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Abstract. In applications such as object tracking, time-series data in-
evitably carry missing observations. Following the success of deep learning-
based models for various sequence learning tasks, these models increas-
ingly replace classic approaches in object tracking applications for infer-
ring the objects’ motion states. While traditional tracking approaches
can deal with missing observations, most of their deep counterparts are,
by default, not suited for this.

Towards this end, this paper introduces a transformer -based approach for
handling missing observations in variable input length trajectory data.
The model is formed indirectly by successively increasing the complex-
ity of the demanded inference tasks. Starting from reproducing noise-free
trajectories, the model then learns to infer trajectories from noisy inputs.
By providing missing tokens, binary-encoded missing events, the model
learns to in-attend to missing data and infers a complete trajectory con-
ditioned on the remaining inputs. In the case of a sequence of successive
missing events, the model then acts as a pure prediction model. The abil-
ities of the approach are demonstrated on synthetic data and real-world
data reflecting prototypical object tracking scenarios.

Keywords: Transformer · Trajectory Data · Missing Input Data · Fil-
tering · Trajectory Prediction · Missing Observations

1 Introduction & Related Work

One crucial task for autonomous systems is estimating the agents’ motion states
based on observations. Following the success of deep learning-based models in
various sequence processing tasks, like speech recognition [7, 12] and caption
generation [10, 37], these models are successfully utilized for trajectory predic-
tion.
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In trajectory prediction applications, deep learning-based approaches are in-
creasingly replacing classic approaches due to their ability to capture better
contextual cues from the static (e.g., obstacles; scene cues) or dynamic envi-
ronment (e.g., other objects in the scene; social cues)[29]. Commonly used ap-
proaches for encoding object motions rely on recurrent neural networks (RNNs)
[1, 14], temporal convolution networks (TCNs) [2, 24], or transformers [11, 30].
The reader is referred to these surveys [28, 29, 20] for a comprehensive overview
of current deep learning-based approaches for trajectory prediction. Since these
models have the ability to consider social cues and scene cues, the focus of
most research is how to incorporate these cues better. Although this research
direction offers the strongest performance boost, problems such as missing ob-
servations are partly ignored or mainly addressed with data imputation and
omitting the missing data [32]. To be more specific, this applies to trajectory
prediction relying on observation extracted from an agent’s trajectory as basic
input (e.g., positions). Only this type of prediction problem is considered here
and is referred to as trajectory cues-based prediction in the remainder. For ex-
ample, RNNs are designed to receive input data in every step and therefore are
by default not suited to deal with missing inputs. In contrast, transformers of-
fer an alternative to the step-by-step processing in the form of the underlying
attention mechanisms in combination with positional encoding. In general, data
imputation means to substitute the missing values with methods like interpo-
lation [21] or spline fitting [8] which results in a process where imputation and
prediction models are separated [6]. Thus, only suboptimal results are achieved
since the model does not effectively explore the missing pattern. The simplest
strategy for omitting is to remove samples in which a value is missing. While
for RNNs this may work for training but cannot be applied during inference,
omitting the missing value can be applied with transformers. Giuliari et al. [11]
suggested omitting data with a transformer model for trajectory prediction as an
advantage compared to RNN-based models. They analyzed the effect of omit-
ting the last observations of a fixed-length input sequence. Alternatively, and
in particular for RNNs, the problem can be modeled with marked missing val-
ues. A missing value can be masked and explicitly excluded, or the model can
be encouraged to learn that a specific value represents the missing observation
(missing tokens)[5]. Most approaches are for healthcare applications [34] or in
the field of speech recognition [25]. In the field of trajectory prediction, Becker
et al. [3] introduced an RNN-based full temporal filtering cycle for motion state
estimation to better deal with missing observations. The Kalman filter-inspired
model learns to weigh between its short-term predictions and observations en-
riched with missing tokens. In cases of missing inputs, the model entirely relies
on predictions. Due to the recursive incorporation of new observations, deep
Kalman models can be adapted similarly.
In this paper, we further explore the ability of transformer networks to handle
missing observations. Compared to the work of Giuliari et al. [11], we utilize a
modified encoder-only transformer model and provide missing tokens. Thus, the
model is encouraged to learn specific placeholder values representing the missing
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observations. We analyze to what extent the combination of the underlying at-
tention mechanisms with the positional encoding is able to then handle missing
inputs along a variable length trajectory. Further, our model is not primarily de-
signed as a prediction model, but in contrast, the model is formed indirectly by
successively increasing the complexity of the demanded inference tasks. Starting
from reproducing noise-free trajectories, the model then learns to infer trajec-
tories from noisy inputs. The model outputs a full trajectory despite only being
given partly observed trajectory data. Thus, for a sequence of successive missing
events, the model then acts as a mere prediction model. The analysis of the
model ability is performed under controlled conditions using synthetic data. For
a comparison to other prediction models, the commonly used, publicly available
BIWI [27] and UCY [22] datasets are used.

In the following, a brief formalization of the problem and a description of the
proposed transformer model are provided in section 2. The achieved results are
presented in section 3. Finally, a conclusion is given in section 4.

2 MissFormer

The goal is to devise a model that can successfully infer the trajectory of a
tracked agent conditioned on trajectory cues (e.g., positions, headings, velocities)
with missing observations. Trajectory prediction is formally stated as follows.
Given an input sequence X of consecutively observed positions ~xk = (pkx, p

k
y) (or

other trajectory cues) at time step k along a trajectory, the task is to gener-
ate predictions for future positions {~xk+1, ~xk+2, . . .} Here, we adapt the formal
description as follows. Given a sequence of noisy, potentially missing observa-
tions ~̃xk, the task is to estimate the noise-free positions of the trajectory ~xk.
So, ~̃xk is a realization of ~xk despite the fact the inputs of a transformer are
deterministic. In case the observations are noise-free, the task is to reproduce
the trajectories. Although this might sound trivial, there exists no commonly
accepted standards on encoding trajectory data in a deep learning model [15].
When noise is present, the task is filtering. In addition to learning an adequate
representation, the model needs to compensate input noise. If observations are
missing at the end of the input sequence, the model acts as a prediction model
and still infers the complete trajectory. Disregarding scene and social cues, tra-
jectory prediction is here divided into different inference tasks with increasing
complexity which the model can learn successively.

Input/output: For an agent, the transformer network outputs the complete

trajectory {~x1, . . . ~xk} up to time step k conditioned on {~̃x1, . . . ~̃xk}. To encourage
the model to learn that a specific value represents missing, a binary-coded miss-
ing pattern is provided. The missing token is chosen as (~0k, 1k) for a missing ob-

servation and, respectively, (~̃xk, 0k) for a default input, where k ∈ {1, kmax}. The
adapted input is embedded onto a higher dmodel-dimensional space by means of
a linear mapping ~ek = EMB(~̃xk; ~Θe). Accordingly, the output of the transformer
model is re-mapped to the 2-dimensional coordinate system. Since transformers
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contain no recurrence and no convolution, information about the position in the
sequence must be injected. Positional encodings are added to the input embed-
dings in accordance to the original transformer [35]. The positional encodings
have the same dimension dmodel as the embeddings, so that both can be summed
up. Hence, the embedded input is time-stamped at time step k by adding a posi-
tional encoding vector PEk. Following [35], sine and cosine functions of different

frequencies are used to define PEk = {PEk,d}dmodel

d=1 with

PEk,d =

 sin
(

k
10000d/dmodel

)
for d even

cos
(

k
10000d/dmodel

)
for d odd

. (1)

The time step k corresponds to the position in the sequence and d is the
dimension. Each dimension of the positional encoding varies in time according
to a sinusoid of different frequencies, from 2π to 10000 · 2π. That way, unique
timestamps for sequences of up to 10000 elements are ensured.

MissFormer: Both the encoder and the decoder of a transformer are com-
posed of a stack of identical layers consisting of two sub-layers. Firstly, an atten-
tion module, and secondly, a feed-forward fully-connected module. Around each
sub-layer, a residual connection followed by layer normalization is employed.
Here, we only use the encoder and directly map the encoded state to an entire
estimated trajectory instead of an auto-regressive generation with a decoder.
Contrary to using a step-by-step processing of RNNs or convolution, transform-
ers rely entirely on self-attention to compute representations of its input and
output. The attention function used by transformers is the so-called scaled dot-
product attention. The inputs consists of queries and keys of dimension dk, and
values of dimension dv packed into matrices Q, K and V . The attention layer is
given by:

Attention(Q,K, V ) = softmax(
QKᵀ

√
dk

)V (2)

So, the attention layer computes a dot product of the query with all keys,
divided by dk, and followed by a softmax function to obtain the weights on
the values. Multi-head attention performs several attention functions in parallel,
yielding to dv-dimensional outputs. These values are concatenated before pro-
jected to the final value. The transformer uses multi-head attention in different
ways, whereas for an encoder-only architecture, solely the self-attention layer in
the encoder is important. For more details, we refer to [35]. In a self-attention
layer of the encoder, all of the keys, values and queries come from the same
place, in this case the output of the previous layer in the encoder. On a high
level, attention can be seen as routing of information. Thus, each position in
the encoder can attend to all positions of the previous encoder layer or rather
over all positions in the input sequence. The encoder creates a representation
given the observation sequence resulting in the memory - the encoder state. In
an encoder-decoder set-up, the encoder state is used to generate a key and value
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Fig. 1: (Left) Visualization of the adapted transformer network - MissFormer.
(Right) Visualization of the adapted input data for the missing multi-head at-
tention.

passed to the decoder. Since no new observations are provided to the decoder,
we only used the encoder part. For every new observation, the extended input
sequence is given to the model. As described, the model infers a sequence with a
similar length to the input sequence. Our focus is on how well the described at-
tention mechanism can route information to deal with missing observations and
reconstruct complete, noise-free trajectories from the data. Further, the model is
encouraged to still produce a meaningful representation and in-attend to useless
placeholder values in the input sequence. The adapted transformer model, re-
ferred to as MissFormer, together with modified input data with missing tokens,
is visualized in Figure 1.

On the left, the MissFormer with the missing self-attention sub-layer is
shown. On the right, the missing tokens are highlighted in yellow and default
inputs are highlighted in blue. The Missformer is trained by minimizing the L2-
loss in the form of the mean squared error between the ground truth trajectories
and the estimated trajectories. Exemplary, the encoded state is combined with
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a conditional variational auto encoder(VAE) [18] for producing multiple out-
puts and capturing the uncertainty of the estimation. Thus, the evidence-based
lower bound ELBO term is added as a second factor to the loss function (see for
example [4]). However, capturing the multi-modality of trajectory prediction is
out of the scope of this paper. For example, this component can be replaced by
flow -based models [9] or N -curve models [17].

3 Evalution & Analysis

This section consists of an evaluation of the proposed MissFormer. The evalu-
ation concerns with verifying the approach’s overall viability in situations with
missing observations in variable-length trajectory data. One part of the evalu-
ation is done with synthetically generated data because, firstly, reference mod-
els can not handle mission observation by default. Secondly, current pedestrian
trajectory data sets do not consider this aspect. For a comparison to other ap-
proaches, the publicly available BIWI [27] and UCY [22] datasets are used
according to the common practice of fully observed input data.

3.1 Synthetic Data

The synthetic data consists of diverse trajectories covering different types of
prototypical object motion present in trajectory datasets [16]. The generated
trajectories include the motion patterns of constant velocity, curvilinear mo-
tion, acceleration and deceleration motion. For generating synthetic trajecto-
ries of a basic object motion on a ground plane, random agents are sampled
from a uniform distribution of speeds (U(5.0m/s, 10.0m/s)). The frame rate is
set to 1fps. The heading direction is sampled from U(0°, 360°) with a change
of heading during a sampling period also sampled from uniform distribution
of U(−20°, 20°). The de- and acceleration during a sampling period is sampled
from U(−0.8m/s2, 1.5m/s2). Missing events are drawn from a Bernoulli distribu-
tion B(·, ·). The positional observation noise is assumed to follow a zero-mean
Gaussian distribution N (0m/s, (·m/s)2). The evaluation set includes always 5000
samples. The number of training samples is varied thought-out the experiments.
The models have been implemented using Pytorch [26]. For training, an ADAM
optimizer variant [19, 23] with a learning rate of 0.001 is used.

In order to emphasize some statements, parts from the first experiments
are summarized in Table 1. For comparison of the different trained MissFormer
models, the average displacement error (ADE) is calculated as the average L2
distance between the estimated positions and the ground truth positions. It
should be noted that the model directly infers positions. Typically, only velocities
or rather offsets are predicted and the last observation is used as a reference
point. Since the amount of variation for offsets is lower compared to positions
and the range in the data is more limited, less modeling effort and less data is
required for model training (see from example [2]). Because the last observation
is affected by noise or even missing, this practice is not applicable. Thus, here
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Task: Encoding / Reconstruction

input output obs. pred. #samples #epochs noise missing ADE σADE

pos. pos. 8-20 7 1000 1000 7 7 0.067 0.013
off. pos. 8-20 7 1000 1000 7 7 0.061 0.012
pos. pos. 8-20 7 1000 1000 7 B(0.1, 0.9) 0.377 0.403
off. pos. 8-20 7 1000 1000 7 B(0.1, 0.9) 0.175 0.154
pos. pos. 8-20 7 3000 1000 7 B(0.1, 0.9) 0.138 0.074
off. pos. 8-20 7 3000 1000 7 B(0.1, 0.9) 0.155 0.079
pos. pos. 8-20 7 3000 3000 7 7 0.030 0.020
off. pos. 8-20 7 3000 3000 7 7 0.039 0.013
pos. pos. 8-20 7 3000 3000 7 B(0.1, 0.9) 0.087 0.060
off. pos. 8-20 7 3000 3000 7 B(0.1, 0.9) 0.095 0.065
pos. pos. 8-20 7 4000 4000 7 7 0.028 0.015
pos. pos. 8-20 7 4000 4000 7 B(0.1, 0.9) 0.081 0.015
off. pos. 8-20 7 4000 4000 7 7 0.031 0.014
off. pos. 8-20 7 4000 4000 7 B(0.1, 0.9) 0.084 0.014

Task: De-Noising / Filtering

input output obs. pred. #samples #epochs noise missing ADE σADE

pos. pos. 8-20 7 4000 4000 N (0, 12) 7 0.126 0.049
pos. pos. 8-20 7 4000 4000 N (0, 12) B(0.1, 0.9) 0.165 0.071
offs. pos. 8-20 7 4000 4000 N (0, 12) 7 0.148 0.055
offs. pos. 8-20 7 4000 4000 N (0, 12) B(0.1, 0.9) 0.222 0.137

Task: Prediction

input output obs. pred. #samples #epochs noise missing ADE σADE

pos. pos. 8-14 6-12 4000 4000 N (0, 12) 7 0.809 0.514
pos. pos. 8-14 6-12 4000 4000 N (0, 12) B(0.1, 0.9) 0.920 0.422
offs. pos. 8-14 6-12 4000 4000 N (0, 12) 7 1.186 0.583
offs. pos. 8-14 6-12 4000 4000 N (0, 12) B(0.1, 0.9) 1.221 0.734

Table 1: Results for a comparison between several trained MissFormer models
for different inference tasks. The inference tasks are reconstruction, filtering and
prediction. Reconstruction: In case the observations is noise-free, the task is to
reproduce the trajectories. Filtering: Here positional observation noise is added
and the model has to filter out this noise to generate noise-free trajectories.
Prediction: Future object locations are inferred from noisy, observed trajectories.

the outputs of the model are positions, and the inputs are varied between using
positions or using offsets to infer positions by path integration.

The results show that the MissFormer is able to successfully in-attend to the
missing tokens and successfully only uses the remaining inputs for condition-
ing. The difference between the model’s estimate without missing observation
and a missing probability B(0.1, 0.9) is very low. Of course, there is a drop in
performance which can best be seen when looking at the reconstruction task.
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But the model can there basically learn a trivial solution of the identity of the
input. Even when a trivial solution exists for using positions as inputs, the error
does not drop to zero. Positional trajectory data can be seen as some sort of
an increasing trend that cannot be fully captured by using non-linear activation
functions. However, deep networks can achieve outputs greater than the bound
of single activation functions, but they can saturate at minimum or maximum
values, particularly for trending input data. For all inference tasks, but in par-
ticular for reconstruction, the model requires enough variation and training time
to handle missing data. At first, the model simply reproduces placeholder val-
ues as outputs. By increasing the number of provided samples, the MissFormer
starts to better route the information to compensate for outages. When the
model has to additionally compensate for noise, the difference between missing
and no-missing decreases. Here, the MissFormer has to generalize and filter out
the noise. Thus, input identity mapping cannot be applied. When switching to
a prediction task by replacing the last inputs with missing tokens, the differ-
ence between the models’ estimates of fully observed and missing data decreases
further.

In the experiments for all tasks, using positions as inputs works slightly
better. The increased modeling effort is compensated by providing more variation
during training. Since the error by using path integration for estimating the true
position is propagated, the result is comprehensible. Further, in the context of
a dynamical system, only observing offsets is an unobservable system where
it is impossible to identify the initial condition uniquely. Thus, the error in
the first positional estimate cannot be compensated. However, without missing
observations and low positional observation noise, choosing offsets over positions
has shown superior results on public trajectory prediction benchmarks ([2]).

For these experiments only one attention head (Nhead = 1) and one atten-
tion layer (Nlayer = 1) is used. Firstly, this allows a better understanding of the
resulting attention because the attention filter directly shows what input infor-
mation is used to encode a current trajectory. Secondly, compared to a nature
language processing (NLP) or a vision task, single trajectory processing requires
no attention to several aspects of the input data (e.g., a second attention filter
on context information in the background). Some exemplary estimates from the
MissFormer with corresponding attention filters are depicted in Figure 2. The
values of the attention filter are color-coded (0 → max.). Here, results for the
prediction tasks are shown where the last inputs are purposely missing tokens.
The time steps where the input data is missing are marked with a cross and
missing input indexes are shown above the attention filters. The input length
k varies between 8 and 14 for a maximum length of kmax = 20 with a missing
probability of B(0.1, 0.9).

The shown examples highlight several things. Firstly and most importantly,
it can be seen that the models learned to in-attend to missing observation and to
encode the trajectories based on the other inputs. Secondly, that the attention
filters do not necessarily follow the typical look of high values along the diagonal
as in an NLP task. This can be explained by the fact that there are many
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Fig. 2: (Left) Some exemplary estimates from the MissFormer with missing ob-
servations. The time steps where the input data is missing are marked with
an cross. (Right) Corresponding attention filters. The attention filter values are
color-coded (0 → max.)

possibilities for trajectory generation from the given inputs although solutions
with predominantly high values along the diagonal can also result. Further, the
examples show how the MissFormer filters out the noise and estimates relatively
smooth outputs. And lastly they demonstrate, how prediction is done mainly
relying on the last inputs, which corresponds to the common assumption that
the last observations mainly influence motion. In summary, when providing the
MissFormer with enough variation in terms of diversity and amount of training
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data, the model can handle missing observations and ignore placeholder values
provided as missing tokens.

3.2 Real-World Data

For real-world data and comparing the model to recent reference models, the
publicly available BIWI [27] and UCY [22] datasets are used. Combined, these
datasets contain five sequences from an oblique view capturing scenes with pedes-
trians in a shopping street and on a university campus. As mentioned before,
most reference models cannot handle mission observation and this problem is not
considered in their corresponding evaluation. For the sake of completeness and
in order to compare the approach to others, we follow the common trajectory
prediction protocol. So, evaluation is done by leaving one-out cross-validation
for the 5 sequences. For conditioning, a fixed-length, fully observed trajectory of
8 points (3.2s) is provided before predicting 12 points (4.8s) into the future. The
average displacement error (ADE) and the final displacement error (FDE) are
used as error metrics. The ADE is defined as the average L2 distance between
ground truth and the prediction over all predicted time steps and the FDE is
defined as the L2 distance between the predicted final position and the actual
final position.

ADE/FDE in meters

Approach cues model type dataset average
traj. social scene BIWI:ETH BIWI:Hotel UCY:Univ UCY:Zara1 UCY:Zara2

Linear interpolation 3 7 7 classic 1.33/2.94 0.39/0.72 0.82/1.59 0.62/1.21 0.77/1.48 0.79/1.59
LSTM 3 7 7 RNN 1.09/2.94 0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11 0.70/1.52

GAN (Ind.)[13] 3 7 7 RNN 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.74/1.54
Social-LSTM [1] 3 3 7 RNN 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
Social-Att. [36] 3 3 7 RNN 0.39/3.74 0.29/2.64 0.33/3.92 0.20/0.52 0.30/2.13 0.30/2.59

Trajectron++[31] 3 3 3 RNN 0.50/1.19 0.24/0.59 0.36/0.89 0.29/0.72 0.27/0.67 0.34/0.84
TCN [24] 3 7 7 TCN 1.04/2.07 0.59/1.17 0.57/1.21 0.43/0.90 0.34/0.75 0.59/1.22
TF [11] 3 7 7 transformer 1.03/2.10 0.36/0.71 0.53/1.32 0.44/1.00 0.34/0.76 0.54/1.17

MissFormer (ours) 3 7 7 transformer 0.99/1.94 0.36/0.89 0.51/1.29 0.43/0.89 0.34/0.74 0.53/1.15

Table 2: Results for a comparison between the Missformer and a selection of
recent prediction models following the single trajectory deterministic protocol.
The prediction is done for 12 time steps into the future conditioned on 8 obser-
vations. Results are partly taken from [11, 31, 24]

The results are summarized in Table 2. In the comparison, a collection of
recent approaches is considered where in terms of models relying solely on tra-
jectory cues at least one reference approach from the basic concepts of deep
sequential trajectory processing and one classic approach is included (see col-
umn model type). The best performing models incorporate additional scene cues
(e.g., semantic segmentation), social cues (e.g., interactions with other pedestri-
ans) or both. When considering only trajectory cues, the MissFormer achieves
a better or similar performance. Without any outage in conditioning trajec-
tory, the transformer model of [11] and our MissFormer model are very similar.
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Whereas Giuliari et al. utilize an encoder-decoder network with offsets as inputs
and outputs, we use an encoder-only model with positional in- and outputs. To
counter the lesser modeling effort of offset data, we pre-train the model on a di-
verse set of synthetically generated trajectories covering all types of prototypical
pedestrian motion patterns. Therefore, the distribution and settings from sec-
tion 3.1 for synthetic trajectory generation are adapted to match the underlying
data better. For example, the frame rate is set to 2.5fps and random agents are
sampled from a Gaussian distribution according to a preferred pedestrian walk-
ing speed [33] (N (1, 38m/s, (0.37m/s)2)). The model is pre-trained on a diverse
set of 4000 synthetic trajectories for 4000 epochs. For the first half of training,
the full trajectories are provided. Then, corresponding to the prediction length,
the last inputs are replaced with missing tokens. Here, the number of heads and
attention layer is set to 2 (Nhead = 2, Nlayer = 2) and the model dimension is set
to dmodel = 256. However, the achieved results for these datasets are very similar
and the scope of this paper aims at further exploring the transformers’ ability to
deal with missing observations. On the BIWI [27] and UCY [22] datasets, there
is no clearly best-performing individual trajectory cues-based model. Overall, dif-
ferent models partly require different concepts for improving their performance
or overcoming shortcomings. The presented results show that transformers are
a good choice for estimating trajectories and offer an built-in concept of dealing
with missing inputs.

4 Conclusion

In this paper, a transformer -based approach for handling missing observations
has been presented. The transformers’ built-in attention mechanisms in combi-
nation with positional encoding is analyzed in terms of exploring the remaining
inputs for inference with outages. By providing encoded missing information
(missing tokens), the model is encouraged to learn that specific values represent
missing. The presented results show that the model can in-attend to the place-
holder values and successfully route the information from the remaining inputs
to infer a full trajectory. The abilities of the approach are demonstrated on syn-
thetic data and real-world data reflecting prototypical object tracking scenarios.
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15. Hug, R., Becker, S., Hübner, W., Arens, M.: A complementary trajectory prediction
benchmark. In: ECCV Workshop on Benchmarking Trajectory Forecasting Models
(BTFM) (2020) 3
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