Skip to main content

Autonomous Group Detection, Delineation, and Selection for Human-Agent Interaction

  • Conference paper
  • First Online:
  • 2633 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13086))

Abstract

If a human and a robot team need to approach a specific group to make an announcement or delivery, how will the human describe which group to approach, and how will the robot approach the group? The robots will need to take a relatively arbitrary description of a group, identify that group from onboard sensors, and accurately approach the correct group. This task requires the robot to reason over and delineate individuals and groups from other individuals and groups. We ran a study on how people describe groups for delineation and identified the features most likely used by a person. We then present a framework that allows for an agent to detect, delineate, and select a given social group from the context of a description. We also present a group detection algorithm that works on a mobile platform in real-time and provide a formalization for a Group Selection Problem.

This research was performed while BW held an NRC Research Associateship award at NRL. This research was funded by ONR and OSD to GT.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.vyond.com/.

  2. 2.

    A linear effects mixed model shows a similar result while taking into account the multiple random effects. A later report will provide a fuller description.

References

  1. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)

    Article  Google Scholar 

  2. Cristani, M., et al.: Social interaction discovery by statistical analysis of F-formations. In: Proceedings of the British Machine Vision Conference, pp. 23.1–23.12. BMVA Press (2011). https://doi.org/10.5244/C.25.23

  3. Dondrup, C., Bellotto, N., Hanheide, M., Eder, K., Leonards, U.: A computational model of human-robot spatial interactions based on a qualitative trajectory calculus. Robotics 4(1), 63–102 (2015)

    Article  Google Scholar 

  4. Falomir, Z., Angulo Bahón, C.: A qualitative spatial descriptor of group-robot interactions. In: Leibniz International Proceedings in Informatics, pp. 3:1–3:14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  5. Falomir, Z., Pich, A., Costa, V.: Spatial reasoning about qualitative shape compositions. Ann. Math. Artif. Intell. 88(5), 589–621 (2020)

    Article  MathSciNet  Google Scholar 

  6. Hall, E.T.: The Hidden Dimension, vol. 609. Doubleday, Garden City (1966)

    Google Scholar 

  7. Hung, H., Kröse, B.: Detecting F-formations as dominant sets. In: Proceedings of the 13th International Conference on Multimodal Interfaces, pp. 231–238 (2011)

    Google Scholar 

  8. Kendon, A.: The F-formation system: the spatial organization of social encounters. Man-Environ. Syst. 6(01), 1976 (1976)

    Google Scholar 

  9. Kendon, A.: Spatial organization in social encounters: The F-formation system. Conducting interaction: patterns of behavior in focused encounters (1990)

    Google Scholar 

  10. Khan, S.D., Vizzari, G., Bandini, S., Basalamah, S.: Detection of social groups in pedestrian crowds using computer vision. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems, ACIVS 2015. LNCS, vol. 9386, pp. 249–260. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25903-1_22

  11. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  12. Linder, T., Arras, K.O.: Multi-model hypothesis tracking of groups of people in RGB-D data. In: 17th International Conference on Information Fusion (FUSION), pp. 1–7. IEEE (2014)

    Google Scholar 

  13. Long, M., Rohde, H., Rubio-Fernandez, P.: The pressure to communicate efficiently continues to shape language use later in life. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  15. Rubio-Fernandez, P., Jara-Ettinger, J.: Incrementality and efficiency shape pragmatics across languages. In: Proceedings of the National Academy of Sciences (2020)

    Google Scholar 

  16. Sanghvi, N., Yonetani, R., Kitani, K.: MGpi: a computational model of multiagent group perception and interaction. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1196–1205 (2020)

    Google Scholar 

  17. Setti, F., Lanz, O., Ferrario, R., Murino, V., Cristani, M.: Multi-scale F-formation discovery for group detection. In: 2013 IEEE International Conference on Image Processing, pp. 3547–3551. IEEE (2013)

    Google Scholar 

  18. Solera, F., Calderara, S., Cucchiara, R.: Socially constrained structural learning for groups detection in crowd. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 995–1008 (2016)

    Article  Google Scholar 

  19. Solera, F., Calderara, S., Cucchiara, R.: Structured learning for detection of social groups in crowd. In: 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 7–12. IEEE (2013)

    Google Scholar 

  20. Solera, F., Calderara, S., Ristani, E., Tomasi, C., Cucchiara, R.: Tracking social groups within and across cameras. IEEE Trans. Circuits Syst. Video Technol. 27(3), 441–453 (2016)

    Article  Google Scholar 

  21. Taylor, A., Chan, D.M., Riek, L.D.: Robot-centric perception of human groups. ACM Trans. Human-Robot Interact. (THRI) 9(3), 1–21 (2020)

    Article  Google Scholar 

  22. Turner, J.C.: Towards a cognitive redefinition of the social group. Soc. Identity Intergroup Relat. 1(2), 15–40 (1982)

    Google Scholar 

  23. Vascon, S., Mequanint, E.Z., Cristani, M., Hung, H., Pelillo, M., Murino, V.: A game-theoretic probabilistic approach for detecting conversational groups. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 658–675. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16814-2_43

    Chapter  Google Scholar 

  24. Vázquez, M., Steinfeld, A., Hudson, S.E.: Parallel detection of conversational groups of free-standing people and tracking of their lower-body orientation. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3010–3017. IEEE (2015)

    Google Scholar 

  25. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Pract. Logic Program. 12(1–2), 67–96 (2012)

    Article  MathSciNet  Google Scholar 

  26. Wright, B., Bugajska, M., Adams, W., Lawson, E., McCurry, J.M., Trafton, J.G.: Proxemic reasoning for group approach. In: 12th International Conference on Social Robotics (ICSR) (2020)

    Google Scholar 

  27. Zhang, L., Hung, H.: Beyond F-formations: determining social involvement in free standing conversing groups from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1086–1095 (2016)

    Google Scholar 

Download references

Acknowledgements

The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. The authors would like to thank Magda Bugajska and Bill Adams in their thoughts on combining the detection to representation on robotic platforms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wright, B., McCurry, J.M., Lawson, W., Trafton, J.G. (2021). Autonomous Group Detection, Delineation, and Selection for Human-Agent Interaction. In: Li, H., et al. Social Robotics. ICSR 2021. Lecture Notes in Computer Science(), vol 13086. Springer, Cham. https://doi.org/10.1007/978-3-030-90525-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90525-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90524-8

  • Online ISBN: 978-3-030-90525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics