Skip to main content

A CCA-Full-Anonymous Group Signature with Verifiable Controllable Linkability in the Standard Model

  • Conference paper
  • First Online:
  • 638 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13059))

Abstract

Group signatures allow users to anonymously sign messages on behalf of a group. In this paper, we construct a group signature with verifiable controllable linkability in a generic way, where a linking authority (LA) can link two signatures to determine whether they are generated by the same unknown signer or not. Our core building block is a structure-preserving public key encryption with equality test, where public keys, plaintexts, and ciphertexts are all group elements, encryption, decryption, and test algorithms only consist of group and pairing operations. Due to its structure-preserving property, our scheme is easy to combine with non-interactive zero-knowledge proofs on bilinear groups and hence make this combination more efficient than the most CCA-full-anonymous GSS-VCL constructions in the standard model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  3. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3

    Chapter  Google Scholar 

  5. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: The 11th ACM Conference on Computer and Communications Security - CCS 2004, pp. 168–177. ACM (2004)

    Google Scholar 

  6. Blazy, O., Derler, D., Slamanig, D., Spreitzer, R.: Non-interactive plaintext (in-)equality proofs and group signatures with verifiable controllable linkability. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 127–143. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_8

    Chapter  MATH  Google Scholar 

  7. Hwang, J.Y., Lee, S., Chung, B.H., Cho, H.S., Nyang, D.: Group signatures with controllable linkability for dynamic membership. Inf. Sci. 222, 761–778 (2013)

    Article  MathSciNet  Google Scholar 

  8. Slamanig, D., Spreitzer, R., Unterluggauer, T.: Adding controllable linkability to pairing-based group signatures for free. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 388–400. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13257-0_23

    Chapter  Google Scholar 

  9. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_35

    Chapter  Google Scholar 

  10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717

    Chapter  Google Scholar 

  11. Zhang, K., Chen, J., Lee, H.T., Qian, H., Wang, H.: Efficient public key encryption with equality test in the standard model. Theor. Comput. Sci. 755, 65–80 (2019)

    Article  MathSciNet  Google Scholar 

  12. Lee, H.T., Ling, S., Seo, J.H., Wang, H., Youn, T.: Public key encryption with equality test in the standard model. Inf. Sci. 516, 89–108 (2020)

    Article  MathSciNet  Google Scholar 

  13. Nakanishi, T., Fujiwara, T., Watanabe, H.: A linkable group signature and its application to secret voting. Trans. Inf. Process. Soc. Jpn. 40, 3085–3096 (1999)

    MathSciNet  Google Scholar 

  14. Zhang, L.Y., Li, H.L., Li, Y.N., Yu, Y., Au, M.H., Wang, B.C.: An efficient linkable group signature for payer tracing in anonymous cryptocurrencies. Future Gener. Comput. Syst. 101, 29–38 (2019)

    Article  Google Scholar 

  15. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12, 219–249 (2013). https://doi.org/10.1007/s10207-013-0191-z

    Article  Google Scholar 

  16. Garms, L., Lehmann, A.: Group signatures with selective linkability. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 190–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_7

    Chapter  Google Scholar 

  17. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_34

    Chapter  Google Scholar 

  18. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  19. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12

    Chapter  Google Scholar 

  20. Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_5

    Chapter  Google Scholar 

  21. Lu, Y., Zhang, R., Lin, D.: Stronger security model for public-key encryption with equality test. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 65–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_5

    Chapter  Google Scholar 

  22. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. Cryptology ePrint Archive 2010/133 (2010). http://eprint.iacr.org

Download references

Acknowledgments

We gratefully acknowledge the anonymous reviewers as well as the editor of ProvSec for their invaluable comments. This work is supported by Guangdong Basic and Applied Basic Research Foundation [2020A1515010751] and the National Natural Science Foundation of China [61872409].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiang, R., Ma, S., Huang, Q., Li, X. (2021). A CCA-Full-Anonymous Group Signature with Verifiable Controllable Linkability in the Standard Model. In: Huang, Q., Yu, Y. (eds) Provable and Practical Security. ProvSec 2021. Lecture Notes in Computer Science(), vol 13059. Springer, Cham. https://doi.org/10.1007/978-3-030-90402-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90402-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90401-2

  • Online ISBN: 978-3-030-90402-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics