
ar
X

iv
:2

10
9.

05
74

1v
1

 [
cs

.N
E

]
 1

3
Se

p
20

21

MOEA/D with Adaptative Number of Weight
Vectors

Yuri Lavinas1, Abe Mitsu Teru2, Yuta Kobayashi3, and Claus Aranha4

1 University of Tsukuba, Japan lavinas.yuri.xp@alumni.tsukuba.ac.jp
2 University of Tsukuba, Japan abe.mitsuteru.xw@alumni.tsukuba.ac.jp
3 University of Tsukuba, Japan kobayashi.yuta.xu@alumni.tsukuba.ac.jp

4 University of Tsukuba, Japan caranha@cs.tsukuba.ac.jp

Abstract. The Multi-Objective Evolutionary Algorithm based on De-
composition (MOEA/D) is a popular algorithm for solving Multi-Objective
Problems (MOPs). The main component of MOEA/D is to decompose a
MOP into easier sub-problems using a set of weight vectors. The choice
of the number of weight vectors significantly impacts the performance of
MOEA/D. However, the right choice for this number varies, given differ-
ent MOPs and search stages. Here we adaptively change the number of
vectors by removing unnecessary vectors and adding new ones in empty
areas of the objective space. Our MOEA/D variant uses the Consolida-
tion Ratio to decide when to change the number of vectors, and then it
decides where to add or remove these weighted vectors. We investigate
the effects of this adaptive MOEA/D against MOEA/D with a poorly
chosen set of vectors, a MOEA/D with fine-tuned vectors and MOEA/D-
AWA on the DTLZ and ZDT benchmark functions. We analyse the al-
gorithms in terms of hypervolume, IGD and entropy performance. Our
results show that the proposed method is equivalent to MOEA/D with
fine-tuned vectors and superior to MOEA/D with poorly defined vec-
tors. Thus, our adaptive mechanism mitigates problems related to the
choice of the number of weight vectors in MOEA/D, increasing the final
performance of MOEA/D by filling empty areas of the objective space
while avoiding premature stagnation of the search progress.

Keywords: MOEA/D, Auto Adaptation, Multi Objective Optimisation

1 Introduction

Multi-objective Optimisation Problems (MOPs) involve multiple objectives with
trade-off relationships making it hard to find a single solution that provides a
good balance. Thus, to satisfy all objectives, there is a need to find a set of trade-
off solutions, called Pareto Front (PF) solutions. A critical characteristic of this
solutions is to cover all regions of the optimal and continual PF, without any
sparsity regions 5. These empty areas of the PF indicate that different possible
trade-offs are still to be found.

5 In the case of discontinuous PF case, there is no need to cover the discontinuity area.

http://arxiv.org/abs/2109.05741v1

2 Lavinas, Y. et al.

One of the most common algorithms for finding good sets of solutions for
MOPs is the Multi-Objective Evolutionary Algorithm Based on Decomposition
(MOEA/D) [15]. The most crucial feature of MOEA/D is that this algorithm
decomposes the MOP into several single-objective problems. This decomposition
of the MOP depends on a set of weight vectors, where each vector corresponds
to a different region of the PF. The choice of weight vectors is essential on
MOEA/D and the appropriate value generally is not known. Also, these weight
vectors are closely related to the population size, influencing its dynamic during
the search progress, depending on the difficulty of the problem, the presence of
multiple local optima, the shape of the PF and other features [1,5]. Thus, using
a low number of vectors may lead to search stagnation, while a high number
may waste computational resources.

A growing body of literature recognises the need to define the appropriate
set of weight vectors in MOEA/D [12,10,4,7,11]. One major issue in these works
is that they focus on adjusting the position of weight vectors in terms of the
objective space, paying little attention to defining the number of weight vec-
tors. In summary, much uncertainty still exists about the relationship between
redefining the weight vectors adaptively in MOEA/D and the coverage of the
empty spaces of the PF region while avoiding premature convergence.

Here, we focus on automatically adapting the number of weight vectors in
MOEA/D, adding or deleting vectors based on the progress of the search. Our
proposed adaptation method has two main components: (1) to identify the tim-
ing to add and remove weight vectors, and (2) to decide which vectors to add or
remove. To identify the timing to change vectors, we use the Consolidation Ratio,
which was initially proposed as an online stopping criteria [6]. To decide which
vectors to add or remove, we use two strategies, one based on uniform sampled
values and the other based on the adaptive weight adjustment (AWA) [12]. More-
over, our method dependency on the initial set of weight vectors is small and
given its adaptive nature requiring little fine-tuning of the number of vectors.

The proposed method was tested on the DTLZ and ZDT benchmark and
compared with (1) MOEA/D with different weight vectors settings and (2)
MOEA/D-AWA [12], a method that adjusts the positions of the weight vec-
tors during the search. This study provides new insights into the relationship
between the choice of the number of weight vectors in MOEA/D and the incre-
ments of performance of MOEA/D by filling empty areas of the objective space
while avoiding premature stagnation of the search progress.

2 MOEA/D and Weight Vectors

The MOEA/D algorithm is characterized by the decomposition of the MOP
into many sub-problems. A sub-problem is characterized by a weight vector
λ highly influencing the performance of MOEA/D. When adding new weight
vectors, it is necessary to decide where a new set of vectors should be positioned.
Several works study the problem of changing the positions of weight vectors in
MOEA/D. For more detailed information, refer to this Survey of Ma et al. [11].

MOEA/D with Adaptative Number of Weight Vectors 3

One of the most popular methods for guiding the weight adaptation strategy
is the Adaptive Weight Adjustment (AWA) [12,10,4,7]. A major advantage of
AWA is that it changes the position of the vectors according to the feature of
the MOPs and that is why we use AWA as one of the base mechanisms in this
work.

The AWA method keeps an external archive and re-position the vectors to
the sparsest regions of this archive. This positioning is based on the Sparsity
Level (SL) for each solution in the archive:

SL(indj, pop) =
m
∏

i=1

L
NN

j

i

2 (1)

where L
NN

j

i

2 is the Euclidean distance between the j-th solution and its i-th
nearest neighbour. The, a new vector, λsp, is generated using the individual
with the highest SL as based for calculation.

λsp =

(

1
f
sp

1
−z∗

1
+ǫ

∑m

k=1
1

f
sp

k
−z∗

k
+ǫ

, ...,

1
f
sp
m −z∗m+ǫ

∑m

k=1
1

f
sp

k
−z∗

k
+ǫ

)

(2)

Where f
sp
k is the objective function value of the individual with the biggest

SL, and ǫ is a small number. This paper uses a modified version that considers the
Unbounded External Archive (UEA) instead of the traditional external archive.
For more information see Algorithm 2.

The proposed method uses the stagnation state of the search as criteria to
decide when to add or remove weight vectors. Several studies study stagnation
metrics in MOEAs as stopping criteria [6,14]. Here, we choose the CR indica-
tor [6], since it requires no problem-dependent parameters.

The CR indicator uses the non-dominated archive Ai of the population at
generation i, the non-dominated archive at generation i − ∆, and the set S of
solutions from Ai−∆ that are not dominated by Ai, and is calculated as

CR =
|S|

|Ai|
, (3)

S = {ai−∆ : ai−∆ 6≺ ai}, (4)

ai ∈ Ai, ai−∆ ∈ Ai−∆. (5)

Using this indicator, we can compute the utility function Ui, and the average
generation utility U∗

i (equations 6 and 7). The decision to add or remove weights
is made when U∗

i exceeds a threshold Uthresh, that depends on the Uinit value.

Ui =
CRi − CR(i−∆)

∆
(6)

U∗

i =
Ui + U(i−∆)

2
(7)

4 Lavinas, Y. et al.

Uinit =
CR|≫0.5

G
(8)

Uthresh =
Uinit

F
(9)

F and ∆ values were chosen based on the original CR paper [6]. Uinit is
calculated once when the CR exceeds 0.5 for the first time, at generation G.

3 MOEA/D with Adaptive Weight Vectors

We propose a method to enhance MOEA/D by automatically adding or remov-
ing weight vectors as the search progresses, named MOEA/D-AV (MOEA/D
with Adaptive weight Vectors). The outline of this method is described in Al-
gorithm 1. The code for the method and experiments in this study is available
at a GitHub repository 6.

Now we explain the most relevant details of MOEA/D-AV. At every genera-
tion, this algorithm calculates the CR value. When the value of CR is larger than
0.5, the method moves on to calculate the threshold value Uthresh. Then at every
generation, MOEA/D-AV calculates the average generation utility (equation 7).
If it exceeds the value of Uthresh, then the algorithm adds new weight vectors.
Otherwise, it deletes weight vectors. The number of vectors added or removed
at each update is decided by the fraction of the total number of weight vectors.

When adding new vectors, MOEA/D-AV has a choice of adding vectors using
two methods: the first is based on AWA (Algorithm 2) and the second is based
on uniform sampled values. This second method samples values from a uniform
distribution and then generates new weight vectors (Algorithm 3). This second
method is used because determining the position of new vectors only with AWA
leads to early stagnation of the search.

The choice of which method to use is controlled by the p probability value,
which changes as the search progresses. This probability is calculated as p =
n fe
n eval

. Where n fe is the current number of function evaluations, and n eval is
the total evaluation budget. This equation causes MOEA/D-AV to add weight
vectors generated from values sampled from a uniform distribution at the be-
ginning of the search. Then, this MOEA/D variant is more likely to create new
weight vectors using the AWA-based method at later states.

Besides adding weight vectors, MOEA/D-AV also deletes weight vectors,
with the goal of avoiding wasting computational resources when there are too
many weight vectors in use. Currently, the weight vectors are selected to be
deleted randomly, excluding those weight vectors associated with the axis of
each objective. Algorithm 4 describes the method in detail.

6 https://github.com/YUYUTA/MOEADpy

https://github.com/YUYUTA/MOEADpy

MOEA/D with Adaptative Number of Weight Vectors 5

Algorithm 1 MOEA/D-AV

Input: number of adjustment weights ratio, initial weight vectors W, MOEA/D vari-
ables (set of solutions, neighborhood solution matrix,...)

Output: Unbounded External Archive UEA
1: UEA ← ∅
2: Initialize and evaluate population X(0)

3: Update UEA
4: set CRGen ← NULL, Uthresh ← NULL
5: while termination criterion is not meet do
6: Generate new population X′(Gen) and evaluate this new population
7: Update UEA & Select next population
8: if CRGen is NULL then
9: Calculate CRGen.
10: end if
11: if CRGen > 0.5 then
12: if Uthresh is NULL then
13: Calculate Uthresh

14: end if
15: if U∗

Gen > Uthresh then
16: p = n fe

n eval

17: nav = ratio ∗ size(W)
18: if p > random then
19: Add vectors using the Unbounded version of AWA (Algorithm 2)
20: else
21: Add vectors using the Uniform selection method (Algorithm 3)
22: end if
23: end if
24: else
25: Delete vectors (Algorithm 4)
26: end if
27: end while

Algorithm 2 Adding Vectors - method 1 (adds vectors based on the sparsity
of the UEA)

Input: Unbounded External Archive UEA, current population pop, number of to
add vectors nav

Output: Updated population pop
1: set count = 0
2: calculate SL of individual in UEA using Eq. 1
3: while count < nav do
4: set indsp =(xsp,FVsp) which has largest SL
5: generate new vector λsp using Eq. 2
6: add (indsp,λsp) to pop
7: count = count+1
8: end while
9: return pop

6 Lavinas, Y. et al.

Algorithm 3 Adding Vectors - method 2 (adds vectors based on values sampled
from a uniform distribution)

Input: Unbounded External Archive UEA, current population pop,, number of vec-
tors to add nav

Output: Updated population pop
1: set count = 0
2: while count < nav do
3: generate new vector λrand using values sampled from a uniform distribution
4: set indrand =(xrand,FVrand) best solution for λrand in UEA
5: add (indrand,λrand) to pop
6: count = count+1
7: end while
8: return pop

Algorithm 4 Delete Vectors

Input: Current population pop, number of vectors to delete nav
Output: Updated population pop
1: set count = 0
2: while count < nav do
3: let WnotEdge be W without the edge vectors
4: randomly select argument arg from WnotEdge

5: delete (indarg, λarg) from pop
6: count = count+1
7: end while
8: return pop

4 Weight Vectors Experiment

We investigate the relationship between adapting the number of weight vectors,
represented by MOEA/D-AV, and increments of performance in practice. Here,
we compare the UEA of MOEA/D-AV, MOEA/D-DE, and the MOEA/D-AWA
(which adjust the values of the weight vectors, but not their numbers). The three
methods are compared with different numbers of initial weight vectors to analyze
how they interact given this different settings.

The algorithms were compared on the Hypervolume (HV)7, IGD and Entropy
metrics. The first two comparison methods are common in the MOP literature.
This Entropy metric [3] is beneficial to evaluate the sparseness of the PF and it
is uses to measure how well a method covers empty areas of the PF, the main
motivation of this work. For the comparisons, we use the DTLZ benchmark
set (3-objective, 10 dimensions) [2], and the ZDT set (2-objective, 30 dimen-
sions) [16]. For a fair comparison, the algorithms are evaluated based on their
Unbounded External Archive (UEA) [13].

7 For the HV calculation, we use the reference point set to (1 + 1/H,1 + 1/H) for two
objective problems and (1 + 1/H, 1 + 1/H, 1 + 1/H) for three objective problems.

MOEA/D with Adaptative Number of Weight Vectors 7

The general MOEA/D-DE parameters were are used here as they were in-
troduced in [9]. On the other hand, the Generation gap and user-controlled
fraction are the same as from the CR paper [6]. Also, specific parameters of the
MOEA/D-AWA can be found at [12]. Finally, our MOEA/D-AV adds one new
parameter, the vector adaption ratio. The number of weight vectors for the 3-
objective DTLZ benchmark set was selected to be {10, 21, 45, 105, 190, 496 and
990}. The number of weight vectors for the 2-objective ZDT set was set to {10,
20, 50, 100, 200, 500 and 1000} 8. We set the number of evaluations to 75000 and
the number of trials to 21. The difference in performance for each experimental
condition, across all benchmark sets, was evaluated using a two-sided Wilcoxon
signed-rank test paired by benchmark, with α = 0.05.

5 Results

This section compares MOEA/D-AV against the traditional MOEA/D-DE and
MOEA/D-AWA (AWA for simplicity) with different numbers of weight vectors .
We recall that the algorithms are evaluated based on their Unbounded External
Archive (UEA) and not their final population [13], for fair comparisons. The
results of the statistical tests (Wilcoxon signed-rank test paired by benchmark,
with α = 0.05) are shown on Table 1. In this work, we use the symbols “=”, “+”
and “-” to indicate the results of the statistical test. The symbol “=” indicates
no statistically significant difference between the methods, while “+” is used
to indicate a significant difference in favour of MOEA/D-AV and “-” indicates
difference against MOEA/D-AV.

(a) MOEA/D-AV method finds better
HV values in most initial settings. We
highlight the results of MOEA/D-AV
with only 10 initial vectors.

(b) MOEA/D-AV has the best perfor-
mance at lower number of initial weight
vectors and has competitive results for
all settings.

Fig. 1: Mean HV value against initial number of weight vectors, for DTLZ3 on
the left and DTLZ7 on the right. Shaded areas indicate standard deviations.

8 We initialize the weight vectors using the SLD method, causing the number to
slightly change between MOPs with 2 and 3 objectives.

8 Lavinas, Y. et al.

Table 1: Mean and standard deviation, in parenthesis, for all algorithms.
Best scenario Worse scenario

HV MOEA/D AWA MOEA/D-AV MOEA/D AWA MOEA/D-AV

DTLZ1 0.97 (0.02) 0.98 (0.00) 0.95 (0.06) 0.21 (0.27) 0.25 (0.33) 0.51 (0.42)
DTLZ2 0.47 (0.00) 0.47 (0.00) 0.47 (0.00) 0.45 (0.00) 0.45 (0.00) 0.47 (0.00)
DTLZ3 0.45 (0.01) 0.45 (0.01) 0.44 (0.02) 0.01 (0.03) 0.02 (0.04) 0.15 (0.16)
DTLZ4 0.46 (0.00) 0.46 (0.00) 0.46 (0.00) 0.33 (0.12) 0.33 (0.15) 0.44 (0.05)
DTLZ5 0.46 (0.00) 0.22 (0.00) 0.22 (0.00) 0.22 (0.00) 0.22 (0.00) 0.22 (0.00)
DTLZ6 0.22 (0.00) 0.22 (0.00) 0.22 (0.00) 0.19 (0.08) 0.22 (0.00) 0.22 (0.00)
DTLZ7 0.24 (0.00) 0.24 (0.00) 0.24 (0.00) 0.13 (0.03) 0.21 (0.03) 0.22 (0.04)
ZDT1 0.66 (0.00) 0.66 (0.00) 0.67 (0.00) 0.03 (0.03) 0.03 (0.02) 0.12 (0.05)
ZDT2 0.33 (0.00) 0.33 (0.00) 0.33 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ZDT3 1.04 (0.00) 1.04 (0.00) 1.04 (0.00) 0.20 (0.05) 0.23 (0.04) 0.33 (0.05)
ZDT4 0.66 (0.00) 0.66 (0.00) 0.66 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
ZDT6 0.33 (0.00) 0.33 (0.00) 0.33 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Stats = = + +

IGD MOEA/D AWA MOEA/D-AV MOEA/D AWA MOEA/D-AV

DTLZ1 0.58 (0.13) 0.58 (0.17) 0.57 (0.19) 1.33 (0.92) 4.38 (6.26) 0.96 (1.05)
DTLZ2 0.01 (0.00) 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
DTLZ3 0.01 (0.01) 0.01 (0.00) 0.02 (0.02) 4.98 (5.45) 6.96 (7.86) 2.14 (2.85)
DTLZ4 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.33 (0.31) 0.29 (0.34) 0.06 (0.16)
DTLZ5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
DTLZ6 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.14 (0.34) 0.00 (0.00) 0.00 (0.00)
DTLZ7 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.39 (0.17) 0.13 (0.17) 0.15 (0.27)
ZDT1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.73 (0.13) 0.69 (0.07) 0.50 (0.09)
ZDT2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.29 (0.14) 1.18 (0.19) 0.91 (0.18)
ZDT3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.61 (0.08) 0.57 (0.06) 0.46 (0.05)
ZDT4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 21.1 (4.34) 20.5 (4.33) 17.5 (3.16)
ZDT6 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 5.64 (0.27) 5.55 (0.36) 5.02 (0.51)

Stats = = + +

Entropy MOEA/D AWA MOEA/D-AV MOEA/D AWA MOEA/D-AV

DTLZ1 11.2 (0.88) 11.4 (0.73) 10.3 (1.15) 3.75 (0.45) 3.74 (0.59) 7.28 (2.04)
DTLZ2 12.2 (0.02) 12.3 (0.03) 12.2 (0.04) 9.19 (0.16) 8.62 (0.45) 11.1 (0.31)
DTLZ3 11.0 (0.72) 11.2 (0.58) 10.1 (1.28) 2.67 (0.48) 1.83 (0.88) 5.08 (2.58)
DTLZ4 11.1 (0.16) 11.1 (0.17) 10.9 (0.11) 6.00 (1.49) 5.47 (2.35) 8.32 (0.84)
DTLZ5 6.98 (0.03) 6.98 (0.02) 6.92 (0.02) 6.45 (0.05) 5.71 (0.24) 6.66 (0.03)
DTLZ6 6.58 (0.03) 6.59 (0.00) 6.60 (0.02) 6.44 (0.31) 5.29 (0.24) 6.17 (0.08)
DTLZ7 10.1 (0.08) 10.1 (0.14) 10.2 (0.25) 8.79 (0.91) 8.04 (0.70) 9.22 (0.44)
ZDT1 7.26 (0.03) 7.25 (0.03) 7.12 (0.22) 6.02 (0.27) 5.91 (0.28) 6.19 (0.20)
ZDT2 7.24 (0.04) 7.25 (0.09) 7.18 (0.17) 2.04 (1.50) 2.45 (1.47) 3.38 (1.41)
ZDT3 6.66 (0.06) 6.65 (0.05) 6.56 (0.50) 5.96 (1.60) 6.02 (0.18) 6.11 (0.11)
ZDT4 7.20 (0.06) 7.26 (0.02) 7.27 (0.08) 2.67 (0.54) 6.78 (0.44) 6.98 (0.25)
ZDT6 6.62 (0.24) 6.71 (0.29) 4.30 (0.37) 3.93 (0.47) 4.09 (0.61) 2.64 (1.07)

Stats − − + +

MOEA/D with Adaptative Number of Weight Vectors 9

Table 2: Paring of initial number of weight vectors and MOEA/D variant used for
comparison of the “Best Scenario” (Table 1) and “Worst Scenario” (Table ??).
These were selected using the best and worst mean HV values, respectively.

Best Scenario — Worst scenario

MOEA/D AWA MOEA/D-AV MOEA/D AWA MOEA/D-AV

DTLZ1 190 105 190 990 990 990
DTLZ2 190 190 10 10 10 990
DTLZ3 190 105 190 990 990 990
DTLZ4 496 496 990 10 10 10
DTLZ5 190 105 21 21 990 990
DTLZ6 496 496 190 10 10 990
DTLZ7 496 190 10 10 10 21
ZDT1 50 10 100 1000 1000 1000
ZDT2 10 10 20 1000 1000 1000
ZDT3 50 50 10 1000 1000 1000
ZDT4 100 100 20 500 500 1000
ZDT6 50 50 100 500 1000 1000

Table 1, left side, shows the mean and standard deviation of the best setting

for each algorithm in terms of the number of weight vectors, based on hypervol-
ume values. The best method for each MOP is highlighted in bold. Looking at
this Table, we can see that the best results are similar in terms of HV and IGD.
This result suggests that there is no apparent difference between these methods.
In terms of Entropy values, the proposed method performs a little worse than
the other methods, especially for DTLZ1-4. On the other hand, Table 1, right
side, shows the mean and standard deviation of the worst setting for each algo-

rithm in terms of the number of weight vectors. The results are shown by this
side of the Table 1 indicating that the MOEA/D-AV performs better than the
other two MOEA/D variants in all metrics. It is in our understanding that the
reason for this is that our method can compensate for initial bad choices of the
number of vectors and achieve competitive results. Finally, Table 2 shows the
number of vectors for best and worst settings scenarios in terms of HV.

It is interesting to note that using extremes values for the number of weight
vectors, such as 10 or 990, lead to bad HV performance, as can be seen in
Table 2. In the case of a higher number of weight vectors, a possible cause for
this low performance is due to the number of vectors being too large for the
algorithms to efficiently progress with the search progress. In the case of the
lower number of weight vectors, the reason for its bad performance may be that
such configuration provides little information about the search progress.

Figure 1 shows the change in the HV of the solutions of the final UEA for
each method, on the DTLZ3 with continuous PF (a - left side) and DTLZ7 with
discontinuous PF, (b - right side). On DTLZ3, MOEA/D-AV achieves higher or
competitive results independently of the initial number of vectors and the per-
formance of both MOEA/D-DE and MOEA/D-AWA deteriorates significantly
when the number of weight vectors is not set correctly.

10 Lavinas, Y. et al.

(a) MOEA/D-DE with 21
vectors

(b) MOEA/D-AWA with
21 vectors

(c) MOEA/D-AV with 21
vectors

Fig. 2: UEA of 3 methods starting from 21 vectors in DTLZ3. MOEA/D-DE
and MOEA/D-AWA have low coverage of the PF, while MOEA/D-AV is able
to cover well most regions of the objective space.

(a) MOEA/D-DE with 496
vectors

(b) MOEA/D-AWA with
496 vectors

(c) MOEA/D-AV with 496
vectors

Fig. 3: UEA of the 3 methods starting from 105 vectors in DTLZ7. Although
there is little difference in the HV values for each of the methods, we can clearly
see that MOEA/D-AV can fill empty regions of the objective space evenly.

(a) Change in the number of vectors of
MOEA/D-AV in DTLZ1. Best setting
(blue, continuous line) starts with 190
vectors and the worst setting (brown,
dashed line) starts with 990 vectors.

(b) Change in the number of vectors
of MOEA/D-AV in ZDT2. Best setting
(blue, continuous line) starts with 10
vectors and the worst setting (brown,
dashed line) starts with 1000 vectors.

Fig. 4: MOEA/D-AV works better with low number of weight vectors, while
higher values cause MOEA/D-AV to reduce the number of vectors.

MOEA/D with Adaptative Number of Weight Vectors 11

Figure 2 depicts the PF approximated for each method on DTLZ3. When
the number of weight vectors is small, only MOEA/D-AV can provide a suitable
approximation to the PF. We believe that reason why the other algorithms
behave badly in this case is because the distance of the weight vectors provides
little useful information about the search progress. This result supports the need
to add vectors randomly to avoid early stagnation of the search, a feature only
present in MOEA/D-AV.

Coming back to Figure 1, we discuss the results of all algorithms in DTLZ7.
MOEA/-AV is the only algorithm to achieve good results independently of the
number of vectors. Although the HV performance of the methods is similar,
Figure 3 shows that their ability to cover the PF differs. MOEA/D-AV method
provides a wider coverage of the optimal PF and this is related to the ability
of this algorithm to add vectors to empty areas of the objective space and to
remove weight vectors in areas of the PF already covered.

Figure 4 shows the change in the number of weight vectors for the best and
worst setting scenario in DTLZ1 and ZDT2, respectively. At Figure 4 (a - left
side) the blue, continuous line illustrates that MOEA/D-AV to keep reducing
and increasing the number of weight vectors until around 50000 evaluations.
Then, the algorithm seems to keep increasing the weight vectors. On the other
hand, Figure 4 (b - right side) shows that MOEA/D-AV improves its coverage of
the PF a little earlier than before, at 10000 evaluations. In both cases the worst
case keeps reducing the number of weight vectors, confirming that starting with
high number of vectors deteriorates the performance of any MOEA/D.

6 Conclusion

Here we study the effect of adapting the number of weight vectors by remov-
ing unnecessary vectors and adding new vectors in empty areas of the PF. We
proposed an the MOEA/D-AV that adaptively changes the number of weight
vectors. This algorithm detects when the number of vectors must be changed
and generates new vectors depending on the optimisation stage.

This study has shown that MOEA/D-AV has competitive performance, inde-
pendently of the number of initial vectors. This result confirms that MOEA/D-
AV finds suitable PF even when the number of initial vectors is not appropriate.
One of the more significant findings is that using this method allows the use of
MOEA/Ds without any fine-tuning process to choose the best set of the initial
number of weight vectors. Thus, we understand that the dynamic adaptation
of the number of weight vectors is a finding of interest for the whole EMO
community. Future works include applying MOEA/D-AV in real-world MOPs,
especially with non-regular and inverted PFs. Moreover, we want to compare
MOEA/D-AV and MOEA/D with Resource Allocation methods that activate
and deactivate vectors during the search [8].

12 Lavinas, Y. et al.

References

1. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: A survey. ACM Computing Surveys (CSUR) 45(3), 1–33 (2013)

2. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective opti-
mization test problems. In: Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No.02TH8600). vol. 1, pp. 825–830 vol.1 (2002).
https://doi.org/10.1109/CEC.2002.1007032

3. Farhang-Mehr, A., Azarm, S.: Diversity assessment of Pareto optimal solution
sets: an entropy approach. In: Proceedings of the 2002 Congress on Evolution-
ary Computation. CEC’02 (Cat. No.02TH8600). vol. 1, pp. 723–728 vol.1 (2002).
https://doi.org/10.1109/CEC.2002.1007015

4. de Farias, L.R.C., Braga, P.H.M., Bassani, H.F., Araújo, A.F.R.:
MOEA/D with Uniformly Randomly Adaptive Weights. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference. p.
641–648. GECCO ’18, Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3205455.3205648,
https://doi.org/10.1145/3205455.3205648

5. Glasmachers, T., Naujoks, B., Rudolph, G.: Start small, grow big? Saving multi-
objective function evaluations. In: International Conference on Parallel Problem
Solving from Nature. pp. 579–588. Springer (2014)

6. Goel, T., Stander, N.: non-dominance-based online stopping criterion for multi-
objective evolutionary algorithms. International Journal for Numerical Methods in
Engineering 88, 661–684 (2010)

7. Jiang, S., Feng, L., Yang, D., Heng, C.K., Ong, Y., Zhang, A.N., Tan, P.S., Cai, Z.:
Towards adaptive weight vectors for multiobjective evolutionary algorithm based
on decomposition. In: 2016 IEEE Congress on Evolutionary Computation (CEC).
pp. 500–507 (2016). https://doi.org/10.1109/CEC.2016.7743835

8. Lavinas, Y., Aranha, C., Ladeira, M., Campelo, F.: MOEA/D with random partial
update strategy. In: 2020 IEEE Congress on Evolutionary Computation (CEC).
pp. 1–8 (2020)

9. Li, H., Zhang, Q.: Multiobjective Optimization Problems With Complicated Pareto
Sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation
13(2), 284–302 (2009). https://doi.org/10.1109/TEVC.2008.925798

10. Li, M., Yao, X.: What Weights Work for You? Adapting Weights for Any Pareto
Front Shape in Decomposition-Based Evolutionary Multiobjective Optimisation.
Evolutionary Computation 28(2), 227–253 (2020)

11. Ma, X., Yu, Y., Li, X., Qi, Y., Zhu, Z.: A survey of weight vector adjustment meth-
ods for decomposition based multi-objective evolutionary algorithms. Evolutionary
Computation 24(4), 634–649 (2020)

12. Qi, Y., Ma, X., Liu, F., Jiao, L., Sun, J., We, J.: MOEA/D with Adaptive Weight
Adjustment. Evolutionary Computation 22(2), 231–264 (2014)

13. Tanabe, R., Ishibuchi, H., Oyama, A.: Benchmarking Multi- and Many-Objective
Evolutionary Algorithms Under Two Optimization Scenarios. IEEE Access 5,
19597–19619 (2017)

14. Wagner, T., Trautmann, H., Naujoks, B.: Ocd: Online convergence detection for
evolutionary multi-objective algorithms based on statistical testing. In: Ehrgott,
M., Fonseca, C.M., Gandibleux, X., Hao, J.K., Sevaux, M. (eds.) Evolutionary
Multi-Criterion Optimization. pp. 198–215. Springer Berlin Heidelberg, Berlin,
Heidelberg (2009)

https://doi.org/10.1109/CEC.2002.1007032
https://doi.org/10.1109/CEC.2002.1007015
https://doi.org/10.1145/3205455.3205648
https://doi.org/10.1145/3205455.3205648
https://doi.org/10.1109/CEC.2016.7743835
https://doi.org/10.1109/TEVC.2008.925798

MOEA/D with Adaptative Number of Weight Vectors 13

15. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on evolutionary computation 11(6), 712–731
(2007)

16. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

	MOEA/D with Adaptative Number of Weight Vectors

