Skip to main content

MSM: Multi-stage Multicuts for Scalable Image Clustering

  • Conference paper
  • First Online:
Book cover High Performance Computing (ISC High Performance 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12761))

Included in the following conference series:

  • 1537 Accesses

Abstract

Correlation Clustering, also called the minimum cost Multicut problem, is the process of grouping data by pairwise similarities. It has proven to be effective on clustering problems, where the number of classes is unknown. However, not only is the Multicut problem NP-hard, an undirected graph G with n vertices representing single images has at most \(\frac{n(n-1)}{2}\) edges, thus making it challenging to implement correlation clustering for large datasets. In this work, we propose Multi-Stage Multicuts (MSM) as a scalable approach for image clustering. Specifically, we solve minimum cost Multicut problems across multiple distributed compute units. Our approach not only allows to solve problem instances which are too large to fit into the shared memory of a single compute node, but it also achieves significant speedups while preserving the clustering accuracy at the same time. We evaluate our proposed method on the CIFAR10 and CelebA image datasets. Furthermore, we also provide the proof for the theoretical speedup.

K. Ho and A. Chatzimichailidis—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beier, T., Kroeger, T., Kappes, J.H., Kothe, U., Hamprecht, F.A.: Cut, glue & cut: a fast, approximate solver for multicut partitioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 73–80 (2014)

    Google Scholar 

  2. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  3. Caron, M., Bojanowski, P., Mairal, J., Joulin, A.: Unsupervised pre-training of image features on non-curated data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2959–2968 (2019)

    Google Scholar 

  4. Caron, M., et al.: Emerging properties in self-supervised vision transformers. arXiv preprint arXiv:2104.14294 (2021)

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59(1–3), 87–115 (1993). https://doi.org/10.1007/BF01581239

    Article  MathSciNet  MATH  Google Scholar 

  7. Dean, J., et al.: Large scale distributed deep networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1223–1231. Curran Associates Inc. (2012)

    Google Scholar 

  8. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in general weighted graphs. Theor. Comput. Sci. 361(2–3), 172–187 (2006)

    Article  MathSciNet  Google Scholar 

  9. Ghasedi, K., Wang, X., Deng, C., Huang, H.: Balanced self-paced learning for generative adversarial clustering network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4391–4400 (2019)

    Google Scholar 

  10. Ghasedi Dizaji, K., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5736–5745 (2017)

    Google Scholar 

  11. Guo, S., Xu, J., Chen, D., Zhang, C., Wang, X., Zhao, R.: Density-aware feature embedding for face clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6698–6706 (2020)

    Google Scholar 

  12. Harlap, A., et al.: PipeDream: fast and efficient pipeline parallel DNN training. CoRR arXiv:1806.03377 (2018)

  13. Ho, K., Keuper, J., Pfreundt, F., Keuper, M.: Learning embeddings for image clustering: an empirical study of triplet loss approaches. arXiv preprint arXiv:2007.03123 (2020)

  14. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline parallelism. CoRR arXiv:1811.06965 (2018)

  15. Kardoost, A., Ho, K., Ochs, P., Keuper, M.: Self-supervised sparse to dense motion segmentation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  16. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  Google Scholar 

  17. Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.: Motion segmentation & multiple object tracking by correlation co-clustering. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 140–153 (2018)

    Article  Google Scholar 

  18. Kolesnikov, A., et al.: Big transfer (bit): general visual representation learning, vol. 6, no. 2, p. 8. arXiv preprint arXiv:1912.11370 (2019)

  19. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. CoRR arXiv:1404.5997 (2014)

  20. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  22. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. (NRL) 52(1), 7–21 (2005)

    Article  Google Scholar 

  23. Li, P., Zhao, H., Liu, H.: Deep fair clustering for visual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9070–9079 (2020)

    Google Scholar 

  24. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  25. Mukherjee, S., Asnani, H., Lin, E., Kannan, S.: ClusterGAN: latent space clustering in generative adversarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4610–4617 (2019)

    Google Scholar 

  26. Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ramchandran, K., Jordan, M.I.: Parallel correlation clustering on big graphs. arXiv preprint arXiv:1507.05086 (2015)

  27. Pishchulin, L., et al.: DeepCut: joint subset partition and labeling for multi person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4929–4937 (2016)

    Google Scholar 

  28. Tang, S., Andres, B., Andriluka, M., Schiele, B.: Multi-person tracking by multicut and deep matching. CoRR arXiv:1608.05404 (2016)

  29. Wolf, S., et al.: The mutex watershed and its objective: efficient, parameter-free graph partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3724–3738 (2020)

    Article  Google Scholar 

  30. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR (2016)

    Google Scholar 

  31. Zhan, X., Xie, J., Liu, Z., Ong, Y., Loy, C.C.: Online deep clustering for unsupervised representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6688–6697 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalun Ho .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 88 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ho, K., Chatzimichailidis, A., Keuper, M., Keuper, J. (2021). MSM: Multi-stage Multicuts for Scalable Image Clustering. In: Jagode, H., Anzt, H., Ltaief, H., Luszczek, P. (eds) High Performance Computing. ISC High Performance 2021. Lecture Notes in Computer Science(), vol 12761. Springer, Cham. https://doi.org/10.1007/978-3-030-90539-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90539-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90538-5

  • Online ISBN: 978-3-030-90539-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics