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Abstract. Security assurance is a discipline aiming to demonstrate that
a target system holds some non-functional properties and behaves as ex-
pected. These techniques have been recently applied to the cloud, facing
some critical issues especially when integrated within existing security
processes and executed in a programmatic way. Furthermore, they pose
significant costs when hybrid systems, mixing public and private infras-
tructures, are considered. In this paper, we a present an assurance frame-
work that implements an assurance process evaluating the trustworthi-
ness of hybrid systems. The framework builds on a standard API-based
interface supporting full and programmatic access to the functionalities
of the framework. The process provides a transparent, non-invasive and
automatic solution that does not interfere with the working of the target
system. It builds on a Virtual Private Network (VPN)-based solution,
to provide a smooth integration with target systems, in particular those
mixing public and private clouds and corporate networks. A detailed
walkthrough of the process along with a performance evaluation of the
framework in a simulated scenario are presented.

Keywords: Assurance - Hybrid System - Security - Virtual Private Net-
work

1 Introduction

In today digital and connected society, users and enterprises interact with smart
services and devices to carry out day-to-day activities and business processes.
Distributed systems are rapidly and continuously evolving, from service-based
systems to cloud and microservices-based architectures and, more recently, to-
wards Internet of Things (IoT) and edge infrastructures. At the same time, tra-
ditional private infrastructures are still widely used, resulting in hybrid systems
mixing public and private endpoints and introducing new concerns undermining
the users’ perceived trust (e.g., [25]).
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In the last couple of decades, the research community has extensively pro-
duced new solutions to increase the trustworthiness of such systems. Security
verification and protection have been increasingly important, and should be fully
integrated within systems’ lifecycle and executed in a automated way. Security
assurance, defined as way to gain justifiable confidence that IT systems will con-
sistently demonstrate a (set of) security property and operationally behave as
expected [6], is gaining the momentum. Assurance solutions in fact have been ap-
plied to service-based systems, cloud, and IoT [7,9], addressing novel and peculiar
requirements such as multi-layer evaluation and continuous monitoring, as well
as evidence-based verification. Notwithstanding their huge benefits, little focus
has been put in defining assurance frameworks that can be easily integrated into
existing hybrid systems, complementing other security processes and providing a
programmatic way to execute assurance evaluations. Many of the existing assur-
ance techniques and frameworks (e.g., [10,14]) are ad hoc and cannot handle a
modern IT system as a whole. They require some effort for being integrated with
the target system, interfering with its normal operation (e.g., performance) and
introducing not-negligible (monetary and business) costs. Also, they fall short
in providing some form of automation.

In this paper, we extend our assurance framework in [4] enabling a central-
ized security assurance, complementing existing security processes and systems,
and providing automation of assurance activities. The framework implements an
API-based approach facilitating integration and automation, and relies on Vir-
tual Private Networks (VPNs) to target both public and private infrastructures.
Our contribution is threefold. We first define the requirements a security assur-
ance framework and corresponding process have to fulfill in our hybrid scenario
(Section 2). We then propose a novel API-based assurance framework addressing
these requirements and targeting hybrid systems (Section 3). To this aim, the
assurance process implemented by the framework relies on an enhanced REST
interface (Section 4) and on several modifications to a standard VPN configu-
ration (Section 5). We finally present a detailed walkthrough of such a process
(Section 6.1), an experimental evaluation of the framework performance (Sec-
tion 6.2), and a comparison with the state of the art according to the identified
requirements (Section 7).

2 Assurance Requirements

The advent and success of cloud computing and Internet of Things (IoT) are
radically changing the shape of distributed systems. Hybrid systems, building
on both private and public technologies, introduce new requirements and chal-
lenges on security assurance techniques, which must take a step forward for being
applicable to modern architectures. In particular, the definition of new assurance
processes is crucial to fill in the lack of trustworthiness that is one of the main
hurdles against the widespread diffusion of such systems.

Despite targeting complex systems, a security assurance process should be
lightweight and not interfere with the normal operation of the system under



verification. The need of a lightweight process is strictly connected to its psy-
chological acceptability [22], meaning that final users are more willing to accept
to perform assurance activities that preserve the behavior of the system and do
not increase overall costs. In fact, although the undebatable advantages given by
a continuous evaluation of system security, users are recalcitrant with respect to
a process perceived as heavy and costly [27].

Cost management and optimization are the foundation of assurance adoption.
Costs refer to monetary costs in terms of additional human and IT resources,
as well as performance and business costs in terms of overhead, latency, and
reliability. Monetary costs include the need of highly specialized personnel, on
one side, and resources allocated and paid on demand on the other side, which
are spent to manage non-functional aspects of the system often considered as
superfluous. Performance costs include the need of continuously verifying the
security status of a system. They intrinsically introduce a not-negligible over-
head and latency, an assurance process has to cope with. Assessment activities
are only viable if they take resource demands under control, avoiding scenarios
where they become a source of attack. Business costs are partially overlapped
with performance costs and model how much assurance activities interfere with
the normal operations of a business process. On one side, the changes required to
connect an assurance process to the system under evaluation should be reduced
to the minimum, and mostly work at the interface level. On the other side, an
assurance process cannot threat itself the system. For example, run-time verifica-
tion of a system security status cannot increase the risk of system unavailability
by performing penetration testing on the production system. A good balance
between active and passive testing/monitoring should be provided. Finally, se-
curity assurance is just one of the security activities that should be performed.
An assurance process must complement and integrate with traditional detection
and prevention security, by means of an assurance framework implementing a
(semi-)automatic process that is easy to integrate with existing security solu-
tions.

We identify the main requirements an assurance process has to satisfy (MUST/
SHOULD) to address the peculiarities of modern systems, as follows.

Transparency: it MUST not interfere with the normal operation of the busi-
ness process, being transparent to the final user of the system where the
assurance process is performed.

Non-invasivess: it MUST require the least possible set of changes to the target
system.

Safety: it MUST not introduce (or at least minimize) new risks on the target
system.

Continuity: it SHOULD provide a continuous process, verifying the status of
security while the system is operating and evolving.

Lightness: it SHOULD be lightweight and cope with systems having limited
resources.

Adaptivity: it SHOULD be dynamic and incremental to adapt to changes in
the system under verification and its environment.



Complementarity: it SHOULD complement and integrate with existing secu-
rity processes.

Such requirements should be supported by a centralized framework tuning
each aspect of the assurance evaluation. The framework itself has its own re-
quirements [5], which are summarized in the following.

Evidence-based verification: it SHOULD implement a verification built on
evidence collected on the target system, to get the real picture of its security
status.

Extensibility: it MUST inspect hybrid targets, from traditional private net-
works to public clouds, as well as hybrid clouds and IoT.

Multi-layer: it SHOULD assess system security at different layers, from net-
work protocols to application-level services.

Scalability: it SHOULD support a scalable process, able to manage an increas-
ing number of assurance processes and evaluations.

Automation: it SHOULD be an automatic or semi-automatic process, whose
actions can be triggered either manually or by external events.

Generally speaking, an assurance framework MUST at least implement a
process that has the lowest possible impact on the target resources and normal
system activities (transparency), do not modify the current ICT infrastructure
or at least require very few modifications (non-invasiveness), do not affect se-
curity by introducing new risks (safety) or hindering existing security processes
(complementarity), while being generic enough to address peculiarities of hybrid
systems (extensibility).

3 Assurance Framework

We present a framework that provides a lightweight assurance solution address-
ing the peculiarities of modern distributed systems, mixing public endpoints on
the cloud, microservices, and private deployments not directly reachable from
the outside (e.g., traditional private corporate networks and private clouds). The
framework has been first defined in [4] and here extended to address requirements
complementarity and automation. The original framework in [4], offering only a
graphical dashboard, constrained the ability to integrate framework’s function-
alities with existing security processes, and to trigger such functionalities in a
automated way. To address all requirements in Section 2, it adopts a layer-3
VPN that connects the framework with the private deployments under verifi-
cation (i.e., the target networks), and offers a REST API providing full and
programmatic access to framework’s functionalities.

The architecture of the assurance framework is presented in Figure 1 and
aims to address two main scenarios: i) support from programmatic integration
of the framework within existing (possibly legacy) systems, i) support for the
verification of modern systems mixing public and private endpoints. Concerning
scenario i), the framework can be used either manually by users interacting with
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Fig.1: Our framework architecture. Double line rectangles highlight new com-
ponents.

the dashboard, or programmatically, by exploiting standard REST APIs, thus
satisfying requirements complementarity and automation. Concerning scenario
i1), the framework implements a VPN-based approach to seamlessly integrate
with and verify private corporate networks and private clouds, thus satisfying
requirements transparency, non-invasiveness, and extensibility. To this aim, dif-
ferent VPN Servers are installed within the framework, each one responsible to
handle isolated VPN tunnels with client devices placed in the target networks.
A single VPN connection consists of a VPN Client directly connected to the
target network, and a VPN Server installed in the framework.

The framework manages an assurance process (Section 5) that consists of a
(set of ) evaluation rule (evaluation in the following). Each evaluation is a Boolean
expression of test cases, which are evaluated on the basis of the evidence collected
by probes and meta-probes. Probes are self-contained test scripts that assess the
status of the given target by collecting relevant evidence on its behavior. They
return as output a Boolean result modeling the success or failure of the test
case. Meta probes are defined as probes collecting meta-information, such as the
response time of a service. The framework components are summarized in the
following.



Dashboard is the graphical user interface used to configure new evaluations
and access their results. It works by connecting to the APIs provided by
component REST APL

REST API manages the overall assurance process by the means of a REST
interface. Upon receiving an evaluation request, either from the Dashboard
or directly from the APIs, it creates the necessary objects in the database
and orchestrates their execution.

Ezxecution Manager is in charge of the evaluation process. It selects and ex-
ecutes the relevant probes. There are two types of Fxecution Managers: one
targeting public clouds (Public Ezecution Manager), and one targeting pri-
vate deployments (Private Execution Manager). The only difference between
them is the way in which traffic is routed to the destination.

Model Database isthe main database. It stores most of the information needed
by the framework, including evaluation configurations and target details.
FEvidence Analyzer produces the overall result of an evaluation by collecting
the results of the single test cases and validating them against the Boolean

expression of the evaluation.

Evidence Database stores the results of probe execution, including both the
collected evidence and the Boolean results.

VPN Server is a dedicated VM running the VPN software. It handles several
VPN tunnels, one for each private network, which are strictly isolated. It
acts as a default gateway for multiple Private Ezxecution Managers.

VPN Client is physically located into the target network. It establishes a VPN
connection with the VPN Server in the framework, traversing the firewall
protecting the private network.

VPN Manager is a REST API service that manages the automatic configura-
tion of the VPN. It automatically generates configuration files and handles
all activities needed to manage VPN connections.

VPN Client and VPN Server are the stubs mediating the communication
between the target system and the framework, respectively. They act as inter-
mediaries supporting protocol translation and VPN working, and interacting
with the VPN Manager for the channel configuration.

The framework supports scalability by scaling horizontally the low-level ex-
ecution components, such as the Ezecution Manager and VPN Server.

Ezxzample 1. Let us consider an assurance evaluation targeting a public website
composed of two test cases chained with a logic AND: i) a test case evaluating
compliance against Mozilla best practices for websites and ii) a test case evalu-
ating the proper configuration of HT'TPS. The Ezecution Manager executes the
assurance process as follows. Two probes are executed to collect the evidence
needed to evaluate the two test cases, producing two Boolean results. Those
results are then evaluated by the Fvidence Analyzer according to the evalua-
tion formula, a conjunction (AND) of test cases ) and ii). As such, the overall
evaluation is successful if and only if both test cases succeed.



4 REST Interface

REST is a popular paradigm for developing backend applications, which is based
on the concepts of resources and operations performed on such resources, in
terms of HTTP paths (resources) and HTTP methods (operations). A REST
interface can be described by using the OpenAPI standard, the standard for
documenting REST applications [19]. The standard itself is referred to as the
OpenAPI specification, and defines the format of the application’s documenta-
tion, which is referred to as OpenAPI document. A valid OpenAPI document is
a JSON object and can be represented either in JSON or YAML.

Our assurance framework builds on an API-based approach, where com-
ponent REST API provides a REST interface complemented by an OpenAPI
document. Together, they facilitate the integration of assurance activities with
existing security solutions, addressing requirement complementarity, and the au-
tomation of such activities, addressing requirement automation.

4.1 OpenAPI Document

An OpenAPI document is composed of different parts describing all the aspects
of a REST service: resources, operations on such resources, valid requests and
responses, possibly with examples, as well as non-functional aspects, such as how
authentication is handled. They are briefly described in the following, along with
short excerpts of the OpenAPI document of our component REST APIL

Metadata is the header of the document and specifies, among the others, the
version of the specification the document adheres to, a high-level description of
the APIs, and the version of the APIs the document refers to.

openapi: 3.0.1
info:
contact:
email: info@moon-cloud.eu
description: Moon Cloud REST API are the most important component of Moon Cloud,
< governing the overall framework.
license:
name: BSD License
termsOfService: https://www.moon-cloud.eu/policies/terms/
title: Moon Cloud API
version: v1.9.9-alpha

The metadata excerpt shows section metadata of our framework. For in-
stance, it shows that the version of the APIs is v1.9.9-alpha.

Paths defines the available resources; for each resource, it specifies the HTTP
URL and the possible operations, in terms of HT'TP methods, that can be per-
formed on it. Each operation contains, among the others, a mnemonic name,
valid requests, and corresponding responses.

paths:
/abstract-evaluation-rules/:
summary: The possible evaluations a user can execute.
description: This resource represents an evaluation a user can execute, possibly by
< composing it with other Abstract Evaluation Rule.



get:
operationld: abstract-evaluation-rules_list
summary: List all the existing Abstract Evaluation Rule.

The paths excerpt shows the resource abstract-evaluation-rule and one
of the possible operations, identified by the HTTP method GET. Such an opera-
tion lists all the resources of that type.

Request defines a valid request for an operation. It contains the schema detail-
ing the format of such a request.

/evaluation-rules/:
post:
operationld: evaluation-rules_create
summary: Creates a new User Evaluation Rule
description: Creates a new User Evaluation Rule by composing together one or more
< Abstract Evaluation Rule.

requestBody:

content:

application/json:
schema:
$ref: '#/components/schemas/EvaluationRule’
required: true

The request excerpt shows a POST operation creating a new resource (evaluation-
rules). It provides a short and long description, and the request format.

Responses defines the possible responses that can be returned upon an oper-
ation on a resource. Different responses are identified by different HT'TP status
codes (e.g., 200 success, 400 bad request). Each response contains the schema
detailing the format of such a response.

responses:
"201":
description: User Evaluation Rule created and started successfully.
content:
application/json:
schema:
$ref: '#/components/schemas/EvaluationRule’

The response excerpt shows the response returned upon a successful creation
of a resource of type evaluation-rule. It is identified by the status code 201
and contains the format of the response.

Components is a top-level section including the definition of resources, re-
quests, and responses. This way, they are defined only once and referred to in
other parts of the document using a specific syntax and increasing reuse along
the document.

components:
schemas:
EvaluationRule:
type: object
properties:
id:
readOnly: true
title: ID
type: integer
name:



maxLength: 50
minLength: 1
title: Name

type: string

The components excerpt shows a portion of the schema of a resource of type
EvaluationRule.

4.2 Component REST API

The component REST API contains the framework main business logic and
offers a REST interface to use the framework functionalities. The exposed re-
sources can be divided in two main categories: i) asset management, allowing
users to manage the assets (i.e., targets) registered within the framework, ii)
evaluation management, allowing users to schedule evaluations and view their
results. This interface is used by the Dashboard, which is the web-based graphical
interface the users interact with. Recalling Section 2, an assurance process should
be integrated with existing (security) solutions and processes ( complementarity),
as well as provide some form of automation. Both requirements are achieved by
means of the exposed REST APIs, and facilitated by the corresponding Ope-
nAPI document. The OpenAPI document is automatically generated from the
application code, and served at a REST endpoint itself.

In general, an OpenAPI document serves for three main purposes: ) model-
driven engineering (MDE), i) documentation, %) analysis.

Model-driven engineering consists of a development process centered around
the business models. An OpenAPI-based model-driven engineering defines the
first steps of the development process. The OpenAPI document describes the
interface the application exposes and then develops the application by adhering
to such a document. The coding phase can be partially automated by using code
generation tools that, based on the OpenAPI document, generate most of the
code boilerplate. Code generation can be also used to generate client libraries
interacting with a REST server. These libraries are provided at a higher level
of abstraction than plain HTTP calls. In our case, the OpenAPI document is
used to generate several clients, supporting the use of our framework through a
command-line interface (CLI) and in a continuous integration/continuous deliv-
ery (CI/CD) pipeline.

Documentation is another important use case for OpenAPI documents. Being
a standard format, applications wishing to consume an API can exploit its Ope-
nAPI document to get a detailed view of how such a service works. Parts of the
application can be realized by code generation tools. Furthermore, developers
can leverage visual tools, such as ReDoc, which display graphically an OpenAPI
document. In our case, the OpenAPI document is served at a public endpoint,
providing a comprehensive documentation of the framework REST interface,
including several examples.

Analysis of an OpenAPI document is a research line that focuses on service
validation by automatically generating test cases [18], transformations to other



models (e.g., UML [13]), extensions to the specification to improve code genera-
tion [23]. In our case, the OpenAPI document is used to automatically generate
several test cases, making it easier to perform functional and non-functional
testing.

Our framework supports the complementarity and automation of assurance
activities bypassing the graphical user interface and making use of the pro-
grammatic interface, namely the APIs offered by component REST API. These
APIs can be, in fact, invoked within automatic or semi-automatic processes,
for instance by triggering an evaluation when other events occur. Furthermore,
libraries interacting with the framework can be automatically generated by ex-
ploiting the published OpenAPI document.

5 Assurance Process

The assurance process implemented by the framework in Figure 1 must as-
sess both public and private targets. To address both scenarios, the framework
builds on Virtual Private Network (VPN), addressing the must-have require-
ments transparency, non-invasiveness, safety, and extensibility in Section 2. The
goal is to implement an assurance process that can be smoothly integrated with
any kind of private target system, by means of a Site-to-Site VPN between the
framework and the private targets the framework has to assess.

5.1 Building Blocks

Virtual Private Network (VPN) stands for a set of technologies used to build
overlay networks over the public network. It provides hosts with remote access
to a corporate network, or connects several geographically-distributed networks
as if they are separated by one router [3].

In this paper, we focus on Site-to-Site VPN, where several networks are
connected using the VPN. In each network connected to the VPN, there is a
host acting as a VPN gateway, mediating traffic between internal hosts within
its network and other networks. It routes traffic coming from internal hosts to
the other VPN gateways and back. VPN gateways are called either VPN clients
or VPN servers, where servers can handle connections to multiple clients, while
a client establishes a single tunnel with a server.

VPNs usually combine a virtual network interface card (virtual NIC) and a
socket-like connection. A virtual NIC is a NIC that has no physical correspon-
dence, and is associated with a userspace process — in this case the VPN software.
Packets sent by such process to its virtual NIC are received by the Operating
System (OS), and further processed just like a real network packet. At the same
time, the OS can send packets to it, and the VPN software, through its NIC, acts
as the receiver. The socket-like connection is used to transmit packets between
VPN gateways using a cryptographic protocol. The virtual NIC is used to send
and receive packets coming from and whose destination is the host’s network.
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Fig. 2: Architecture of VPN-Based Solution [4].

Virtual NICs of the same VPN have IP addresses belonging to the same
subnet, called VPN subnet. When the operating system of the VPN gateway
handles a packet whose destination is a host in the VPN subnet, it sends the
packet to the local virtual NIC, like a normal routing operation. Two sets of
routing rules have to be defined: i) on each network, a rule on the default gateway
that specifies to route traffic for other networks to the local VPN gateway; ii)
on each VPN gateway, a rule that specifies to route traffic for other networks to
the local virtual NIC.

However, a traditional VPN implementation does not permit to address many
of the requirements in Section 2. The aforementioned routing rules, in fact, must
be installed on both sides of the communication. Setting up these routes on the
targets’ default gateways requires access to the devices to alter their configu-
rations. This violates properties non-invasiveness, transparency, and safety. We
therefore propose a VPN-based approach at the basis of our assurance process
that addresses the requirements, by adding several configurations on top of a
standard VPN setup. The three logical building blocks of our VPN approach
are: VPN Client, VPN Server and Conflict-Resolution Protocol (Figure 2).

VPN Client VPN Client establishes a VPN connection with the server, ex-
posing its network to the framework. It realizes a Client-side NAT that avoids
setting up routing rules on the target network. The issue is that packets gener-
ated by the framework and injected by the VPN Client into the target network
have a source IP address belonging to the framework network. As such, re-
sponses to such packets would be routed to the target network default gateway
(because they appertain to a different network than the current one) instead of
the VPN Client. To address this, we propose a lightweight approach based on
network address translation (NAT'), which does not require to configure default
gateways. Once packets are received by the VPN Client from the framework
through the VPN, it translates their source IP address in the VPN Client IP
address. Since this belongs to the same subnet of the target hosts, no routes
need to be configured. Responses can directly reach the VPN Client, where the
destination IP address of the packets is translated back. We implemented this
address translation with nftables, available in Linux-based operating systems.



VPN Server VPN Server handles VPN tunnels with several clients; each tun-
nel is isolated to each other. It implements a Server-side NAT, to provide higher
dynamics. There are two problems behind Server-side NAT, both involving rout-
ing configuration. On one side, VPN Clients need to know the network IP address
of the framework (Section 5.1); on the other side, these routes must be known
a priori, an assumption not trivial in our scenario. The network IP address of
the framework, in fact, can change, for example, if the framework moves to a
different cloud provider or for security reasons. We address the aforementioned
problems by setting up different NAT rules on the VPN Server. They modify
packets coming from the framework just before being received by the virtual
NIC of the VPN software. These rules change the source IP address of packets
by replacing it with the virtual NIC IP address of the server. Thus, packets re-
ceived by a VPN Client have a source IP address belonging to the current VPN
subnet. Then, corresponding responses generated by the target hosts, after the
application of Client-side NAT, have a destination IP address appertaining to
the VPN subnet. Recalling that a VPN Client knows how to handle packets gen-
erated — or appearing to be generated — directly from the VPN subnet, the VPN
Client OS can route those packets to the local virtual NIC, without additional
configurations. They are then received by the VPN software and finally sent to
the server. Server-side NAT is implemented as a set of nftables rules.

Conflict-Resolution Protocol A mandatory requirement for a Site-to-Site
VPN is that each participating network must have a non-conflicting net ID.
Guaranteeing this assumption is necessary to allow a single VPN server to con-
nect multiple networks together — in our case to allow a single VPN Server to
handle several target networks. In corporate VPNs, it is trivial to assert this
property, since the networks are under the control of the same organization.
This assumption is not valid in our scenario, where two target networks could
have the same network IP address, or a target network could conflict with the
framework network. We propose an approach called IP Mapping to solve this
issue.

IP Mapping is based on the concept of mapping the original network to a
new one, called mapped network and guaranteed to be unique. Each IP address
of the original network is translated into a new one, belonging to the correspond-
ing mapped network. This translation is reversible, and the mapped address is
specified by the framework as the target when executing a new evaluation. IP
Mapping is realized through 3 functions whose pseudocode is described in Fig-
ure 3. The overall protocol, which is completely transparent to the final user,
works as follows.

First, when a new target network is being registered, the function map_net
is invoked by the framework, to obtain a non-conflicting version of the original
target network. The pair {original, mapped) is saved into the database. Function
map_net is offered by VPN Manager as a REST API.

When a user issues a new evaluation, she enters the original target IP ad-
dress. The framework calls map_ip to obtain its mapped version, and builds the



INPUT
s € S: VPN Server
no: network to map

INPUT INPUT
no.j: j-th IP address € network no  nar.k: k-th IP address € network nas

ouTPUT ouTPUT
OU"];:UTd csion of na.j: j-th corresponding no.k: k-th corresponding
Tar: mapped version ol no IP address € network nas IP address € network no
MAprET MAP_IP REMAP_IP
available_nets < db_query_select(s); . . .
if length(available_nets) = 0 then no « met id(no.j); na - net-id(nu.k);
T host_id < host_id(no, no.j); host_id < host_id(nus, nas.k);

pair < (available_nets[0], no);
db_query _insert(pair);

else Error();

return pair;

ny < get_corresponding _net(no); no <+ get_corresponding_net(nus);
ny.j < build_address(nas, host-id); no.k <+ build_address(no, host-id);
return nys.j; return no.k;

Fig.3: IP Mapping: Pseudocode [4].

corresponding test case using this IP address as destination. The test packets
are then sent through the VPN. Function map_ip is offered by VPN Manager as
a REST API.

The VPN Client receives the packets and calls remap_ip to get the original
version of the destination IP address of the packets. This address is then set as
the destination address: packets can now be sent to the target.

When corresponding responses reach back the VPN Client, the latter invokes
map_ip to obtain the mapped version of the current IP source address; the result
is set as the new IP source address. This second translation is issued to re-apply
IP Mapping and let packets becoming correct responses to the ones generated by
the framework. Finally, they are sent along the VPN and reach the framework.

Functions map_ip and remap_ip are implemented by a set of NAT rules using
nftables.

The soundness of the overall VPN setup passes from IP Mapping, which,
using the terminology in Figure 3, must support the following properties.

1. Mapping uniqueness: let A Cnpy x S;V a,, a; € A, (a;.58 = a;.5 A a; # a;)
= (a;.n # a;.n)

2. Mapping correctness: ¥ no V address € no remap_ip(map_ip(address)) =
map_ip(address) ™!

3. Implementation correspondence: ¥ no, V address € no, map_ip'(address) =
map_ip” (address)

The first property expresses that no conflicts can happen, that is, two mapped
networks with the same network IP address attached to the same VPN Server
cannot exist. The second property expresses the reversibility of the translation
process. It guarantees that a response to mapped packets generated by the frame-
work is correct, that is, the source IP address of a response is equal to the desti-
nation IP address of a request. The third property expresses the need of having
two implementations of map_ip (as a REST API or NAT rule) with the same



Table 1: Comparison of a standard layer-3 VPN and a layer-3 VPN with our
modifications on top [4].

Standard layer-3 VPN Our approach
Client-side requiring configuration Yes No (Client-side NAT)
Server network known a priori Yes No (Server-side NAT)
Conflicting networks Not allowed Allowed (IP Mapping)
Address conflict resolution Manual Automatic (VPN Manager)
Plug-and-play integration No Yes

behavior. We note that the pseudocode in Figure 3 is a possible implementation
of the three functions.

Table 1 summarizes the differences between a standard VPN and the one
described in this paper. Our solution does not require any configurations on the
target network, thanks to Client-side NAT'; it also does not require to know the
network IP address of the framework, thanks to Server-side NAT. Moreover, the
networks participating in the VPN can have conflicting IP addresses, which are
automatically disambiguated by IP Mapping and VPN Manager. To conclude,
our solution allows a plug-and-play integration between the framework and the
target network.

5.2 Assurance Process

The assurance process implemented by our framework is first configured with the
registration of a private network and the creation of the VPN Client. We note
that all actions involving interactions with our framework can be performed
either manually by using the Dashboard or automatically by using the REST
API Tt then starts its activities with an evaluation request, where the user
specifies the (set of) evaluation she wants to execute and the corresponding
configurations. REST API orchestrates the process by creating the necessary
objects within the database (Model Database) and by selecting the Fzecution
Manager that executes the evaluation. In case of a private target, a Private
Execution Manager connected to a VPN Server is selected. Also, REST API
transparently obtains the mapped version of the target IP address, by invoking
REST function map_ip exposed by VPN Manager.

The (set of) test case, derived from the requested (set of) evaluation, is sent
to the selected Ezecution Manager, which executes the necessary (set of) probe.
In case of a public target, test packets generated by the probe are sent directly
to the target, and responses reach back the probe without involving the VPN.
Otherwise, they are sent to the VPN Server that applies Server-side NAT, and
then, passing through the VPN, reach the VPN Client. At this point, it applies
i) remap_ip changing the destination IP address of the packets and i) Client-
side NAT changing the source IP address of the packets. Thanks to the last
modification, responses to such packets flow back to the VPN Client, applying
the converse of the previous steps: i) the reverse of Client-side NAT and i) the



reverse of remap_ip, that is, map_ip. When those packets are received by VPN
Server, it applies the converse of Server-side NAT, by first forwarding them to
the FEzecution Manager and then to the probe.

The probe produces the Boolean result of the test case and stores it into
the Fvidence Database. The overall result of the evaluation is determined by the
Evidence Analyzer, which evaluates the evaluation’s Boolean formula against the
Boolean result(s) of the execution.

A concrete example of the process is described in Section 6.

6 Walkthrough and Experiments

We present a walkthrough of our assurance process and its experimental evalu-
ation.

6.1 Process in Execution

Our framework supports the composition of multiple evaluations, tailoring frame-
work’s functionalities to match user needs. In the following, for simplicity but
no lack of generality, we consider a singleton evaluation, named Observatory-
Compliance, which checks whether a website has implemented common best
practices, such as HTTPS redirection and cross-site-scripting countermeasures.
In particular, we present the detailed working of an assurance process whose tar-
get is located into a private network, thus involving the use of our VPN-based
solution (Section 5). We note that our VPN-based approach is transparent to
the users, introducing no differences between private and public targets, except
for the VPN Client.

The parameters describing this process are the following: framework net
ID 192.168.1.0/24, target net ID 192.168.50.0/24, mapped target net ID
192.168.200.0/24, and VPN subnet net ID 10.7.0.0/24.

Preparation. A prerequisite for the working of a VPN-based process is to reg-
ister the private network within the framework. When the user inserts a new
net ID (192.168.50.0/24 in our example), the component REST API calls the
map_net API exposed by VPN Manager, obtaining the mapped version of the
input network (192.168.200.0/24). As described in Section 5.1, this mapping
is stored in the framework database and triggers the creation of a new VPN
Client. VPN Manager also configures VPN Server to support connections from
the client. The client device is then moved into the correct location and con-
nected to the server, establishing a VPN tunnel whose net ID (VPN subnet) is
10.7.0.0/24.

Assurance request. The assurance request in Figure 4(a) starts with the frame-
work receiving an evaluation request (Step (1) in Figure 4(a)), in this case for
evaluation Observatory-Compliance. Such request contains, among the others,
the TP address of the target (192.168.50.100 in our example). Component
REST API orchestrates the process as follows. First, it creates the necessary
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Fig. 4: Packet flow: (a) assurance request, (b) assurance response [4].

objects, for instance, a test case, in the database to manage the evaluation. Be-
ing a private target, it calls the map_ip API exposed by VPN Manager, obtaining
the mapped version of the target address (192.168.200.100) (Step (2)). Next,
it chooses the Ezxecution Manager that is in charge of the evaluation. For the
aforementioned reason, a Private Ezecution Manager is selected. Such Ezxecution
Manager executes the probe as specified by REST API, targeting the mapped
address. An excerpt of the input, in JSON format, a probe receives from its
executor is shown in Listing 1.

The test packets generated by the probe are routed by the Ezecution Man-
ager to the VPN Server. Upon receiving them, VPN Server applies Server-



"config": {
"url": "http://192.168.200.100"
}

Listing 1: Input of the probe for evaluation Observatory-Compliance.

side NAT (Step (3)), which changes the source IP address of the packets to
its virtual NIC address (10.7.0.1). Modified packets are then sent through the
VPN, finally reaching VPN Client. At this point, VPN Client executes function
remap-ip (Step (4)), which replaces the destination IP address of the packets
with their original version. In our example, it changes from 192.168.200.100
to 192.168.50.100. Then, it applies Client-side NAT (Step (5)), which changes
the source IP address from the VPN Server virtual NIC address to its IP address
(192.168.50.30). Finally, test packets reach their target.

Assurance response. The assurance response Figure 4(b) starts when the test
target sends back responses to the VPN Client. Such responses can directly reach
the VPN Client, since their destination, thanks to Client-side NAT, is the VPN
Client itself. This phase applies the assurance request steps in the reverse order,
to correctly forward responses to the probe. VPN Client first executes the reverse
of Client-side NAT, by replacing the destination IP address of the packets with
the VPN Server virtual NIC (Step (1) in Figure 4(b)). It then applies map_ip to
change the source IP address with the corresponding mapped version, in our ex-
ample it changes from 192.168.50.100 to 192.168.200.100 (Step (2)). Next,
packets are forwarded to the VPN Server. Upon their reception, VPN Server
applies the reverse of Server-side NAT (Step (3)). This step changes the des-
tination address of the packets from the address of the VPN Server virtual
NIC (10.7.0.1) to the address of the Ezecution Manager (192.168.1.25). Fi-
nally, the packets reach the probe, which evaluates and stores test result in the
Evidence Database (Step (4)). In parallel and asynchronously, the component
Evidence Analyzer produces the evaluation result, by collecting the Boolean re-
sults of the test cases forming the evaluation and evaluating them against the
formula. In our example, this step is trivial since it involves evaluating a for-
mula composed of either TRUE or FALSE. The result is finally written in the main
database (Model Database) and can be accessed by the user.

An excerpt of the evaluation output is shown in Listing 2, showing that
two best practices, x-content-type-options and x-frame-options, have been
effectively implemented. As such, the evaluation result is TRUE.

6.2 Experiments

Our framework has been implemented as a set of microservices written in Python.
Our VPN-based solution has been realized on top of OpenVPN, a flexible and
open-source VPN solution that permits to tune every aspect of a VPN tun-
nel. In particular, we configured a layer-3 VPN using TCP as the encapsulating



"status": true,

"data": {
"grade": "A",
"x-frame-options": {

"expectation": "x-frame-options-sameorigin-or-deny",
"result": "x-frame-options-sameorigin-or-deny",
"description": "X-Frame-Options (XF0) header set to SAMEORIGIN or DENY",
"link": "https://infosec.mozilla.org/guidelines/web_security#x-frame-options",
"hint": "X-Frame-Options controls whether your site can be framed, protecting
< against clickjacking attacks. It has been superseded by Content Security Policy's
< <code>frame-ancestors</code> directive, but should still be used for now."
3,
"x-xss-protection": {
"expectation": "x-xss-protection-1-mode-block",
"result": "x-xss-protection-enabled-mode-block",
"description": "X-XSS-Protection header set to \"1; mode=block\"",
"link": ”https://infosec.mozilla.org/guidelines/web_security#x—xss—protection“,
"hint": "X-XSS-Protection protects against reflected cross-site scripting (XSS)
< attacks in IE and Chrome, but has been superseded by Content Security Policy. It can
<~ still be used to protect users of older web browsers."
}
}
}

Listing 2: Sample output of the probe for evaluation Observatory-Compliance.

protocol, to maximize the probability of traversing firewalls in the path from
the framework to the target system. Client-side NAT, Server-side NAT, and IP
Mapping have been implemented as NAT rules with nftables.

Framework components have been packaged as Docker containers executed
within Virtual Machines, all using operating system CentOS 7 z64. The following
components run on single-container dedicated VMs: REST API (2 vCPUs, 4
GBs of RAM) Ezecution Manager (6 vCPUs, 4 GBs of RAM), VPN Server (1
vCPU, 4 GBs of RAM), running Open VPN version 2.4.6 and nftables version
0.8. All VMs have been deployed on a Dell PowerEdge M360 physical host that
features 16 CPUs Intel®) Xeon® CPU E5-2620 v4 @ 2.10 GHz and 191 GBs of
RAM.

The target system has been deployed on AWS EC2 and was composed of two
virtual machines t2.micro, both with 1 vCPU and 1 GB of RAM. The first one,
VPN Client, with operating system Ubuntu 18.04 z64, Open VPN version 2.4.7,
and nftables version 0.8. The second one, test target, with operating system
Ubuntu 16.04 x64 offering WordPress version 5.2.2.

We finally setup two experiments with the goal of computing the difference
between two possible deployments: i) public deployment exposing the target on
the public network, i) private deployment using the approach in Section 5.
The difference between the two deployments has been expressed in terms of the
overhead that the private deployment adds on top of the public deployment,
according to the following evaluations.

— Infowebsite that extracts as much information as possible from a target
website. It is denoted as E1 in Figure 5.
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Fig.5: Execution times of evaluations E1 — Infowebsite, E2 — Observatory-Com-
pliance, E3 — SSH-Compliance, E4 — TLS-strength, E5S — WordPress-scan [4].

— Observatory-Compliance that checks whether a website has implemented
common best practices, such as HTTPS redirection and cross-site-scripting
countermeasures. It is denoted as E2 in Figure 5.

— SSH-Compliance that checks the compliance of a SSH configuration against
Mozilla SSH guidelines. It is denoted as E3 in Figure 5.

— TLS-strength that evaluates whether the TLS channel has been properly
configured, such as avoiding weak ciphers and older versions of the protocol.
It is denoted as E4 in Figure 5.

— WordPress-scan that scans the target WordPress-based website looking for
WordPress-specific vulnerabilities. It is denoted as E5 in Figure 5.

We chose these evaluations to maximize test coverage and diversity, from
the evaluation of web resources (Infowebsite, Observatory-Compliance), to the
evaluation of protocol configurations (SSH-Compliance, TLS-strength) and spe-
cific applications ( WordPress-scan). Each evaluation was executed 10 times and
the average time was computed. In particular, the execution time measurement
started when the Ezecution Manager received the evaluation request, and fin-
ished when the executed probe terminated.

Performance and Discussion Figure 5 presents the average execution time of
evaluations E1-E5. It shows that, as expected, the execution time in the private
scenario is higher than the same in the public scenario, with an overhead varying
between ~0.3s and 2s.

More in detail, evaluation E1 (Infowebsite) experienced a very low overhead,
less than a second. Evaluation E2 (Observatory-Compliance) experienced an
overhead of approximately 1 second. Evaluations E3, E4 and E5 (SSH-Compli-
ance, TLS-strength, WordPress-scan, resp.) experienced a higher overhead, ap-
proximately 2 seconds, increasing execution time from ~2s to ~4s for E3, from



~8s to ~10s for E4 and from ~12s to ~14s. Overall, the increase in the execution
time was globally under control, never exceeding 2 seconds. This overhead can
be tolerated in all scenarios supporting requirements in Section 2.

To conclude, there is a subtlety to consider when an assurance process for
hybrid systems is concerned: the accuracy of the retrieved results. There could
be some cases in which the evidence collected by a probe on a public endpoint
is different from the one collected by the same probe on a private endpoint. For
instance, evaluation E1 (Infowebsite), in the private scenario, failed to discover
the version of the target WordPress website. This was due to a partial incom-
patibility between the probe implementation and our VPN-based solution. Being
our approach probe-independent, this issue can be solved by refining the probe
associated with Infowebsite. In our experiments, evaluation E1 was the only ex-
periencing such problem, while the other evaluations were able to collect the
same evidence in both private and public deployments.

7 Comparison with Existing Solutions

Many security assurance approaches have been presented in literature, target-
ing software-based systems [16] and service-based environments [7], and provid-
ing certification, compliance, and audit solutions based on testing and monitor-
ing. We analyzed the main assurance frameworks and processes, which can be
classified according to the following categories: monitoring-based, test-based and
domain-specific. Table 2 provides a comparison of these frameworks, including
the one in this paper, with respect to requirements in Section 2.

Monitoring-based frameworks. Aceto et al. [1] provided a comprehensive
survey of assurance solutions based on monitoring. They first considered require-
ment intrusiveness, which is similar to our requirements transparency and non-
invasiveness, and found that many commercial monitoring tools do not address
such requirement. They then considered requirement lightness, because moni-
toring tends to be expensive in term of resource consumption. Two monitoring
frameworks have been presented in [2,12], both building on monitoring tool Na-
gios, thus satisfying, partially, complementarity and automation. Due to the in-
trinsic nature of monitoring, these frameworks can easily satisfy the requirement
continuity. Moreover, the work in [2] can achieve a very good adaptivity and of-
fers a monitoring platform both for cloud providers and users. Nevertheless, they
require a significant effort in terms of setting up the monitoring infrastructure
and resources for maintaining it, thus violating requirements non-invasiveness
and lightness. Framework in [12] has also proven to suffer of extensibility and
scalability issues [24]. [21] described a monitoring framework called DARGOS,
built with scalability and flexibility in mind. Being fully distributed, it supports
scalability and can be enriched with more sensors. However, being specifically
tailored for the cloud, it cannot be easily adapted to other scenarios. Ciuffoletti
[11] presented a novel approach, where a simple, cloud-independent API-based
solution has been used to configure monitoring activities. Being based on APIs, it
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easily satisfies requirements complementarity and automation. Its cloud-agnosti-
cism is realized through an OCCI (Open Cloud Computing Interface) extension,
designed towards Monitoring-as-a-Service.

Test-based frameworks. Wu and Marotta [28] presented a work-in-progress
testing-based framework that instruments client binaries to perform cloud test-
ing. The main issue is that binaries instrumentation may not be always feasible,
and might also introduce undesired behavior in modified programs. As such,
the framework fails to satisfy requirements transparency, non-invasiveness, and
safety. Ouedraogo et al. [20] presented a framework that uses agents to per-
form security assurance, although agents themselves need to be properly se-
cured. Greenberg et al. [15] claimed that, to protect hosts from agent misuse
or attacks, several techniques need to be properly employed. Agents also pose a
maintenance problem: they have to be kept updated and things can only become
worse as the number of agents increases. Also, they introduce substantial costs
since they need to be physically installed on each host/device to be assessed
and coordinated, introducing not-negligible network traffic. For these reasons,
the agent-based framework in [20] does not satisfy requirements transparency,



non-invasiveness and safety. Jahan et al. [17] discussed MAPE-SAC, a concep-
tual approach for security assurance of self-adaptive systems, where the system
itself changes, and security requirements must adapt to these changes. While
it is not possible to completely evaluate our requirements due to the lack of a
real, implemented framework, MAPE-SAC fulfills requirements adaptivity, con-
tinuity and automation. A different solution has been given in our work in [4],
which has served as the basis for the framework described in Section 3. As al-
ready discussed, the proposed approach is based on probes and meta-probes, and
fails to address mainly requirements complementarity and, partially, automation.
Also, it addresses only partially requirements safety, lightness, extensibility and
scalability.

Domain-specific frameworks. Aslam et al. [8] focused on the assurance of
fog computing, discussing a framework based on TPM (Trusted Platform Mod-
ule) for node audit. By relying on TPMs, it does not satisfy requirement non-
invasiveness. De la Vara et al. [26] presented an assurance framework target-
ing cyber-physical systems. Their approach provides several tools supporting
the certification process. However, being tailored for model-driven engineering,
it requires significant effort and fails to address many of our framework re-
quirements, such as multi-layer and automation. Elsayed and Zulkernine [14]
described a distributed framework for monitoring cloud analytics applications,
based on analyzing logs produced by such applications. The proposed approach
requires very few configurations at the cloud side, and can be offered through
the Security-as-a-Service paradigm. Cheah et al. [10] considered the automo-
tive world, where cases are generated after evaluating the severity of threats.
Threats are found through threat modeling and confirmed with a penetration
testing. The usage of penetration testing violates requirement non-invasiveness
and, requiring human intervention, requirement automation. Often, being tai-
lored for a specific domain, solutions in this category cannot claim requirement
extensibility.

To conclude, the comparison in Table 2 shows that the existing frameworks
(and corresponding processes) do not even come close to addressing the re-
quirements in Section 2. In general, existing solutions mainly target continuous
evaluation and multi-layer infrastructures, as well as transparency and adaptiv-
ity, failing to achieve mon-invasiveness, safety, lightness, and extensibility. The
framework in this paper, instead, provides a first boost in this direction ad-
dressing, at least partially all requirements in Table 2. Following the comparison
therein, this paper leaves space for future work. We will first aim to extend our
framework towards Big Data and IoT environments, further improving extensi-
bility, lightness, and scalability. We will also focus on strengthening the safety
of the framework and its components, for example the Ezxecution Manager that
can easily become a single point of failure/attack.



8 Conclusions

Security assurance solutions verify whether a distributed system holds some se-
curity properties and behaves as expected, usually complementing traditional
security approaches. Existing assurance frameworks and processes however are
limited in impact by the fact that they often lack extensibility and interfere with
the functioning of the system under verification. In this paper, we extended the
VPN-based assurance framework in [4] to provide an assurance process for hy-
brid systems, from private networks to public clouds, that addresses properties
automation and complementarity. The proposed assurance process has limited
impact and costs on the target system, while providing a safe and scalable ap-
proach that integrates with existing security solutions and support automatic
configuration of assurance activities.
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