Skip to main content

Putting Table Cartograms into Practice

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13017))

Abstract

Given an \(m\times n\) table T of positive weights, and a rectangle R with an area equal to the sum of the weights, a table cartogram computes a partition of R into \(m\times n\) convex quadrilateral faces such that each face has the same adjacencies as its corresponding cell in T, and has an area equal to the cell’s weight. In this paper, we examine constraint optimization-based and physics-inspired cartographic transformation approaches to produce cartograms for large tables with thousands of cells. We show that large table cartograms may provide diagrammatic representations in various real-life scenarios, e.g., for analyzing correlations between geospatial variables and creating visual effects in images. Our experiments with real-life datasets provide insights into how one approach may outperform the other in various application contexts.

This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/rakib045/tcarto_applications.

References

  1. Bureau, U.C.: State-to-state migration flows. https://www.census.gov/data/tables/time-series/demo/geographic-mobility/state-to-state-migration.html. Accessed Nov 2020

  2. Cano, R.G., Buchin, K., Castermans, T., Pieterse, A., Sonke, W., Speckmann, B.: Mosaic drawings and cartograms. In: Computer Graphics Forum, vol. 34, pp. 361–370. Wiley Online Library (2015)

    Google Scholar 

  3. Cauvin, C., Schneider, C.: Cartographic transformations and the Piezopleth maps method. Cartographic J. 26(2), 96–104 (1989)

    Article  Google Scholar 

  4. Dougenik, J.A., Chrisman, N.R., Niemeyer, D.R.: An algorithm to construct continuous area cartograms. Professional Geograph. 37(1), 75–81 (1985)

    Article  Google Scholar 

  5. Espenant, J., Mondal, D.: Streamtable: an area proportional visualization for tables with flowing streams. In: European Workshop on Computational Geometry, pp. 28:1–28:7 (2021). arXiv:https://arxiv.org/abs/2103.15037

  6. Evans, W., et al.: Table cartogram. Comput. Geometry 68, 174–185 (2018)

    Article  MathSciNet  Google Scholar 

  7. Fletcher, R.: A general quadratic programming algorithm. IMA J. Appl. Math. 7(1), 76–91 (1971)

    Article  MathSciNet  Google Scholar 

  8. Gastner, M.T., Newman, M.E.: Diffusion-based method for producing density-equalizing maps. Proc. Nat. Acad. Sci. 101(20), 7499–7504 (2004)

    Article  MathSciNet  Google Scholar 

  9. Gastner, M.T., Seguy, V., More, P.: Fast flow-based algorithm for creating density-equalizing map projections. Proc. Nat. Acad. Sci. 115(10), E2156–E2164 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  11. Henriques, R., Bação, F., Lobo, V.: Carto-SOM: cartogram creation using self-organizing maps. Int. J. Geograph. Inf. Sci. 23(4), 483–511 (2009)

    Article  Google Scholar 

  12. Hildreth, C., et al.: A quadratic programming procedure. Naval Res. Logist. Q. 4(1), 79–85 (1957)

    Article  MathSciNet  Google Scholar 

  13. House, D.H., Kocmoud, C.J.: Continuous cartogram construction. In: Proceedings Visualization 1998, pp. 197–204. IEEE (1998)

    Google Scholar 

  14. Inoue, R., Li, M.: Optimization-based construction of quadrilateral table cartograms. ISPRS Int. J. Geo-Inf. 9(1), 43 (2020)

    Article  Google Scholar 

  15. Inoue, R., Shimizu, E.: A new algorithm for continuous area cartogram construction with triangulation of regions and restriction on bearing changes of edges. Cartogr. Geogr. Inf. Sci. 33(2), 115–125 (2006)

    Article  Google Scholar 

  16. Keim, D.A., North, S.C., Panse, C.: Cartodraw: a fast algorithm for generating contiguous cartograms. IEEE Trans. Visual Comput. Graphics 10(1), 95–110 (2004)

    Article  Google Scholar 

  17. Keim, D.A., Panse, C., North, S.C.: Medial-axis-based cartograms. IEEE Comput. Graphics Appl. 25(3), 60–68 (2005)

    Article  Google Scholar 

  18. McNutt, A., Kindlmann, G.: A minimally constrained optimization algorithm for table cartograms. IEEEVIS InfoVis Posters (2020), OSF Preprints. https://doi.org/10.31219/osf.io/kem6j

  19. McNutt, A.: What are table cartograms good for anyway? an algebraic analysis. In: Eurographics Conference on Visualization (EuroVis), vol. 40 (2021, to appear)

    Google Scholar 

  20. Nusrat, S., Kobourov, S.: The state of the art in cartograms. In: Computer Graphics Forum, vol. 35, pp. 619–642. Wiley Online Library (2016)

    Google Scholar 

  21. Sun, S.: A fast, free-form rubber-sheet algorithm for contiguous area cartograms. Int. J. Geogr. Inf. Sci. 27(3), 567–593 (2013)

    Article  Google Scholar 

  22. Tobler, W.: Thirty five years of computer cartograms. Ann. Assoc. Am. Geogr. 94(1), 58–73 (2004)

    Article  Google Scholar 

  23. Tutte, W.T.: How to Draw a Graph, vol. 3, pp. 743–767. Wiley Online Library, Hoboken (1963)

    Google Scholar 

  24. Winter, M.J.: Diffusion cartograms for the display of periodic table data. J. Chem. Educ. 88(11), 1507–1510 (2011)

    Article  Google Scholar 

  25. Zahan, G.M.H., Mondal, D., Gutwin, C.: Contour line stylization to visualize multivariate information. In: Proceedings of Graphics Interface (GI). pp. 28:1–28:7 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasan, M.R., Mondal, D., Tasnim, J., Schneider, K.A. (2021). Putting Table Cartograms into Practice. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90439-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90438-8

  • Online ISBN: 978-3-030-90439-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics