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Abstract. We propose the use of password-authenticated key exchange (PAKE)

for achieving and enhancing entity authentication (EA) and key management

(KM) in the context of decentralized end-to-end encrypted email and secure mes-

saging, i.e., where neither a public key infrastructure nor trusted third parties are

used. This approach not only simplifies the EA process by requiring users to share

only a low-entropy secret, e.g., a memorable word, but it also allows us to estab-

lish a high-entropy secret key; this key enables a series of cryptographic enhance-

ments and security properties, which are hard to achieve using out-of-band (OOB)

authentication. We first study a few vulnerabilities in voice-based OOB authenti-

cation, in particular a combinatorial attack against lazy users, which we analyze

in the context of a secure email solution. We then propose tackling public key

authentication by solving the problem of secure equality test using PAKE, and

discuss various protocols and their properties. This method enables the automa-

tion of important KM tasks such as key renewal and future key pair authentica-

tions, reduces the impact of human errors, and lends itself to the asynchronous

nature of email and modern messaging. It also provides cryptographic enhance-

ments including multi-device synchronization and secure secret storage/retrieval,

and paves the path for forward secrecy, deniability and post-quantum security.

We also discuss the use of auditable PAKEs for mitigating a class of online guess

and abort attacks in authentication protocols. To demonstrate the feasibility of our

proposal, we present PakeMail, an implementation of the core idea, and discuss

some of its cryptographic details, implemented features and efficiency aspects.

We conclude with some design and security considerations, followed by future

lines of work.

Keywords: Password-Authenticated Key Exchange · Public Key Authentication

· Key Management · Secure Email · Secure Messaging · Implementation · Decen-

tralized Trust Model

1 Introduction

Largely owing to cryptography, modern messaging tools (e.g., Signal) have reached

a considerable degree of sophistication, balancing advanced security features, rang-

ing from end-to-end encryption to forward secrecy and deniability, with high usability.

However, this has not been the case for email, even though it has a long history and

This is a copy of the author pre-print submitted to ICETE 2020-Extended and revised papers (Springer). 1

http://arxiv.org/abs/2107.06090v1


2 Vazquez Sandoval, Atashpendar, Lenzini and Ryan

remains the most pervasive and interoperable form of digital communication, with bil-

lions of emails exchanged on a daily basis [15]. Yet, secure messaging and email share

two long-standing challenges, namely entity authentication and key management.

Entity authentication, the primary concern, invariably involves a mechanism that

associates some cryptographic material with an identity, e.g., public key authentication.

Key management, affecting email more acutely, is intertwined with authentication and

the need for automating it has been known for a long time, e.g., see [39].

Over the years, several methods have been established for accomplishing public key

authentication, and indirectly key management: manual validation of key fingerprints,

web of trust, public key infrastructure (PKI) and hierarchical validation, public key di-

rectories as well as server-derived public keys such as identity-based encryption (IBE).

The set of viable techniques becomes much smaller once we consider a decentral-

ized setting, i.e., without a PKI or a trusted third party (TTP). In this context, approaches

based on the use of out-of-band (OOB) channels and short authentication string (SAS)

comparisons (see Section 1.3) have received a great deal of attention from the research

community. Due to the user interaction required in these approaches—e.g., manually

verifying public key fingerprints—usability plays an essential role for a successful au-

thentication. Therefore, reducing the gap between security and usability by finding op-

timal trade-offs has been a central theme of research for decades, with a plethora of

long-standing open problems [46,15].

In an attempt to improve usability in the entity authentication process, Alexander

and Goldberg [3] proposed a modified solution to the socialist millionaires’ problem

(SMP) by Boudot et al. [14], also known as secure equality test, for authentication in

the off-the-record messaging (OTR) protocol [13]. To the best of our knowledge, this is

the only work that proposes an approach for key validation, mainly suitable for online

(synchronous) settings, that relies on users pre-sharing a low-entropy secret.

Here we revisit the problem of public key authentication in a decentralized setting

to propose a user-friendly and robust approach based on password-authenticated key

exchange (PAKE) for solving SMP via low-entropy secrets. These secrets are not ex-

pected to be sampled from a large, uniformly distributed space, but rather from a small

set of values, e.g., typical human-memorable passwords or pin numbers. The task of

SMP boils down to two parties verifying equality of their inputs πA and πB in a zero-

knowledge manner, such that by the end, they learn nothing but the boolean result of

the equality test.

Apart from offering improved usability properties and eliminating a host of vulner-

abilities present in OOB-based protocols, as discussed in Section 3, we show how the

PAKE-generated secret key can be used to pave the path towards providing a series of

cryptographic enhancements in secure email and messaging. These include automation

in key management and key renewal, forward secrecy in a symmetric-key setting, de-

niability, post-quantum security, secure secret retrieval and storage, and auditability for

mitigating a certain class of online guess and abort attacks in authentication protocols.

To demonstrate the feasibility of the proposed approach, we provide a complete

implementation of the core ideas. This also shows how the suggested approach would

not only work naturally in the context of secure messaging, but also in the inherently

asynchronous setting of email.
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By applying PAKE to this problem, we advance the state-of-the-art in the use of

shared low-entropy secrets for entity authentication, an idea considered only in [3].

Moreover, while SMP is a subproblem solved naturally by PAKE, the latter has not been

applied to tackle the problem of authenticating public keys in decentralized settings.

1.1 Motivation

Despite its crucial importance, secure email and messaging solutions tend to brush aside

the entity authentication step. When provided, features allowing to authenticate contacts

are not intuitively accessible3, which contributes to users neglecting or being unaware

of the process. Solutions for the entity authentication problem in decentralized non-PKI

environments, typically rely on users correctly executing a manual comparison, which

has been repeatedly shown to be error-prone and inconvenient for users (e.g. [26]).

Our incentive for replacing OOB authentication with a cryptographic protocol is to

significantly reduce the impact of failures occurring in the authentication process: while

failures in our cryptographic-based solution at most require users to repeat the process,

failures in methods highly-dependent on user behavior could completely jeopardize the

security of the communication.

Our motivation for using PAKE—a method that does not seem to have enjoyed

enough recognition due to a lack of mature implementations, reluctance towards client

side cryptography, patent-encumbered designs and perhaps even unawareness of its

usefulness—is grounded not only in its independence from a PKI or a TTP, but also

in its provision of a zero-knowledge (ZK) solution for the secure equality test problem

using a low number of rounds, which makes it compatible with asynchronous settings,

and in the fact that it enables additional cryptographic enhancements.

Additionally, the need for addressing common challenges such as key management

automation and device synchronization spurred us on. By implementing our PAKE-

based solution for entity authentication, we address two open problems in secure email

and messaging [46,15]: bridging the gap between known theoretical results and real-

world solutions, and the need for more robust authentication methods that also improve

the trade-off between security and usability in secure solutions.

1.2 Contributions and structure

A brief review of the state-of-the-art is covered in Section 1.3, followed by an overview

of background concepts in Section 2. In Section 3, we discuss a few vulnerabilities in the

use of OOB channels for authentication, including a partial preimage attack targeting

lazy users, which we analyze in the context of the p≡p [34] secure email solution.

Next, in Section 4 we describe how solving the secure equality test using PAKE

leads not only to entity authentication but also to the establishment of a shared high-

entropy secret key that can be used to achieve additional cryptographic tasks and proper-

ties. We provide a concrete illustrative scheme along with an analysis of various PAKE

3 For example, in order to access the authentication menu in Signal or WhatsApp, users need to

(1) select a chat (2) click on the contact’s name (3) select “View safety number/Encryption”.
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constructions and properties relevant for our work, and briefly analyze network trans-

port mechanisms and security.

In Section 5, we elaborate on the said cryptographic enhancements, such as inatten-

tive user resistance, automated key renewal, automated future key pair authentication

and multi-device synchronization, along with security properties such as deniability,

forward secrecy, post-quantum security, auditability for detecting guess and abort at-

tacks, and secure secret storage and retrieval with applications in email and secure mes-

saging.

Extended version. The main contributions of this work, which is an extended version

of our previous paper [48], are as follows:

– PAKE-based Public Key Authentication and Key Exchange over Email (PakeMail):

in Section 6, we present a complete implementation of the main idea for a PAKE-

based authentication and key management approach in the context of decentralized

secure email, serving as a proof of feasibility. The source code, along with the

corresponding documentation, can be found at [4].

– In Sections 2 and 4 we provide more theoretical details on PAKE protocols and

cryptographic elements relevant for a concrete implementation.

– We provide an analysis in Section 5.4, comparing our proposal with state-of-the-art

trust establishment approaches.

– We extend and improve our descriptions of the cryptographic enhancements in Sec-

tion 5, including the notion of secure secret storage and retrieval, a variant of which

has been recently implemented for the Signal messaging system, but using a com-

bination of different cryptographic constructions.

In Section 7 we review the main security properties of our solution and elaborate on a

few methods for low-entropy secret agreement and improving usability. We conclude

in Section 8 with a more detailed outline of future directions and open questions.

1.3 Related Work

Unger et al. [46] and Clark et al. [15] provide extensive systematic surveys covering nu-

merous aspects of secure messaging and email. We limit ourselves to the decentralized

setting without elaborating on the drawbacks of web of trust approaches covered in the

above mentioned works.

The literature contains a sizeable body of work on OOB-based approaches, consid-

ered first by Rivest [36], many of which are inspired by the original work of Vaudenay

[47] based on SAS comparisons, e.g., [32,26,27,45], to name a few. This area has also

been investigated by the formal methods community, see e.g. [18] for a recent formal

analysis of SAS-based schemes in the symbolic model.

As for low-entropy secret-based authentication, to the best of our knowledge, the

only work in the literature is by Alexander and Goldberg [3] using a modified version

of the SMP protocol by Boudot et al. [14] for improving the OOB-based authentication

process in off-the-record messaging (OTR) [13]. OTR is a cryptographic protocol orig-

inally designed by Borisov and Goldberg, aimed at enabling encrypted, authenticated
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and deniable instant messaging conversations with forward secrecy; this protocol was

proposed as an alternative to PGP for “casual” conversations.

The variant proposed by Alexander and Goldberg sacrifices the fairness property of

[14] for efficiency and the authentication process requires A and B to be both online

when entering their secret and for the subsequent exchange of messages.

2 Framework and preliminaries

We use A and B to refer to honest parties Alice and Bob, and M for the adversary,

Mallory. We use ←$ to denote an element sampled uniformly at random, and ‖ to

denote concatenation. We denote low-entropy secrets provided by users with π.

Security model. We consider the standard Dolev-Yao model [21]. We do not as-

sume any additional trusted infrastructure. In one of our proposed methods for transport

protocol, we assume the existence of untrusted buffer/relay servers, somewhat akin to

the ones used in the design of Signal or OTR4 (see Section 4.4). Regarding PAKEs, we

will consider several constructions in Section 4, largely proven secure in the so-called

BPR model [8] under various hardness assumptions.

System requirements. Our proposal does not require any format modifications and

preserves compatibility between existing email clients and servers; therefore, we as-

sume standard requirements for email transfer. As for secure messaging, we do not in-

troduce any extra trust assumptions and no additional infrastructure requirements. Any

exchanges relayed or buffered by intermediate servers can be done by untrusted ones.

Cryptographic notions. Due to space limitations, we assume familiarity with com-

mon cryptographic concepts, in particular with Diffie-Hellman (DH)-based computa-

tional hardness assumptions.

We discuss schemes based on the Ring Learning With Errors (RLWE) problem,

a special case of the Learning With Errors (LWE) problem whose security may be

reducible to the hardness of solving the Shortest Vector Problem (SVP) in lattices, for

which no efficient quantum algorithms are known, thus conjectured to be quantum-

secure. Post-quantum (PQ) cryptography encompasses schemes that are considered to

be safe against adversaries equipped with scalable, cryptographically relevant quantum

computers.

We use KDF(s) to denote a key derivation function that takes a source s of keying

material, typically with a fair amount of entropy but not uniformly distributed, and

produces one or more cryptographically strong secret keys, see [29] for details. We

denote with MAC(k,m) a keyed message authentication code scheme that computes a

tag on m under key k. We use “Curve25519” to refer to the underlying elliptic curve

used in the elliptic-curve-Diffie-Hellman function by Bernstein [10].

Socialist Millionaires’ Problem. In the realm of secure multi-party computation

(MPC), Yao’s millionaires’ problem [50] is a famous example in which two parties

want to find out whose input is greater without revealing any more information on the

actual value. SMP is a variant of this and a ZK proof of knowledge protocol, with the

difference that the parties only wish to know if their inputs are equal.

A series of works has been dedicated to solving SMP, including a well-known so-

lution by Boudot et al. [14] that provides a fair and efficient protocol, where fairness
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roughly means that no party can evaluate the function and walk away with the result

without the other party learning the output.

Garay et al. [23] showed that the fairness and the security definition of [14] are

not compatible with the simulation paradigm and that their solution would not be se-

cure when composed concurrently; they present a construction that can be composed

arbitrarily, with similar complexity results.

PAKE. Password-authenticated key exchange (PAKE) protocols enable the estab-

lishment of secure channels without the need for a PKI, TTP or empirical OOB chan-

nels. In essence, they address a secure two-party computation problem and allow two

parties A and B who share only a low-entropy secret/password π ∈ D, with D being

some relatively small dictionary, to agree on a high-entropy cryptographic secret key k,

using π for authentication. Since the seminal work of Bellovin and Merritt [9], numer-

ous PAKE protocols have been proposed, which largely fall into the two categories of

balanced (symmetric) and augmented (or asymmetric), referred to as aPAKE. The latter

stores one-way mappings of passwords on the server side in client-server settings.

Intuitively, a core property of PAKE is that a run of the protocol should not leak any

information about the password. Moreover, apart from protection against man-in-the-

middle (MITM) attacks and variants thereof such as replay/reuse and mixing attacks,

they should also provide security against offline dictionary attacks by passive and active

adversaries. While due to the use of low-entropy passwords, any PAKE protocol is vul-

nerable to an online guessing attack, the goal is to ensure that at most one test per run

constitutes the optimal attack strategy for an active M interacting with a party. Similar

to SMP, M can mask failed guessing attempts as network failures, thus allowing nu-

merous attempts without raising suspicion. This is in general unavoidable, however, we

will see in Section 4 how a recent work by Roscoe and Ryan [38] can mitigate this.

Most well-known PAKE protocols rely on different variants of the Diffie-Hellman

Problem (DHP), which means that their security is ultimately reduced to that of the

Discrete Logarithm Problem (DLP). These typically make use of a cyclic group G of

prime order p, generated by g∈G, along with a hash function H, modelled as a random

oracle, plus a few other public parameters, e.g., M,N ∈ G in the case of SPAKE2, as

shown in Figure 1. Moreover, the passwords are viewed as elements of Zp (obtained

by hashing user passwords to some π ∈ Zp), which are used to blind the DH terms by

multiplying these terms by randomly chosen elements of G raised to π, e.g., gx ·Mπ,

where x←$Zp. The final session key is then derived by computing a hash of the entire

transcript ~TP of a run of protocol P, which includes all of the parties’ public and private

values, the user identities, the DH terms and the password, i.e., k = H(π, idA , idB , ~TP).

Often, how passwords are agreed upon and the actual details pertaining to the ex-

change of user identities are left out, i.e., deferred to higher-level applications imple-

menting the protocol. It is typically required for a higher-level application to be able to

refer to a session using a globally unique identifier, a channel binding often also called a

session ID, which for technical reasons rooted in composability should be computed as

a function of user instance roles and information exchanged over the network during the

execution of the protocol, e.g., user IDs and public randomness. The session identifica-

tion (ID) is usually defined as as the transcript TP of the communication/conversation

between A and B , which can also be viewed as a random variable, being a function of
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the random values generated by A and B . These, among other things, protect against

MITM, unknown key share attacks and replay attacks.

3 Pitfalls in out-of-band authentication

In OOB authentication, users typically compare some representation of a cryptographic

hash (fingerprint) of their partners’ public keys via a separate authenticated channel.

This representation is usually in the form of a list of words, numbers or images.

Strong security properties can be achieved if users execute the manual verification

correctly. Yet, the difficulty of having users do the corresponding tasks correctly while

finding the right balance between usability and security is the root cause of security

drawbacks, which have been amply discussed by research on fingerprint and SAS com-

parison via OOB channels (e.g., [26,27,45]). Naturally, usability studies encourage the

replacement of manual comparisons by automated software whenever possible [45].

Some of the problems rooted in OOB authentication are as follows.

Selection of an adequate OOB channel. In practice, the theoretical and strong au-

thentication requirements of OOB methods are not easy to satisfy. While face-to-face

conversations provide a strong authenticated channel [32], they are often not viable. It

is usually assumed that an OOB channel cannot be forged, but it can be blocked, over-

heard, delayed or replayed. Typical instantiations are done via voice-based channels,

e.g., a phone call. However, some already consider voice-based SAS comparison to be

obsolete from a security perspective [46] as nowadays messages can be forged by voice

synthesizers with a small sample of the victim’s voice. Indeed, a voice impersonation

attack on users comparing PGP words [41] reported the fake voice to be indistinguish-

able in about 50% of the cases.

Social engineering attacks. Although there are multiple options for users to inter-

act via OOB, little effort has been gone into designing precise protocols for humans to

carry out the authentication process in a privacy-preserving and fair manner. This leads

to various attack vectors based on misleading users as opposed to finding technical vul-

nerabilities. For instance, without knowing the authentication value, M can fool A into

trusting her key by pretending to be B , asking A to read her fingerprint representation

first, and then simply confirming that the fingerprints match.

3.1 Inattentive users and partial preimage attacks

Inattentive and lazy users. Here we consider users misreading words (inattentive) or

comparing only subsets of them (lazy). A recent paper by Naor et al. [31] analyzes

approaches based on SAS authentication that are vulnerable to MITM attacks w.r.t.

lazy users. For instance, the approach in WhatsApp and Signal would be flawed if users

compared only either the first or the second half of the value, since it would amount

to verifying only one peer’s fingerprint. To fix this, the authors propose an influence

spreading technique in which every bit of the value to be authenticated influences the

generation of each element of the OOB representation.

Partial preimage attack. Dechand et al. [17] study an attack aimed at finding a

partial preimage for a fingerprint verified by lazy users; specifically, they assume that

users check subsets of bits at the boundaries and in the middle.
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We now give a more detailed description of their analysis. Let p denote the prob-

ability of finding a partial preimage for a given fingerprint f and q its complementary

event. To calculate p = 1− q, we work out q (i.e., the absence of partial preimages for

a specific bit permutation). Let b be the length of the fingerprint f and assuming that r

consecutive boundary bits are fixed (checked by the user), in this case, the leftmost and

rightmost bits of f , we let ℓ denote the number of remaining bits in the middle from

which a possible variation of u bits could be fixed, i.e., checked by the user.

Thus, we have 2 · r+ u fixed bits that the adversary cannot invert without the user

noticing. Valid preimages can thus be obtained by flipping up to t = ℓ−u bits within the

middle bits; by removing these from the total space of size 2b, we obtain the number of

invalid ones. With k denoting a given number of positions to modify, the valid strings

are then given by
(

ℓ
k

)

choices of positions to flip. Thus, q is given by

q =
2b−∑

t
k=1

(

ℓ
k

)

2b
. (1)

Expressing p as a function of the computational effort in terms of e brute-force attempts,

we have p = 1− qe. To estimate the number of steps needed for finding partial preim-

ages with a success probability ≥ p, we simply compute e = logq(1− p). Expressing e

in base 2 gives results comparable to [17].

3.2 Case study

Pretty Easy Privacy (p≡p) is a software aimed at providing usable privacy-by-default

in email via end-to-end opportunistic encryption. The tool largely automates key man-

agement tasks. The public key of a user is attached to outgoing emails when a key of

the recipient has not been stored. Received keys are automatically stored for future use

(trust-on-first-use) and outgoing emails are automatically encrypted when a public key

of the intended receiver is available. This approach requires neither a PKI nor a TTP.

Similar to the PGP word list, p≡p trustwords [12] are natural language words that

two users compare via a low-bandwidth OOB authenticated channel to prevent MITM

attacks. The trustwords generation algorithm tws(·) is a deterministic algorithm that

runs locally taking as input the public key of the peer obtained by email and the user’s

own public key. Informally, tws(·) performs an XOR over the fingerprints of each of the

input arguments, and then maps each block of 16 bits from the resulting 160-bit long

string to a word in a predefined dictionary of size 216, thus yielding a list of ten words.

To encourage users to perform the OOB authentication, by default p≡p shows only

five words; this means that the peers compare the first 80 out of the 160 bits of a PGP

fingerprint, assuming that they check all the words. Since an “influence spreading”

property, similar to Naor et al.’s, is already present, the best adversarial strategy is a

brute-force attack over the public key space requiring O
(

280
)

steps to find a key k such

that the first 80 bits of fpr(k) are equal to those of fpr(pkB), with pkB being the public

key of B .

We consider lazy users and compute estimates for partial preimage attacks similar

to the one presented above. We consider the two cases where, out of five words, the user

verifies (i) the first and last words as well as two from the middle (ii) the first and last
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words, along with one of the three in the middle. Let b = 80, ℓ= 48 and for (i) we have

u = 32 and we get e ≈ 238; for (ii), with u = 16, we get e ≈ 232. These results show

that M would succeed with costs equal to and lower than the computational power

estimated for an average adversary [17].

Clearly the decision to show five words instead of ten by default needs to be recon-

sidered. Users might feel less annoyed by having to compare fewer words, however, its

adverse effect on security is considerable as it practically renders brute-force attacks

viable.

4 Authentication in secure email and messaging via PAKE

We now show how PAKE can be used to perform a secure equality test and thereby

authentication, yielding a more efficient solution, compared to OOB methods and the

OTR approach, with better security guarantees and further cryptographic features.

Trust establishment using low-entropy secrets. For now, we assume that A and

B share a low-entropy secret—e.g., a short password—either agreed upon beforehand

or decided by posing and answering a question at the beginning of the mutual authenti-

cation.

Intuitively, the goal is for A and B to authenticate their public keys via a secure

equality test of their respective secrets πA and πB, without revealing any information

about the latter; hence the need for a zero-knowledge protocol guaranteeing that upon

termination of the protocol, the resulting transcript of the exchanges does not leak any

information on πA and πB, allowing A and B to learn only whether or not their re-

spective secrets were equal. In addition, it should not be possible for M to brute-force

the password via offline dictionary attacks. Thus, M ’s only strategy would amount to

making online attempts.

4.1 Public Key Authentication via PAKE

To determine at the end of a PAKE run whether the user secrets πA and πB are equal,

without revealing anything else, we enforce explicit authentication using a key confir-

mation (KC) step after the key establishment phase. While this step may be optional

in the general case for PAKE protocols, here it would be necessary in order to bind

the cryptographic material with an identity. The information that A and B wish to

authenticate—e.g., public key fingerprints for email addresses or phone numbers in

Signal—can be incorporated either into the KC phase or into the initial user secrets.

Next, we delve into the details of how this can be achieved using a concrete PAKE

protocol. The literature contains several well-studied instances of PAKE, therefore, we

first pick a candidate to demonstrate how it can be used to validate public keys, and

then compare a few prominent schemes according to specific properties of interest. For

the moment, we do not focus on engineering aspects related to (a)synchronicity and

message transport mechanisms, but we will come back to these in Sections 4.4 and 6.
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4.2 An Instantiation based on SPAKE2

For illustration, in Figure 1 we propose an extension of SPAKE2, a one-round proto-

col, with a KC step to achieve explicit authentication, thus binding a public key to an

entity. This yields a 2-round scheme, the minimum when KC is enforced; see [28] for

optimal-round PAKEs. For KC we can use the generic refresh-then-MAC transforma-

tion. Despite its long history, this transform was only recently proved secure [22].

With G being a finite cyclic group of prime order p, generated by an element g∈G,

let G,g, p,M←$G,N←$G and hash function H(·) denote public parameters and π ∈
Zp the private low-entropy secret, with the user password assumed to be appropriately

mapped to an element in Zp. The parties perform the key exchange phase, as shown in

Figure 1, which concludes with the generation of a symmetric key. Upon termination

of the key establishment, A and B each use the symmetric key to carry out a key-

refreshing step via a key derivation function in order to generate fresh MAC keys (for

both parties), along with a new session key, K, which will be the final shared secret key.

Next, under the freshly generated keys, they each compute a MAC on the fingerprints of

both parties’ public keys. The authentication now amounts to exchanging and verifying

the obtained tags τa and τb, i.e., to see if the received tag and its locally computed

counterpart match.

Public parameters: G,g, p,M ←$G,N ←$G,H; private parameter: π ∈ Zp the low-entropy secret.

Alice Bob

x←$ Zp;X ← gx y←$Zp;Y ← gy

X∗← X ·Mπ Y ∗←Y ·Nπ

A,pkA,X
∗

B,pkB,Y
∗

KA←

(

Y ∗

Nπ

)x

KB←

(

X∗

Mπ

)y

skA← H(A,B,X∗,Y ∗,π,KA) skB← H(A,B,X∗,Y ∗,π,KB)

. . . . . . . . . . . . . . . . . . . . . . Key exchange complete; key confirmation and binding follow . . . . . . . . . . . . . . . . . . . . . .

(K,ka
MAC,k

b
MAC) = KDF(skA) (K,ka

MAC,k
b
MAC) = KDF(skB)

τa←MAC(ka
MAC, fpr(pkA)‖fpr(pkB)‖sid) τb←MAC(kb

MAC, fpr(pkA)‖fpr(pkB)‖sid)

τa

τb

Abort if τb invalid; else output key K Abort if τa invalid; else output key K

Fig. 1. pk authentication using SPAKE2 with refresh-then-MAC key confirmation for entity bind-

ing. (Originally presented as such in our previous work [48])

The addition of the KC step increases the number of rounds and flows to 2 and

4, respectively. Note that this is merely an illustrative example and as already men-

tioned, other possibilities for KC do exist, some of which offer additional properties.
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For instance, in [7] the authors showed that a modified version of SPAKE2, called PFS-

SPAKE2, coupled with a KC step can achieve perfect forward secrecy (PFS) at the cost

of increasing the number of rounds from 1 to 3. More recently, Abdalla et al. [1] showed

that SPAKE2 does indeed satisfy PFS even without KC under a different hardness as-

sumption. They also prove a version with a KC step (yielding a better bound) almost

identical to the one given in Figure 1, except that the protocol has one less flow.

Alternatively, the public key fingerprints can be embedded in the secret π, but

note that even in that case, the KC step cannot be skipped as an explicit authenti-

cation of the public keys would be still needed. More precisely, we would let π =
π′‖fpr(pkA )‖fpr(pkB), where π′ denotes the original user provided secrets, and we

would compute the tags as τa ← MAC(ka
MAC,sid), where the session identifier sid is

defined as the transcript of conversation between A and B , with τb computed simi-

larly. The IETF documents for SPAKE24 and J-PAKE5 provide similar one round KC

methods.

Note that the inclusion of pkA and pkB in the key exchange phase in Figure 1 merely

illustrates that they could be exchanged in one round. However, this exchange can be

decoupled from the original SPAKE2 specification; indeed, the exchange of public keys

may occur long before their authentication. This allows us to preserve the original de-

scription of the protocol and the computation of the transcript; otherwise, the key fin-

gerprints would have to be included in the SPAKE2 transcript and in turn, in the input

of the hash function computing the session key. In our case, the security guarantee is

independent from this particular choice due to our strict enforcement of explicit authen-

tication: fingerprints are included in the computation of the transcript (or session ID) in

the KC step. We will elaborate further on this in Section 6.

4.3 Selecting a PAKE protocol

We consider a number of representative PAKE protocols and analyze their properties

w.r.t. our use case: SPAKE2 [2], OPAQUE [25], PFS-SPAKE2 [7], J-PAKE [24], KV-

SPOKE [28], RLWE-PAK and PPK [20]. PAKEs are typically evaluated according to

the security model in which they are proven secure, support for forward secrecy, the

number of rounds, along with their communication and computational complexity. The

complexity related aspects become more relevant in a client-server setting wherein a

server has to process a high number of requests and sessions in a short time span. In a

decentralized peer-to-peer setting, such properties no longer play a major role.

In Table 1, we present some relevant properties of the said constructions. Except

for RLWE-PAK and RLWE-PPK that make use of lattice-based cryptography, all other

schemes are Diffie-Hellman-based. In terms of PQ security, this implies that the lat-

ter cases would not be quantum-safe, whereas the first two would provide conjectured

quantum-security due to the underlying RLWE problem.

Minimizing the number of rounds is more important for secure email than it is for

messaging, especially if the transport mechanism is based on attachments or hidden

emails (see Section 4.4). As for secure messaging, this may be equally relevant for

4 https://tools.ietf.org/id/draft-irtf-cfrg-spake2-08.html
5 https://tools.ietf.org/html/rfc8236

https://tools.ietf.org/id/draft-irtf-cfrg-spake2-08.html
https://tools.ietf.org/html/rfc8236
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Table 1. Comparison of PAKE protocols. (Originally presented in [48] )

Protocol Rounds/

Flows

KC Forward

secrecy

Security

model

Hardness

assumption

SPAKE2 1/2 ✗ X ROM CDH

PFS-SPAKE2 3/3 X X ROM CDH

OPAQUE 2/3 X X ROM OMDH

J-PAKE 2/4 ✗ X ROM-AAM DSDH

KV-SPOKE 1/2 ✗ - CRS DDH

RLWE-PAK 3/3 X X ROM RLWE

RLWE-PPK 2/2 ✗ X ROM RLWE

ROM: Random Oracle Model; AAM: Algebraic Adversary Model; CRS: Common Reference String

DH: Diffie-Hellman; CDH: Computational DH; DDH: Decisional DH; DSDH: Decision Square DH;

OMDH: One-More DH; RLWE: Ring Learning With Errors

solutions that do not operate in a purely decentralized and peer-to-peer setting in which

one may wish to reduce the load on relay or buffer servers, e.g., Signal or OTR4, but

the number of rounds would in general be arguably less of a concern. Note that KC can

be added to schemes that do not have it by default at the cost of an extra round.

Intuitively, the notion of forward secrecy (FS) captures the requirement that a long-

term secret compromise should not result in prior session keys getting compromised

and consequently the corresponding exchanges. Weak FS (wFS) refers to those schemes

satisfying FS against passive adversaries who did not interfere in the previous sessions

and perfect FS to those achieving the same against active adversaries. We will come

back to this in Section 5.2.

We limit the discussion on security models to practical considerations. In the ran-

dom oracle model (ROM), an ideal truly random function being accessible to the parties

through oracle calls is typically instantiated using cryptographic hash functions, and the

common reference string (CRS) model implies the accessibility of a random string to

all parties, generated in a trusted way. The latter may be less obvious to implement in

the case of email due to the constraints of decentralization given that the generation of

the CRS would be typically done by a trusted party or via a secure MPC protocol, e.g.,

the decentralized CRS generation shown in [40]. Finally, regarding the RLWE-based

schemes, their proofs are unfortunately in the ROM, as opposed to the quantum ROM

(QROM), which would allow adversaries to query the random oracle in superposition.

4.4 Transport Mechanism

Email-based approach. Given the small number of rounds required by PAKE proto-

cols, in the case of email we can afford to use standard email attachments or specially

formatted hidden emails as message carriers, processed in the background by the email

client. Since we primarily deal with authentication, these exchanges would have min-

imal impact in terms of communication and computational complexity as the protocol

would have to take place only once per peer.

For the case of attachments, a PAKE-based implementation could give A the option

to enter her secret πA upon sending her first email to B , thus allowing the first flow of
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the protocol to occur via an attachment; the initial PAKE round would be completed

when B replies after entering his secret πB . The subsequent exchange for the KC step

can be done automatically.

Alternatively, the implementations could encapsulate cryptographic messages in

specially crafted emails, kept hidden from the user (e.g., archived separately) and pro-

cessed automatically—as p≡p does for multi-device key synchronization.

Untrusted server approach. Although early instant messaging (IM) tools were entirely

online services that maintained an active session for each conversation, modern IM tools

follow an asynchronous model similar to that of email. For instance, both Signal and

the latest version of OTR [33] achieve offline messaging by using “buffer servers” for

hosting pre-key bundles that can be fetched without the other party being online.

We can use a similar mechanism to overcome transport engineering obstacles in

email more elegantly, since all aspects related to the exchange of emails remain un-

changed and thus interoperable. In fact, the use of an intermediate server would not

introduce additional trust assumptions as the transcript of a PAKE protocol does not

leak useful information to the adversary; such a server would be untrusted and any

entity would be able to set up their own instance.

5 Enhancements to secure email and messaging by PAKE

Our PAKE-based approach for authentication satisfies and improves a number of key

properties related to security and usability that have been identified in the literature

[46]. We first discuss how these properties are satisfied and then introduce novel uses of

PAKE in secure email and messaging. Note that once a PAKE-generated symmetric key

is established, subsequent PAKE instances can be run automatically via a chaining self-

sustaining mechanism; moreover, while we primarily focus on enhancements for exist-

ing paradigms that depend on public keys—e.g. PGP-based or OTR-inspired systems

such as Signal—one could also consider the benefits of transitioning to symmetric-key

constructions, e.g., MAC-based authentication and symmetric-key encryption schemes.

5.1 Key management and authentication improvements

The improvements presented here mainly deal with key management automation and

error resilience.

Automation of future key pair authentications. Once authentication between A and

B is bootstrapped from an initial PAKE, the authentication of new key pairs belonging

to either A or B can be automated by using the PAKE-generated key as input, without

prompting the users to yet again enter new secrets. Authentication of new keys is needed

for instance when keys expire, when a new key pair needs to be associated with an

existing identity, or when new email addresses need to be associated with key pairs.

These can be automatically authenticated by running a PAKE with the stored shared

symmetric key as input. Note that each execution of a PAKE refreshes the stored PAKE-

generated symmetric keys. Automating the authentication of future keys enables the

achievement of the other properties in this category.
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Immediate enrolment. This property holds if when a user reinitializes their keys, other

parties can verify and use them immediately. The PAKE-generated key allows to auto-

mate the new key exchange and the corresponding authentication as explained above.

Alert-less key renewal. Complementing the previous property, this one refers to users

not receiving alerts or warnings prompting them to take action when other parties renew

their public keys. This would be automated similarly to immediate enrolment.

Low key maintenance. This property refers to minimizing users efforts related to key

management tasks, such as signing keys or renewing expired keys. By achieving im-

mediate enrolment and alert-less key renewal as explained above, the PAKE-based ap-

proach improves key maintenance too.

Inattentive user resistance. As discussed earlier, manual OOB key/fingerprint verifi-

cation methods are susceptible to human error and inattentiveness. In the PAKE-based

approach, even if users enter the wrong password, the result would not be as catas-

trophic as trusting a key prepared by the adversary. At worst, it would be inconvenient

as the authentication would fail, prompting the user to eventually repeat the process.

5.2 Cryptographic properties enabled by PAKE

Symmetric key cryptography. An immediate and rather evident advantage of using a

PAKE protocol in this context is that the resulting cryptographic secret key can be al-

ready used for performing cryptographic tasks, whereas in a general PKI setting, upon

authenticating the public keys, one would then typically make use of a Key Encapsula-

tion Mechanism (KEM) in order to establish a symmetric key.

Perfect forward secrecy (PFS). Once, more popular in the context of secure messaging

(e.g., Signal and OTR), PFS is now a requirement for cipher suites supported in TLS

1.3. PFS means that in the event of a password disclosure, previously derived session

keys remain secure. To minimize the impact of a long-term key disclosure, one could

implement a PAKE-chaining mechanism that automatically performs key rotations and

periodically refreshes the symmetric key; this would provide limited windows of op-

portunity for M to compromise the channel, past which point, the fresh key would be

secure again. If there is evidence that M has corrupted the channel, the cryptographic

key would have to be discarded and replaced by a new PAKE execution. This refresh-

ing paradigm might be expensive, however it would be relevant when PAKE-based

approaches are used for synchronization purposes, either device-to-device or device-to-

server, where PAKE can be used to both authenticate and establish a secure channel,

thus providing PFS for the session keys used for syncing.

Several PAKE constructions provide PFS by default, some of which are listed in

Table 1; moreover, PFS can be obtained by adding explicit authentication via a KC step

to constructions that do not have this property [8]. Alternatively, to improve efficiency

we could resort to symmetric-key schemes that provide PFS, e.g., SAKE [5]. In this

case, a PAKE can be used once to bootstrap authentication via a low-entropy secret and

to generate the initial symmetric master key required by SAKE.
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The use of PAKEs could for instance improve the approach based on regular sub-

key rotations, adopted by the Sequoia-PGP project for adding FS to OpenPGP-based

solutions; a PAKE-based solution could automate authentication in case the master key,

certifying the short-term sub-keys, needs to be refreshed. For additional security, with

slightly hampered usability, a separation of storage can be enforced by for example stor-

ing such PAKE long-term keys in dedicated hardware, e.g., hardware security modules

or smart key storage devices such as YubiKey or Nitrokey, to protect against a device

compromise; see Section 5.3 for more details on this.

Deniability. This is another subtle and fundamental property that has been of partic-

ular interest in recent secure messaging systems such as Signal and OTR. Deniable

exchange, applied to tasks ranging from authentication to encryption, has a long and

somewhat controversial history due to the subtleties in various existing security defini-

tions. We limit ourselves to the case of key exchange and the seminal framework of Di

Raimondo et al. [19], which provides security definitions in the simulation paradigm

for deniable key exchange and authentication, where both message and participation

repudiation are considered as requirements.

Assuming that the secret keys cannot be traced back to identities, we conjecture that

sender/receiver-only deniability for symmetric PAKE would satisfy the said definition

of deniability in the symmetric-key setting: in a two-party setup, a malicious accusing

party M would not be able to produce binding cryptographic proofs from communica-

tion transcripts, associating another party with a particular exchange, as all messages

could have been simulated by the accusing party M . More specifically, in terms of dis-

tribution indistinguishability, a simulator in the said framework [19] can be constructed

given that π is the only private input, symmetrically shared by both parties, and all other

parameters are public and drawn at random. Indeed, this may not be surprising as Di

Raimondo et al. [19] consider deniability in the symmetric key setting to be trivially

satisfied.

Finally, assuming composability, using the PAKE-generated key with symmetric

ciphers and MAC-based authentication would preserve deniability. Clearly, this and

other forms of deniability for PAKE need to be studied rigorously in future work.

As a side note, deniability of messages and FS were among OTR’s original goals,

however, such features are independent from their SMP solution for authentication; they

are implemented separately, e.g., by using MAC-based authentication and revealing

keys. In the case of PAKE, these properties are rather built into the scheme.

Post-quantum security. As pointed out in Section 4.3, in the event that secure messag-

ing and email tools transition to post-quantum cryptography, there are already can-

didate PAKE constructions that provide conjectured PQ security (e.g. see Table 1).

Moreover, the recent symmetric-key authenticated key exchange (SAKE) by Avoine et

al.[5] is conjectured to be PQ-secure due to its use of symmetric-key primitives. Thus,

a quantum-resistant PAKE can be combined with SAKE, to obtain a low cost and ef-

ficient PQ-AKE with PFS suitable for settings with limited computational power, e.g.,

the IoT.
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5.3 Cryptographic enhancements to email and messaging

The uses of PAKEs for securing email and messaging go beyond entity authentication

and KM. Here, we discuss some areas that could benefit from the use of these schemes.

Multi-device synchronization. A quite natural application of PAKE is in the realm of

device pairing and secure multi-device synchronization, where the goal is to create an

authenticated and private channel between devices, usually by the same user. Most solu-

tions typically rely on a human interactive security protocol (HISP) and OOB channels,

thus requiring manual intervention, which can give rise to new and subtle attacks. The

application of PAKEs for device pairing in other contexts has been considered before

[30]; it is thus natural to consider its use in multi-device syncing of secure email and

messaging systems, for instance, to synchronize a user’s keys for encryption and keys

of trusted contacts.

A secure email solution can display a screen in each of A’s devices that are to

be paired, D1 and D2, so that after A enters a password in both, a PAKE protocol is

triggered. Alternatively, this process can even be done asynchronously, i.e., without the

two devices being online: D1 pushes its state (e.g., key store, chat or email archive) to

a server in encrypted form and later D2 retrieves the secrets stored on the server in an

oblivious manner w.r.t. the server. We discuss this further in the following part regarding

secure secret retrieval.

For instance, the current implementation of p≡p resorts to an ad-hoc pairing tech-

nique for key synchronization based on OOB comparison of SAS. Instead, it could

benefit from such a PAKE-based solution. The established channel could be used not

only for sharing key material but also contact lists, calendars, etc.

Secure Secret Sharing and Retrieval. This feature is inspired by the notion of password-

protected secret sharing (PPSS) schemes formalized by Bagherzandi et al. [6], which

are (t,n)-threshold constructions wherein security is preserved against an adversary

controlling up to t servers out of n. A problem that PPSS addresses is protecting A’s

secret data d (e.g., a secret key used for decryption, authentication credentials, crypto-

currency wallet key, etc.) in the event of a device compromise or failure.

An implementation of PPSS would secret-share d among a set of n entities so that

only a collusion of more than t corrupt ones would compromise the data. A password-

based mechanism would allow the authentication of the owner of d to the secret-share

holders in order to trigger a reconstruction protocol and then retrieve the secret. The

private storage of d can be shared among n external network entities; alternatively, if A

does not trust external entities, her device can instead partake in the secret-sharing by

storing multiple shares, thus preventing online dictionary attacks by a network attacker

and not allowing M to learn anything about the secret without corrupting A’s device.

Secret retrieval would have several use cases in secure messaging. For instance, a

general anonymity/privacy related criticism directed at messaging services has to do

with the identification of users via their phone numbers. This can be dealt with by

securely storing long-term identities in encrypted form on the server, accessible only

to the users. Servers could also store per user lists of contacts in encrypted form; this

would enable asynchronous syncing of contacts across multiple devices without the

service provider learning the content.
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Another use case would be to secret-share user data among several of their own

devices, e.g., smartphone, laptop and tablet, so that a device compromise would not

provide any useful information to an attacker; this can also be used for performing key

synchronization among multiple devices. All these mechanisms would work in a similar

manner from the user’s point of view, i.e., simply by providing a password.

Recently, the Signal messaging system was enhanced with a functionality referred

to as “Secure Value Recovery” [42], which aims at storing encrypted backups of user’s

data that can be recovered using a PIN. Among other things, the design involves a

key stretching of the user’s PIN along with a master key derivation from the stretched

key and a piece of server-side stored randomness. The same core functionality can be

achieved with the use of either PPSS or PAKE constructions such as OPAQUE, a recent

aPAKE construction that, among other things, offers a secure secret retrieval mecha-

nism based on oblivious pseudo-random functions, to fetch a secret stored in encrypted

form on a server, using only a low-entropy password. It also offers protection against

breaches and server password file compromises.

Signal’s developers also mention secret sharing and oblivious pseudo-random func-

tions as future possibilities [43], both of which could be achieved using existing cryp-

tographic primitives, as explained above.

Auditable PAKEs for Thwarting Online Guessing Attacks. As is the case for SMP in

OTR, online guessing attacks are unavoidable in PAKEs. This is usually dealt with by

fixing a limit on the number of failed attempts that can be tolerated before invalidating

a password.

However, in certain cases, another subtle adversarial strategy aimed at sidestepping

the (at most) one online test per run would be to resort to a class of guess and abort

attacks in which M intercepts a message in a given session (or initiates a session of

her own) at a crucial step of a protocol run, verifies her guess at the password and in

case of an incorrect guess, drops the said message to disguise her attempt as a network

communication failure.

This can be done in both directions to double the chance of discovering the pass-

word, or in parallel against many network nodes depending on the setting. Such an

attack can be carried out repeatedly without raising an alarm as the honest parties may

simply view this as a network failure.

We identify a similar vulnerability in the use of a modified version of SMP in OTR:

just before the last phase where the parties perform their secure equality test, when A

and M exchange their blinded DH terms incorporating the low-entropy password in

the exponent, i.e., (ga
3,g

a
1g

πA

2 ), M could make a guessing attempt at πA and in case of

obtaining 0 (not equal), drop the message and force an abort, see sections 4.2 and 4.3

in [3]. Note that the non-interactive zero-knowledge (NIZK) proofs that are attached to

the messages at every exchange are not meant to protect against this type of attack.

In a relatively recent work, Roscoe and Ryan [38] apply a mechanism based on

commitment schemes and delay functions (e.g., timed-release encryption), originally

developed by Roscoe [37] for protecting against online attacks in HISPs that use SAS,

to the setting of PAKEs in order to make them auditable by achieving stochastic fair

exchange.
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Roughly speaking, this is achieved by a transformation for PAKEs at the level of

KC using a combination of blinding, randomization, commitments and delay functions

such that a series of messages consisting of fake ones and the real intended message

are exchanged and the parties will only get to know which is the right one until their

exchange is complete. In a follow-up work, Couteau et al. [16] generalize this result to

achieve ε-fair exchange using oblivious transfer and timed-release encryption.

This transformation can be used to enhance any PAKE with auditability, thus lend-

ing itself quite naturally to the authentication method suggested in this work. An impor-

tant limitation here is that, due to the highly interactive design of the solution, it would

be more suitable to the setting of secure messaging than email, unless a given email

solution were to opt for untrusted buffer servers for transport, see Section 4.4.

Finally, note that some of the ideas in this transformation, specifically those related

to enforcing fairness, have common elements with the original SMP [14] solution aimed

at providing fairness, a property that was removed from the modified version of SMP

used in OTR [3] on account of achieving efficiency.

5.4 Comparison

Table 2 shows a comparison of our proposal with a select set of approaches for trust es-

tablishment extracted from a relatively recent survey by Unger et al. on secure messag-

ing [46]. We limit our analysis to the most relevant aspects with respect to our proposal

and refer the reader to the cited source for a more detailed explanation of the approaches

and their properties. If the reason behind a given evaluation is not specified in [46], we

provide our own interpretation and evaluate our approach accordingly.

Most of the properties have self-explanatory names, except perhaps operator ac-

countability, which is considered to be satisfied if the paradigm provides support for

verifying the correct behavior of service providers during the trust establishment pro-

cess, when a centralized infrastructure is required. The network and operator attackers

considered for MITM refer respectively to adversaries controlling large segments of the

internet and infrastructure operators (service providers).

PAKE-based approaches satisfy privacy preservation as the transcript of a PAKE

execution does not leak information. Deniability facilitated, FS facilitated and post-

quantum security are subject to the selection and exact usage of the PAKE scheme.

Approaches built upon opportunistic encryption (OE) partially provide MITM pre-

vention because an attack can be successful during the initial communication round,

before a key is authenticated. When combined with SMP, operator accountability and

MITM detection are also partially satisfied given that if the execution of the SMP pro-

tocol fails, the users do not learn whether this was due to mismatching passwords or

an adversarial attempt at compromising the channel. However, when it comes to our

PAKE-based approach, these last two properties could be potentially satisfied with the

use of auditable PAKEs (see section 5.3), mainly in the context of messaging.

It is somewhat ambiguous as to why the authors of [46] consider key revocation—

users being able to revoke and renew keys—to be fully satisfied for SMP applied to OE.

While revocation is possible, the process would still suffer from the known limitations

of a truly decentralized setting, e.g., informing all users of an expired key. The latter

is indeed stated to be the reason for considering that KFV approaches only partially
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Table 2. Comparison of trust establishment approaches. (Partial modifications to the original

presented in [48])
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Web of Trust PGP    G# G# ✗ ✗ - ✗ ✗ ✗ G# G# ✗ ✗ ✗ ✗ ✗    

KD + SaL CONIKS  ✗ G#    ✗ - ✗             

OE + TOFU TextSecure G# G# G# G# ✗  - - -       ✗  ✗   ✗

OE + TOFU + OOB p≡p G# G# G# G# G#  - - -  G#  G# ✗  ✗ ✗ ✗  ✗ ✗

OE + SMP OTR G# G# G# G#   - - ✗ ✗  ✗ ✗ G# G# ✗  ✗  ✗  

OE + PAKE PakeMail G# G# � � G#  � � �      ✗       

KFV: OOB SilentText     G#  - - - ✗ ✗ ✗ ✗ ✗  ✗ ✗ ✗  ✗ ✗

KFV: SMP OTR     G#  - - ✗ ✗ ✗ ✗ ✗  ✗ ✗ ✗ ✗  ✗ ✗

KFV: PAKE PakeMail     G#    �      ✗       

The property is: = satisfied;G#= partially satisfied; ✗ = not satisfied;�= implementation dependent; - = N/A
KD = Key directory; KFV = Key fingerprint verification; OE = Opportunistic encryption; SaL = Self-auditable logs; TOFU

= Trust-on-first-use

satisfy this property. Therefore, PAKE applied to OE would also partially satisfy key

revocation. Thanks to the derived cryptographic key, the main advantages of OE with

PAKE can be observed at the level of usability related properties, e.g., automation of

tasks.

In key fingerprint verification (KFV) approaches, the verification is considered to

occur before using the public keys, which leads to achieving most of the security prop-

erties. The evaluations for the OOB approach assume that the manual comparison is

executed correctly; this assumption is not needed for SMP or PAKE. As we can ob-

serve, PAKE-based KFV significantly improves usability compared to OOB and SMP

fingerprint verification.

Key directory combined with self-auditable logs (KD+SaL) is arguably the most

promising approach identified by Unger et al. due to the wide range of properties that

it provides. It allows users to efficiently verify the consistency of their own entry in a

central key directory and therefore to detect and expose misbehavior by a third party.

The set of properties that KD+SaL and KFV:PAKE can achieve is similar, yet, the

latter has the advantage of enhancing security with the properties discussed in Sec-

tion 5.2. Overall, PAKE-based key fingerprint verification offers the most complete set

of properties with reasonable trade-offs between security and usability in a purely de-

centralized setting.

Clark et al. [15] present a similar table evaluating primitives used to enhance email

security. Considering end-to-end encryption as a baseline, PAKE-based key verifica-

tion/management would perform as shared secret key verification (R14 in [15]), except
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that, additionally, our PAKE-based approach partially satisfies the property that refers to

providing support for server-side content processing (P12) as this can be enabled with-

out exposing the encrypted content, e.g., via secure secret retrieval (see section 5.3).

6 Implementation: PakeMail

Here we present PakeMail, an implementation of the core set of features of our proposal,

mainly aimed at demonstrating the feasibility of the key ideas presented in this work.

The source code and related documentation are available at [4].

PakeMail is a complete implementation of the main functionalities, namely, car-

rying out a PAKE protocol in a decentralized setting to authenticate public keys and

establish a shared symmetric cryptographic key, using standard email and attachments

as transport mechanism for networking, while preserving interoperability and without

introducing any extra trust assumptions. However, this implementation should be rather

viewed as a proof of concept given that a full-fledged version would not only require

additional design and security considerations, but it would also provide support for the

other remaining features that we have discussed in Section 5.

Our solution is implemented in Python 3, specifically targeted at version 3.6, with

minimal dependencies, largely using standard Python libraries for tasks such as email

formatting (MIME), encoding and exchange (IMAP, SMTP, TLS) as well as network-

ing and file system operations. In terms of design, we have mainly adopted an object-

oriented programming paradigm, enabling well-established properties such as a mod-

ular implementation with better separation of concerns via encapsulation, extensibility

and re-usability. The current implementation is geared towards Unix-like operating sys-

tems, but it can be easily ported to other platforms.

6.1 Cryptographic details

PakeMail makes use of the SPAKE2 library developed by Warner [49], which by de-

fault uses “Curve25519”6 for the underlying elliptic curve, offering 128 bits of security.

It is however possible to switch to 1024/2048/3072-bit integer groups as well. For the

key confirmation phase described in Figure 1, we use HKDF (HMAC-based Extract-

and-Expand Key Derivation Function)7 by H. Krawczyk for implementing the key

derivation function, and HMAC8 keyed-hashing for message authentication to derive

the authentication tags. Finally, we use the PyNaCl library, which is a wrapper for the

well-known NaCl library, for performing cryptographic tasks such as encryption using

256-bit PAKE-derived secret keys.

PAKE messages and passwords are stored and transferred as byte strings. While

an encoding at the application layer can be applied, ultimately, the underlying SPAKE2

Application Programming Interface (API) requires byte strings, thus leaving such choices

to the users of the library. Moreover, due to the inherently asymmetric design of the

6 https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU/
7 https://tools.ietf.org/html/rfc5869.html
8 https://tools.ietf.org/html/rfc2104.html

https://mailarchive.ietf.org/arch/msg/cfrg/-9LEdnzVrE5RORux3Oo_oDDRksU/
https://tools.ietf.org/html/rfc5869.html
https://tools.ietf.org/html/rfc2104.html
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SPAKE2 implementation, we assign distinct roles to PAKE instances, which in our im-

plementation are referred to as “initiator” and “responder”. Also, among other things,

to prevent message reuse in different contexts and in line with the original proto-

col description [2] and the SPAKE2 library, we also enforce identities—again as byte

strings—at the level of PAKE instances, which can refer to a username, user ID or

server names, to name a few. As detailed in Section 4.2, the public key fingerprints

could be included in the transcript and thus in the input of the hash function computing

the intermediate shared key before KC, however the SPAKE2 API accepts only the user

IDs and the weak password. We deal with this using the KC step and the inclusion of

the public key fingerprints as associated data into the HMAC-authenticated message.

For further information on the details of the underlying SPAKE2 implementation,

we refer the reader to the corresponding documentation by Warner [49].

6.2 PAKE protocol carried out over email

We have implemented the email-based approach suggested in Section 4.4, mainly be-

cause it corresponds to the solution that preservers compatibility and interoperability

without imposing any additional requirements on standard email exchange solutions.

PakeMail essentially makes use of email messages and attachments as transport mech-

anism for exchanging cryptographic messages and key confirmation tags belonging to

PAKE protocol sessions as well as other data such as public keys that are to be au-

thenticated by PAKE messages, effectively implementing the communication channel

via mailboxes. In the case of secure messaging, the networking would be rather trivial

given that most current solutions make use of intermediary servers, which in our case

can be untrusted.

6.3 Implemented scenarios

The solution provides PAKE clients and email services designed to deal with the re-

quirements of PAKE exchanges and state maintenance in a decentralized and distributed

computing setting. The PAKE clients have been implemented such that they take on

either the role of an “initiator” or that of a “responder”, consistent with the original

SPAKE2 protocol design and the requirements of the SPAKE2 Python API.

Moreover, we provide a module containing easy to use executable implementations

of the following scenarios: (i) a local execution of two independent threads of PAKE

clients running a PAKE session with key confirmation, followed by some cryptographic

tasks using the established key; (ii) an online execution of two clients (an initiator and a

responder instance) running on the same hardware but routing their messages via email

exchanges and attachments, currently implemented to work with Gmail but adapting it

to other services would simply amount to providing the appropriate access data, e.g.,

the corresponding mail server credentials and port numbers; (iii) and (iv) provide the

execution of initiator and responder instances, respectively, on two different machines,

again using email as transport mechanism.
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6.4 Performance

In terms of performance, the main scenario of interest, namely that of running two

separate instances of PakeMail on two different machines, carrying out a PAKE protocol

with explicit key confirmation over Gmail, requires ≈ 3 · 10−3 seconds, averaged over

10 runs. The results were obtained from executions on two laptops running at 1.6 GHz

(Dual-Core Intel Core i5) with 8 GB of RAM, 256 KB and 4 MB of L2 and L3 cache,

respectively.

Given the setting for which this approach is designed, i.e., distributed peer-to-peer

connections between entities running point-to-point PAKE sessions, we consider the

current overall execution time to be fast enough for all practical purposes. Table 3

provides a concise comparison of execution times for pure SPAKE2 sessions with its

PakeMail counterpart, providing some information on the overall overhead added by

our email-based networking and other non-PAKE computations.

Table 3. Execution time comparison averaged over 10 runs

Group Pure SPAKE2 Local PakeMail PakeMail via Gmail

Curve25519 26 ms 50 ms 350 ms

Note that once both parties have entered their passwords, the added networking

overhead due to email exchanges triggered by PakeMail will arguably not be perceptible

by users given the inherent delay in email exchanges.

Finally, in terms of the underlying SPAKE2 library’s performance on the same hard-

ware, the average execution times using Curve25519 and 1024/2048/3072-bit integer

groups are 26 ms, 9 ms, 42.1 ms and 82.6 ms, respectively. The delta would simply

contribute additively to the PakeMail executions as the additional overhead incurred by

switching to different representations is independent from the details of PakeMail.

6.5 Further design and security considerations

Due to the nature of the current proof of concept implementation, certain design deci-

sions have been made simply to ensure the implementation of a functional tool capa-

ble of demonstrating the feasibility, usability and efficiency of the proposed approach.

However, a mature and robust implementation would have to account for a number

of nuances. For instance, for the purpose of our proof of concept, we simply use uni-

versally unique identifier (UUID) numbers along with other user identifiers, which are

stored in the email subject, to synchronize and map initiator and responder messages

belonging to the same session to one another, coupled with a persistent per client ses-

sion history to track and resolve sessions. A robust networking component capable of

addressing distributed systems corner cases such as deadlocks and race conditions re-

mains to be done.

Regarding the cryptographic details of the implementation, it should be pointed out

that a secure and scalable industrial implementation would have to at the very least rely
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on a constant-time implementation of the PAKE library as the currently used SPAKE2

library is by no means constant-time and is thus vulnerable to timing attacks.

Finally, note that dedicated optimization efforts remain to be done as future work.

Clearly, the alternative transport mechanism based on intermediary servers, enabling

more natural communication channels and networking, would lead to far lower com-

munication overhead, albeit at the cost of somewhat hampering interoperability and

compatibility, unless projects such as Matrix9 and MLS10 gain widespread adoption.

7 Security and Low-Entropy Secrets

The schemes considered thus far come with proofs of security, see Table 1 for the cor-

responding models and assumptions. The security guarantees can be traced back to the

core properties of PAKEs: they can in effect fulfill the role of ZK proof of knowledge

schemes such that a run of the protocol does not leak any information on the password

and upon termination only reveals whether the secrets were equal; they resist offline

dictionary attacks against passive and active adversaries, and online guessing attacks

by limiting adversarial tests to one password per run; compromised session keys do not

compromise the security of other established session keys; depending on the choice of

PAKE, FS would ensure that session keys remain secure in case of password disclosure.

The only way for M to gain knowledge about the secret would be via active on-

line guessing attempts, typically dealt with by fixing a limit on the number of failed

attempts, e.g., SMP in OTR. As we previously discussed, the possibility of making

PAKEs auditable can be used to mitigate this class of attacks by distinguishing between

failed adversarial attempts and network failures to minimize the adversary’s tries to one,

under the assumption of correct input entry by honest users.

Low-entropy secret agreement. Our proposal does come with a caveat, namely the need

for either presharing or agreeing on a low-entropy secret in-band. As already discussed

in [3], users can either share a secret over a secure channel, e.g. OOB, or agree on one

via an in-band solution without revealing sensitive information about the secret itself,

e.g., A asking B to use the name of their favorite restaurant. The user interface of a tool

implementing this could warn users not to include the secret itself, similar to standard

email warnings reminding users to attach documents in case they have mentioned it in

the body of the message.

Assuming already bootstrapped authentication to avoid circularity, another possi-

bility would be to use another already authenticated and secure channel to agree on

a secret. For instance, given the widespread use of tools such as Signal, parties could

simply use it to agree on a secret for a one-time entity authentication of their secure

email solution. While it may not be appealing from a theoretical point of view, due to

the assumption of there being an already authenticated and secure channel, practically

speaking, this approach would in fact provide a realistic and usable solution.

9 https://matrix.org/docs/spec/
10 https://messaginglayersecurity.rocks/

https://matrix.org/docs/spec/
https://messaginglayersecurity.rocks/
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Usability aspects. Particular attention must be paid to the implementation of an ade-

quate interface for entering the low-entropy secret, along with the corresponding doc-

umentation and manuals with simple explanations for users. A lesson learned from a

usability study on the OTR/SMP tool [44] stresses the need for further research on how

to guide users towards establishing a secure shared human-memorable secret.

For instance, adding a list pre-populated with questions might serve to reduce user

effort by allowing them to choose one from the list, or as a guide for users to gener-

ate similar questions. The questions should not lead to evident answers or to answers

belonging to very small known sets, such as “yes/no” or colors, as such cases increase

the successful guessing probability of the adversary. Another measure for dealing with

disparities due to letter cases would be to for example simply convert the secret to

upper-case, at the cost of reducing entropy.

8 Further directions

A clear and promising line of future work consists of improving the current implemen-

tation and adding the various enhancements discussed here.

Producing secure implementations of cryptographic primitives and protocols is a

notoriously difficult task. Consequently, over the past decades, a considerable amount

of research in formal verification has focused on developing techniques for ensuring

that security software preserves the security guarantees of the underlying cryptographic

constructions. Although our solution builds on provably secure cryptographic construc-

tions, the actual implementation makes use of cryptographic software that has not been

proven secure. Therefore, pursuing the development of a verified implementation of a

PAKE protocol would be another promising research direction. This could be achieved

using dedicated languages such as F* [35], which has been used, among other things,

to produce a verified reference implementation of the TLS (1.2) protocol [11].

Alternatively, a robust PAKE implementation in a language designed for perfor-

mance and safety such as RUST would be yet another viable path. An initial rough im-

plementation of SPAKE2 in RUST is already available and subject to ongoing work11.

Follow-up theoretical work on all the suggested cryptographic enhancements and

implementations thereof represents another line of research. In particular, given the fact

that mature PAKE implementations are quite rare, we consider further theoretical work

on the design and analysis of a quantum-secure PAKE, proven secure in the QROM,

accompanied by an actual implementation to be worth pursuing. Similarly, to the best

of our knowledge, an implementation, let alone practical and efficient, of the secure

secret storage and retrieval tasks (e.g., using PPSS or OPAQUE) represents yet another

promising line of work.

Moreover, research on effective and usable methods for assisting users in agreeing

on low-entropy secrets while reducing the mental effort and the likelihood of mistakes,

is also encouraged. Other interesting directions include the application of PAKE to au-

thentication for encrypted mailing lists, and studying the possibility of sharing/synchronizing

existing trust assignments for contacts across different services—e.g., from Signal to

11 https://github.com/RustCrypto/PAKEs

https://github.com/RustCrypto/PAKEs
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p≡p or vice versa. In this case, once an entity is trusted in one application, other ap-

plications that recognize this entity could inherit the trust stored in the user’s device;

clearly, it is vital to do this in a secure and privacy-preserving manner.
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