 1m we have that:

Mx = 1muTx + v1T
nx = 1m = (uTx)1m + (1T

nx)v = 1m.

This implies (1T
nx)v = (1−uTx)1m. Further, v 6= a1m implies that the equation

above is satisfied if and only if 1T
nx = 0 and uTx = 1. To prove that for all y

such that MTy = 1n, 1T
my = 0 apply the same technique to MT.

Claim 2 follows directly from rank(M) = 1.

Lemma 6. For any matrix F ∈ Rm×n, if there exists i, j such that F(i) = 0T
n

and F (j) = 0m then F ∈Mm×n(R) if and only if F = 0m×n.

Proof. Clearly F = 0m×n implies that F ∈ Mm×n(R) and that for all i, j
F(i) = 0T

n and F (j) = 0m. Now, consider the forward direction and suppose that
F ∈Mm×n(R). Then from the definition ofMm×n(R), we have that rank(F ) ≤
2. We will show that rank(F ) = 0. F(i) = 0T

n implies that 1m /∈ ColSpan(M) and

F (j) = 0m implies that 1n /∈ ColSpan(MT). Then, by Lemma 5 rank(F ) 6= 1, 2.
Therefore, rank(F ) = 0 and F = 0m×n.
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