Skip to main content

Simplified Robot Programming Framework for a Gearbox Assembly Application

  • Conference paper
  • First Online:
Social Robotics (ICSR 2021)

Abstract

In this paper, we are presenting a framework for multi-modal human-robot interaction (HRI), where complex robotic tasks can be programmed using a skill-based approach and intuitive HRI modalities. This approach is demonstrated using a gearbox assembly application in a realistic industrial environment. Our system includes mobile and static robots for actuation, 2D and 3D cameras for sensing, and GUIs, spatial- and see-through- Augmented Reality for HRI.

This research is partially supported by the Agency for Science, Technology and Research (A*STAR) under its SERC Grant (Project #A1623a00035).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.franka.de/.

  2. 2.

    https://www.artiminds.com/robot-programming-software/.

  3. 3.

    https://www.dragandbot.com/.

  4. 4.

    https://www.photoneo.com/products/phoxi-scan-l/.

  5. 5.

    https://www.mvtec.com/products/halcon.

  6. 6.

    https://www.mobile-industrial-robots.com/en/solutions/robots/mir200/.

  7. 7.

    https://github.com/dfki-ric/mir_robot.

  8. 8.

    https://moveit.ros.org/, http://wiki.ros.org/moveit/.

  9. 9.

    https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree.

  10. 10.

    https://github.com/kmammou/v-hacd”.

  11. 11.

    https://library.vuforia.com/.

  12. 12.

    https://docs.microsoft.com/en-us/uwp/api/windows.media.speechrecognition.

  13. 13.

    https://youtu.be/PIsMpFG6PmI.

References

  1. Cai, C., Liang, Y.S., Somani, N., Yan, W.: Inferring the geometric nullspace of robot skills from human demonstrations. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 7668–7675 (2020)

    Google Scholar 

  2. Castro, A., Souza, J.P., Rocha, L., Silva, M.F.: AdaptPack studio: automatic offline robot programming framework for factory environments. In: 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 1–6 (2019)

    Google Scholar 

  3. Coronado, E., Mastrogiovanni, F., Venture, G.: Design of a human-centered robot framework for end-user programming and applications. In: Arakelian, V., Wenger, P. (eds.) ROMANSY 22 – Robot Design, Dynamics and Control. CICMS, vol. 584, pp. 450–457. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-78963-7_56

    Chapter  Google Scholar 

  4. Danielsson, O., Syberfeldt, A., Brewster, R., Wang, L.: Assessing instructions in augmented reality for human-robot collaborative assembly by using demonstrators. Procedia CIRP 63, 89–94 (2017)

    Article  Google Scholar 

  5. Elsdon, J., Demiris, Y.: Augmented reality for feedback in a shared control spraying task. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1939–1946. https://doi.org/10.1109/ICRA.2018.8461179, ISSN: 2577-087X

  6. Ameri, F., Stecke, K.E., von Cieminski, G., Kiritsis, D. (eds.): APMS 2019. IAICT, vol. 566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30000-5

    Book  Google Scholar 

  7. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  8. Kraft, M., Rickert, M.: How to teach your robot in 5 minutes: applying UX paradigms to human-robot-interaction. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 942–949 (2017)

    Google Scholar 

  9. Kuffner, J., LaValle, S.: RRT-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 995–1001 (2000)

    Google Scholar 

  10. Lakshminarayanan, S., Kana, S., Mohan, D.M., Manyar, O.M., Then, D., Campolo, D.: An adaptive framework for robotic polishing based on impedance control. Int. J. Adv. Manuf. Technol. 112(1), 401–417 (2021)

    Article  Google Scholar 

  11. Makris, S., Karagiannis, P., Koukas, S., Matthaiakis, A.S.: Augmented reality system for operator support in human-robot collaborative assembly. CIRP Ann. 65(1), 61–64 (2016)

    Article  Google Scholar 

  12. Perzylo, A., et al.: SMErobotics: smart robots for flexible manufacturing. IEEE Robot. Autom. Mag. 26(1), 78–90 (2019). https://doi.org/10.1109/MRA.2018.2879747

    Article  Google Scholar 

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015)

    Google Scholar 

  14. Roitberg, A., Somani, N., Perzylo, A., Rickert, M., Knoll, A.: Multimodal human activity recognition for industrial manufacturing processes in robotic workcells. In: Proceedings of the ACM International Conference on Multimodal Interaction, pp. 259–266 (2015)

    Google Scholar 

  15. Schou, C., Andersen, R.S., Chrysostomou, D., Bøgh, S., Madsen, O.: Skill-based instruction of collaborative robots in industrial settings. Robot. Comput.-Integr. Manuf. 53, 72–80 (2018)

    Article  Google Scholar 

  16. Steinmetz, F., Wollschläger, A., Weitschat, R.: RAZER-a HRI for visual task-level programming and intuitive skill parameterization. IEEE Robot. Autom. Lett. 3(3), 1362–1369 (2018). https://doi.org/10.1109/LRA.2018.2798300

    Article  Google Scholar 

  17. Vogel, C., Poggendorf, M., Walter, C., Elkmann, N.: Towards safe physical human-robot collaboration: a projection-based safety system. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3355–3360 (2011). ISSN: 2153-0866

    Google Scholar 

  18. Wojtynek, M., Oestreich, H., Beyer, O., Wrede, S.: Collaborative and robot-based plug produce for rapid reconfiguration of modular production systems. In: 2017 IEEE/SICE International Symposium on System Integration (SII), pp. 1067–1073 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Somani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Somani, N. et al. (2021). Simplified Robot Programming Framework for a Gearbox Assembly Application. In: Li, H., et al. Social Robotics. ICSR 2021. Lecture Notes in Computer Science(), vol 13086. Springer, Cham. https://doi.org/10.1007/978-3-030-90525-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90525-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90524-8

  • Online ISBN: 978-3-030-90525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics